留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

染色残液电化学处理碳素阴极材料性能比较

卢钧 陈泉源 杜夕铭 杨梦婷 唐聪

卢钧, 陈泉源, 杜夕铭, 杨梦婷, 唐聪. 染色残液电化学处理碳素阴极材料性能比较[J]. 环境科学研究, 2018, 31(12): 2055-2062. doi: 10.13198/j.issn.1001-6929.2018.07.05
引用本文: 卢钧, 陈泉源, 杜夕铭, 杨梦婷, 唐聪. 染色残液电化学处理碳素阴极材料性能比较[J]. 环境科学研究, 2018, 31(12): 2055-2062. doi: 10.13198/j.issn.1001-6929.2018.07.05
LU Jun, CHEN Quanyuan, DU Ximing, YANG Mengting, TANG Cong. Performance Comparison of Carbonaceous Cathode Materials for Electrochemical Treatment of Dyeing Residual[J]. Research of Environmental Sciences, 2018, 31(12): 2055-2062. doi: 10.13198/j.issn.1001-6929.2018.07.05
Citation: LU Jun, CHEN Quanyuan, DU Ximing, YANG Mengting, TANG Cong. Performance Comparison of Carbonaceous Cathode Materials for Electrochemical Treatment of Dyeing Residual[J]. Research of Environmental Sciences, 2018, 31(12): 2055-2062. doi: 10.13198/j.issn.1001-6929.2018.07.05

染色残液电化学处理碳素阴极材料性能比较

doi: 10.13198/j.issn.1001-6929.2018.07.05
基金项目: 

国家重点研究发展计划项目 2016YFC0400502

国家自然科学基金项目 21277023

中央高校基本科研专项资金项目 2232018D3-43

详细信息
    作者简介:

    卢钧(1994-), 女, 江苏靖江人, Junexian94@163.com

    通讯作者:

    陈泉源(1962-), 男, 湖北应城人, 教授, 博士, 博导, 主要从事水污染控制研究, qychen@dhu.edu.cn

  • 中图分类号: X703.1

Performance Comparison of Carbonaceous Cathode Materials for Electrochemical Treatment of Dyeing Residual

Funds: 

National Key Research and Development Program of China 2016YFC0400502

National Natural Science Foundation of China 21277023

Fundamental Research Funds for Central Universities, China 2232018D3-43

  • 摘要: 为实现染色残液的高效处理及废水回用,鉴于染色残液良好的导电性,选用电化学处理技术,以模拟活性红X-3B染色残液为研究对象,在钌铱形稳电极为阳极和合适的电解条件下,比较石墨板、石墨毡、炭毡、ACF(活性炭纤维毡)、碳纤维电极〔CFF(碳纤维布)、CFB(碳纤维刷)〕等碳素阴极材料的电化学处理效能.结果表明:碳素阴极材料可实现染色残液的完全脱色,活性红X-3B的降解过程符合一级反应动力学特征,其中CFF为阴极时CODCr去除率达到86.37%,一级动力学反应常数为0.010 3 min-1,是石墨毡(0.007 3 min-1)的1.4倍.相比于石墨板电极,CFB显示出优异的二电子氧还原和产H2O2能力,单位面积产H2O2的浓度为10.40 μmol/L,是石墨板(1.08 μmol/L)的9.7倍,产生的H2O2导致活性红X-3B的降解,30 min内实现完全脱色.循环伏安曲线表明,碳纤维电极(包括CFF和CFB)的析氧电位明显高于其他电极,可有效抑制析氧副反应,提高有机污染物降解过程中的电催化效率,有利于降低能耗.研究显示,碳纤维可作为阴极材料应用于电化学处理染色残液,具有良好的稳定性.

     

  • 图  1  活性红X-3B染料结构

    Figure  1.  The structure of Reactive Red X-3B

    图  2  电化学反应装置

    注:1—曝气装置; 2—磁力搅拌器; 3—恒流稳压电源; 4—电解槽.

    Figure  2.  Schematic diagram of electrochemical reactor

    图  3  不同阴极对活性红X-3B降解性能比较

    Figure  3.  Comparison of degradation performance of Reactive Red X-3B with different cathodes

    图  4  CFB稳定性测试

    Figure  4.  Durability test for CFB

    图  5  不同阴极产H2O2能力比较

    Figure  5.  Comparison of H2O2 generation with diferent cathodes

    图  6  不同电极的循环伏安曲线

    Figure  6.  Cyclic voltammograms of diferent electrode

    图  7  CFF在不同电解质体系下的循环伏安曲线

    注:a为SO42-氧化峰;b1、b2为氯还原峰;c1为氧还原峰.下同.

    Figure  7.  Cyclic voltammograms of CFF electrode recorded at different electrolyte concentrations

    图  8  石墨板在不同电解质体系下的循环伏安曲线

    Figure  8.  Cyclic voltammograms of graphite plate electrode recorded at different electrolyte concentrations

    图  9  不同电极的ICE、MCE和能耗比较

    注:电解180 min所测值.

    Figure  9.  Comparison of ICE, MCE, Esp with diferent cathodes

    表  1  碳素阴极材料特性

    Table  1.   Characteristics of carbonaceous materials

    碳素阴极材料 原料 生产工艺 含碳量/% 电阻率/(Ω·cm) 结构
    石墨板 人造石墨 混捏→压型→浸渍→焙烧→石墨化 99.9 0.8~1.1 平板
    石墨毡 黏胶 石墨化(2 000 ℃) >94 0.9
    炭毡 聚丙烯腈 预氧化→炭化(800 ℃) 90~95 0.18~0.22
    ACF 聚丙烯腈 预氧化→炭化(800 ℃)→活化(800 ℃) 75~95 1
    碳纤维 CFF
    CFB
    聚丙烯腈
    聚丙烯腈
    预氧化→炭化(1 200~1 600 ℃)→
    石墨化(2 000 ℃)
    >95 1.75×10-3 平纹编织布
    丝状
    下载: 导出CSV

    表  2  一级反应动力学模型拟合结果

    Table  2.   First-order reaction kinetics model fitting

    碳素阴极材料 拟合参数
    反应速率常数/min-1 R2
    石墨板 0.012 0 0.957 8
    石墨毡 0.008 9 0.904 9
    炭毡 0.007 3 0.925 0
    ACF 0.009 4 0.909 4
    碳纤维 CFF 0.010 3 0.965 9
    CFB 0.007 9 0.971 8
    下载: 导出CSV

    表  3  CFF和石墨板在3种体系中循环伏安曲线峰信息

    Table  3.   Peaksofcyclic voltammograms with CFF and graphite plate recorded at three systems

    体系 CFF 石墨板
    峰位/V 峰电流/mA 峰位/V 峰电流/mA
    0.10 mol/L NaCl b1(0.57) 17.72 c2(-0.51) 12.19
    0.27 mol/L Na2SO4 b1(0.57) 17.72 c2(-0.51) 12.19
    c1(0.32) 5.76
    0.10 mol/L NaCl+0.27 mol/L Na2SO4 a(-0.055) 6.92 c2(-0.51) 17.12
    b2(0.65) 28.24
    注:c2为氯还原峰.下同.
    下载: 导出CSV
  • [1] ZHANG Jing, HUANG Guoqing, LIU Chun, et al.Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J].Separation and Purification Technology, 2018, 201:10-18. doi: 10.1016/j.seppur.2018.02.003
    [2] ZHANG Congcan, DONG Yongchun, LI Bing, et al.Comparative study of three solid oxidants as substitutes of H2O2, used in Fe(Ⅲ)-oxalate complex mediated Fenton system for photocatalytic elimination of reactive azo dye[J].Journal of Cleaner Production, 2018, 177:245-253. doi: 10.1016/j.jclepro.2017.12.211
    [3] 袁超, 李磊, 孙应龙, 等.零价铝还原处理偶氮染料活性蓝222废水[J].环境科学研究, 2016, 29(7):1067-1074. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160715&flag=1

    YUAN Chao, LI Lei, SUN Yinglong, et al.Treatment of Reactive Blue 222 wastewater by zero-valent aluminum reduction[J].Research of Environmental Sciences, 2016, 29(7):1067-1074. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160715&flag=1
    [4] CAI Dong, ZHANG Tailiang, ZHANG Fangjie, et al.Quaternary ammonium β-cyclodextrin-conjugated magnetic nanoparticles as nano-adsorbents for the treatment of dyeing wastewater:synthesis and adsorption studies[J].Journal of Environmental Chemical Engineering, 2017, 5(3):2869-2878. doi: 10.1016/j.jece.2017.06.001
    [5] WANG Hongcheng, CUI Dan, YANG Lihui, et al.Increasing the bio-electrochemical system performance in azo dye wastewater treatment:reduced electrode spacing for improved hydrodynamics[J].Bioresource Technology, 2017, 245:962-969. doi: 10.1016/j.biortech.2017.09.036
    [6] 韩志涛, 于景奇, 杨少龙, 等.电解海水对模拟船舶柴油机废气的脱硝应用[J].环境科学研究, 2017, 30(1):144-151. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170117&flag=1

    HAN Zhitao, YU Jingqi, YANG Shaolong, et al.Application of electrolyzed seawater for NO removal from simulated marine diesel engine exhaust gas[J].Research of Environmental Sciences, 2017, 30(1):144-151. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170117&flag=1
    [7] COTILLAS S, LLANOS J, CANÑIZARES P, et al.Removal of procion red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation[J].Electrochimica Acta, 2018, 263:1-7. doi: 10.1016/j.electacta.2018.01.052
    [8] LIU Mengjiao, WANG Li, MU Yanlin, et al.A novel NiCoMnO4 anode material:construction of nanosheet architecture and superior electrochemical performances[J].Scripta Materialia, 2018, 146:13-17. doi: 10.1016/j.scriptamat.2017.10.030
    [9] GOMES F E R, SOUZA N E D, GALINARO C A, et al.Electrochemical degradation of butyl paraben on platinum and glassy carbon electrodes[J].Journal of Electroanalytical Chemistry, 2016, 769:124-130. doi: 10.1016/j.jelechem.2016.03.016
    [10] IGLESIAS O, MA F D D, PAZOS M, et al.Using iron-loaded sepiolite obtained by adsorption as a catalyst in the electro-Fenton oxidation of Reactive Black 5[J].Environmental Science and Pollution Research International, 2013, 20(9):5983-5993. doi: 10.1007/s11356-013-1610-4
    [11] 王琳, 李雪, 王丽.复合生物阴极型微生物燃料电池处理废水及同步产电性能[J].环境科学研究, 2017, 30(7):1098-1104. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170713&flag=1

    WANG Lin, LI Xue, WANG Li.Performance of a hybrid biocathode microbial fuel cell for wastewater treatment and electricity generation[J].Research of Environmental Sciences, 2017, 30(7):1098-1104. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170713&flag=1
    [12] BOCOS E, ALFAYA E, IGLESIAS O, et al.Application of a new sandwich of granular activated and fiber carbon as cathode in the electrochemical advanced oxidation treatment of pharmaceutical effluents[J].Separation and Purification Technology, 2015, 151:243-250. doi: 10.1016/j.seppur.2015.07.048
    [13] MEIJIDE J, GOMEZ J, PAZOS M, et al.Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions[J].Journal of Hazardous Materials, 2016, 319:43-50. doi: 10.1016/j.jhazmat.2016.02.064
    [14] LE T X H, BECHELANY M, CRETIN M.Carbon felt based-electrodes for energy and environmental applications:a review[J].Carbon, 2017, 122:564-591. doi: 10.1016/j.carbon.2017.06.078
    [15] MOREIRA F C, GARCIA S S, RUI A R B, et al.Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode[J].Applied Catalysis B:Environmental, 2014, 160-161(1):492-505. http://www.sciencedirect.com/science/article/pii/S0926337314003361
    [16] KHATAEE A, FATHINIA M, BEHROUZ V, et al.Kinetic modeling of photoassisted-electrochemical process for degradation of an azo dye using boron-doped diamond anode and cathode with carbon nanotubes[J].Journal of Industrial and Engineering Chemistry, 2013, 19(6):1890-1894. doi: 10.1016/j.jiec.2013.02.037
    [17] KOUSHANPOUR A, GUZ N, GAMELLA M, et al.Graphene functionalized 3D-carbon fiber electrodes preparation and electrochemical characterization[J].Electroanalysis, 2016, 28(9):1943-1946. doi: 10.1002/elan.201600110
    [18] CAMPOS B G, ACOSTA D M, RAMIREZ A H, et al.Air diffusion electrodes based on synthetized mesoporous carbon for pplication in amoxicillin degradation by electro-Fenton and solarphoto electro-Fenton[J].Electrochimica Acta, 2018, 269:232-240. doi: 10.1016/j.electacta.2018.02.139
    [19] 张冬梅, 刘蕾, 褚衍洋.电-Fenton氧化降解2, 4-二氯酚[J].环境科学研究, 2012, 25(9):1041-1046. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20120914&flag=1

    ZHANG Dongmei, LIU Lei, CHU Yanyang.Degradation of 2, 4-dichlorophenol by electro-Fenton oxidation process[J].Research of Environmental Sciences, 2012, 25(9):1041-1046. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20120914&flag=1
    [20] BANÑUELOS J A, GARCIA R O, EL-GHENYMY A, et al.Advanced oxidation treatment of malachite green dye using a low cost carbon-felt air-diffusion cathode[J].Journal of Environmental Chemical Engineering, 2016, 4(2):2066-2075. doi: 10.1016/j.jece.2016.03.012
    [21] LI Kunquan, LIU Jiaming, LI Jun, et al.Effects of N mono-and N/P dual-doping on H2O2, ·OH generation, and MB electrochemical degradation efficiency of activated carbon fiber electrodes[J].Chemosphere, 2017, 193:800-810. http://www.sciencedirect.com/science/article/pii/S0045653517318878
    [22] CHOI J, SUN H H, JANG J, et al.High yield hydrogen peroxide production in a solid polymer electrolyte electrolyzer with a carbon fiber coated mesh substrate[J].Electrochemistry Communications, 2013, 30(30):95-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3fc3bd182f22d86b39d4e8be06c0d252
    [23] MINKE C, KUNZ U, TUREK T.Carbon felt and carbon fiber-A techno-economic assessment of felt electrodes for redox flow battery applications[J].Journal of Power Sources, 2017, 342:116-124. doi: 10.1016/j.jpowsour.2016.12.039
    [24] LUO Shuai, HE Zhen.Ni-coated carbon fiber as an alternative cathode electrode material to improve cost efficiency of microbial fuel cells[J].Electrochimica Acta, 2016, 222:338-346. doi: 10.1016/j.electacta.2016.10.178
    [25] ZHANG Jianan, LIU Ping, JIN Chun, et al.Flexible three-dimensional carbon cloth/carbon fibers/NiCo2O4, composite electrode materials for high-performance all-solid-state electrochemical capacitors[J].Electrochimica Acta, 2017, 256:90-99. doi: 10.1016/j.electacta.2017.10.005
    [26] LAN Huachun, HE Wenjing, WANG Aimin, et al.An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the electro-Fenton mode:optimal operational conditions and the deposition of iron on cathode on electrode reusability[J].Water Research, 2016, 105:575-582. doi: 10.1016/j.watres.2016.09.036
    [27] HU Jingjing, SUN Jie, YAN Junkun, et al.A novel efficient electrode material:activated carbon fibers grafted by ordered mesoporous carbon[J].Electrochemistry Communications, 2013, 28(1):67-70. http://www.sciencedirect.com/science/article/pii/S1388248112005164
    [28] CHEN Kunfeng, XUE Dongfeng.From graphite-clay composites to graphene electrode materials:in-situ electrochemical oxidation and functionalization[J].Materials Research Bulletin, 2017, 96:281-285. doi: 10.1016/j.materresbull.2017.01.025
    [29] 杜利顺.Ti/SnO2+Sb2O3电极优化及电解氧化对纳滤处理染料废水的影响[D].天津: 天津大学, 2012: 27-28. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D286463
    [30] POPESCU M, SANDU C, ROSALES E, et al.Evaluation of different cathodes and reaction parameters on the enhancement of the electro-Fenton process[J].Journal of Electroanalytical Chemistry, 2017, 808:455-463. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d88b8f9bb7d2a9ee8296eb7d0660349
    [31] XU Haibo, XIA Guangsen, LIU Haining, et al.Electrochemical activation of commercial polyacrylonitrile-based carbon fiber for the oxygen reduction reaction[J].Physical Chemistry Chemical Physics, 2015, 17(12):7707-7713. doi: 10.1039/C4CP05667A
    [32] KARUPPIAH M T, RAJU G B.Anodic degradation of CI Reactive Blue 221 using graphite and IrO2/TaO2/RuO2 coated titanium electrodes[J].Industrial and Engineering Chemistry Research, 2009, 48(4):2149-2156. doi: 10.1021/ie801291h
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1106
  • HTML全文浏览量:  35
  • PDF下载量:  786
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-23
  • 修回日期:  2018-07-04
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回