Variation of Disinfection By-Product Precursors during Anaerobic-Anoxic-Oxic-Membrane-Bioreactor (AAO-MBR) Process in the Sewage Treatment Plant
-
摘要: 为探究DBPs(消毒副产物)前体物在污水处理过程中的变化情况,采用超滤膜和XAD大孔吸附树脂将AAO-MBR工艺沿程出水中DOM(溶解性有机物)进行分离,并利用3D-EEM(三维荧光光谱)对分离前后水样进行表征,同时测定DBPFP(消毒副产物生成势).结果表明:①沉砂池出水具有较低的C-DBPFP(含碳消毒副产物生成势);经过AAO和MBR后,由于微生物代谢作用生成的疏水性SMPs(微生物代谢产物)类物质(为主要的C-DBPs前体物质)包含较多不饱和键,导致C-DBPFP增加.②沉砂池出水的N-DBPFP(含氮消毒副产物生成势)较低,但经过AAO后生成的小分子物质(为主要的N-DBPs前体物)导致N-DBPFP增加;经过MBR后由于SRT(污泥停留时间)和污泥浓度的增加造成小分子物质减少,致使N-DBPFP降低.③市政污水经过AAO后,C-DBPs和N-DBPs前体物分别增加了90.9%和7.3%;而MBR具有较高的DOC去除率(74.4%),去除了56.8%的C-DBPs前体物和78.1%的N-DBPs前体物.研究显示,AAO-MBR工艺对市政污水中C-DBPs和N-DBPs前体物有较好地去除效果.Abstract: In order to investigate the change of disinfection by-product (DBP) precursors during the sewage treatment process, dissolved organic matter (DOM) of the effluents during the AAO-MBR process was separated with ultrafiltration membrane and XAD adsorption resin, then characterized with 3D-EEM spectra. The DBPFP of effluents and their separated fractions were further evaluated in this study. The results showed that C-DBPFP of the grit chamber effluent was low, the AAO and MBR processes could increase C-DBPFP significantly. SMPs produced by microbial metabolism during the AAO and MBR processes was the major C-DBP precursors. The grit chamber effluent also displayed low N-DBPFP. The AAO process led to the increase in N-DBPFP mainly due to the production of small molecule SMPs. The MBR process could result in the decrease in N-DBPFP comparing to the AAO process, by reducing small molecule SMPs with long SRT and high sludge concentration. In all, the AAO process would obviously enhance C-DBP and N-DBP precursors by 90.9% and 7.3%, respectively. However, the MBR process could remove 74.4% DOC, resulting in 56.8% C-DBP precursor and 78.1% N-DBP precursor removal. Therefore, AAO-MBR had a respectable removal effect on C and N-DBPs precursors in the municipal sewage.
-
表 1 水质参数
Table 1. The water quality parameters
出水类别 ρ(DOC)/
(mg/L)ρ(DTN)/
(mg/L)ρ(NH4+-N)/
(mg/L)ρ(NO3--N)/
(mg/L)ρ(NO2--N)/
(mg/L)pH UV254/cm 沉砂池出水 63.27±3.27 25.00±3.21 17.90±2.11 1.08±0.28 0.01±0.01 7.18±0.12 0.17±0.02 AAO出水 46.85±2.23 7.95±1.57 1.92±0.52 5.88±0.71 0.06±0.01 7.21±0.21 0.25±0.03 MBR出水 13.01±1.67 10.95±1.39 0.50±0.13 6.82±0.57 0.01±0.01 7.31±0.13 0.15±0.02 表 2 分离前后组分的水质指标
Table 2. Characteristics of the wastewater samples and each fractions
出水类别 参数 分离前原水 分子量组分 亲疏水性组分 >100 ku 30~100 ku 10~30 ku 5~10 ku 1~5 ku <1 ku HPI HPO TPI 沉砂池出水 ρ(DOC)/(mg/L) 64.13 18.08 11.88 9.24 8.38 6.35 10.21 44.97 13.91 3.15 占比/% — 28.19 18.52 14.41 13.07 9.90 15.92 72.50 22.42 5.08 AAO出水 ρ(DOC)/(mg/L) 47.78 3.87 4.02 2.14 7.64 9.25 18.31 25.53 28.97 5.20 占比/% — 8.56 8.89 4.73 16.89 20.45 40.48 42.76 48.53 8.71 MBR出水 ρ(DOC)/(mg/L) 12.21 2.17 0.89 1.32 1.01 2.42 2.54 10.60 11.90 2.72 占比/% — 20.97 8.60 12.75 9.76 23.38 24.54 42.03 47.18 10.79 表 3 水样出水3D-EEM的FRI参数、标准体积(φ)和体积占比(P)
Table 3. FRI parameters for operationally defined 3D-EEM regions and volumetric (φ) and percentage (P) values for 3D-EEM analysis of the wastewater samples
FRI参数 φi, n/105 Pi, n/% EEM区域 激发-发射面积/nm2 MFi 沉砂池出水 AAO出水 MBR出水 沉砂出水 AAO出水 MBR出水 Ⅰ 5 000 0.157 28.93 31.22 87.26 67.67 65.46 47.97 Ⅱ 6 250 0.210 2.17 2.84 8.96 6.34 5.96 5.95 Ⅲ 2 500 0.083 10.39 12.53 49.72 24.30 26.29 33.03 Ⅳ 16 675 0.550 0.72 1.09 4.60 1.67 2.30 3.05 合计 30 175 1.000 42.75 47.68 150.53 100.00 100.00 100.00 -
[1] ZHANG Beibei, XIAN Qiming, GONG Tingting, et al.DBPs formation and genotoxicity during chlorination of pyrimidines and purines bases[J].Chemical Engineering Journal, 2017, 307:884-890. doi: 10.1016/j.cej.2016.09.018 [2] HAN Qi, YAN Han, ZHANG Feng, et al.Trihalomethanes (THMs) precursor fractions removal by coagulation and adsorption for bio-treated municipal wastewater:molecular weight, hydrophobicity/hydrophily and fluorescence[J].Journal of Hazardous Materials, 2015, 297:119-126. doi: 10.1016/j.jhazmat.2015.04.070 [3] FUKUSHIMA T, HARA-YAMAMURA H, URIA M, et al.Toxicity assessment of chlorinated wastewater effluents by using transcriptome-based bioassays and Fourier transform mass spectrometry (FT-MS) analysis[J].Water Research, 2004, 52:73-82. http://www.ncbi.nlm.nih.gov/pubmed/24462929 [4] HU Hongying, DU Ye, WU Qianyuan, et al.Differences in dissolved organic matter between reclaimed water source and drinking water source review article[J].Science of the Total Environment, 2016, 551/552:133-142. doi: 10.1016/j.scitotenv.2015.12.111 [5] MICHAEL J P, MARK G M, SUSAN D R, et al.Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides:an emerging class of nitrogenous drinking water disinfection byproducts[J].Environmental Science & Technology, 2008, 42(3):955-961. http://europepmc.org/abstract/med/18323128 [6] 中华人民共和国卫生部.GB 5749-2006 生活饮用水卫生标准[S].北京: 中国国家标准化管理委员会, 2006. [7] World Health Organization.Guidelines for drinking-water quality[S].Geneva: World Health Organization, 2011. [8] WOO Y, LAI D, MCLAIN J L, et al.Use of mechanism-based structure-activity relationship analysis incarcinogenic potential ranking for drinking water disinfection by-products[J].Environmental Health Perspectives, 2002, 110(1):75-87. http://www.jstor.org/stable/3455236 [9] 江瑞, 黄璜, 吴乾元, 等.再生水氯消毒过程中三氯丙酮生成特性及其前体物组成[J].给水排水, 2013(S1):171-176. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJS2013S1052.htmJIANG Rui, HUANG Huang, WU Qianyuan, et al.Trichloroacetone formation from the chlorination of reclaimed water and the characteristic of its precursor component[J].Water & Wastewater Engineering, 2013(S1):171-176. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJS2013S1052.htm [10] SHON H K, VIGNWSWARAN S, SNYDERR S A.Effluent organic matter (EfOM) in wastewater:constituent, effects, and treatment[J].Critical reviews in environmental science and technology, 2006, 36:327-374. doi: 10.1080/10643380600580011 [11] ZHANG Beibei, XIAN Qingming, ZHU Jiping, et al.Characterization, DBPs formation, and mutagenicity of soluble microbial products (SMPs) in wastewater under simulated stressful conditions[J].Chemical Engineering Journal, 2015, 279:258-263. doi: 10.1016/j.cej.2015.05.039 [12] ZHANG Beibei, XIAN Qingming, YANG Gang, et al.Formation potential of N-nitrosamines from soluble microbial products (SMPs) exposed to chlorine, chloramine and ozone[J].Rsc Advances, 2015, 102(5):83682-83688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05d977cdfe1526acf4f36a311ecea077 [13] ZHONG Xin, CUI Chongwei, YU Shuili.Formation of aldehydes and carboxylic acids in humic acid ozonation[J].Water, Air, & Soil Pollution, 2017, 228(6):1573-2932. doi: 10.1007/s11270-017-3418-1 [14] MA Defang, XIA Chufan, GAO Baoyu, et al.C, N-DBP formation and quantification by differential spectra in MBR treated municipal wastewater exposed to chlorine and choramine[J].Chemical Engineering Journal, 2016, 291:55-63. doi: 10.1016/j.cej.2016.01.091 [15] MENG Yingjie, WANG Yan, HAN Qi, et al.Trihalomethane (THM) formation from synergic disinfection of biologically treated municipal wastewater:effect of ultraviolet (UV) irradiation and titanium dioxide photocatalysis on dissolve organic matter fractions[J].Chemical Engineering Journal, 2016, 303:252-260. doi: 10.1016/j.cej.2016.05.141 [16] LIU Jinlin, LI Xiaoyan, XIE Yue, et al.Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply[J].Science of the Total Environment, 2014, 472:818-824. doi: 10.1016/j.scitotenv.2013.11.139 [17] HAN Huihui, MIAO Hengfeng, ZHANG Yajing, et al.Carbonaceous and nitrogenous disinfection byproduct precursor variation during the reversed anaerobic-anoxic-oxic process of a sewage treatment plant[J].Journal of Environmental Sciences, 2018, 65:335-346. doi: 10.1016/j.jes.2017.06.029 [18] 环境保护部.HJ 585-2010水质游离氯和总氯的测定N, N-二乙基1, 4-苯二胺滴定法[S].北京: 中国环境科学出版社, 2010. [19] MUCH J W, HAUTMAN D P.US EPA Method 551.Determination of chlorination disinfection byproducts and chlorinated solvents in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection[S].Washington DC: Office of Research and Development, 1990. [20] DOMINO M M, PEPICH B V.US EPA Method 552.3.Determination of haloacetic acids and dalapon in drinking water by liquid-liquid microextraction, derivatization, and gas chromatography with electron capture detection[S].Cincinnati, Ohio: Office of Ground Water and Drinking Water, 2003. [21] CHEN W, PAUL W, JERRY A, et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science & Technology, 2003, 37(24):5701-5710. doi: 10.1021/es034354c [22] JACQUIN C, LESAGE G, TRABER J T, et al.Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein-and humic-like substances in full-scale membrane bioreactor (MBR)[J].Water Research, 2017, 118:82-92. doi: 10.1016/j.watres.2017.04.009 [23] GOLETZ C, WAGNER M, GRUBEL A, et al.Standardization of fluorescence excitation-emission-matrices in aquatic milieu[J].Talanta, 2011, 85(1):650-656. doi: 10.1016/j.talanta.2011.04.045 [24] PEIRIS R H, HALLÉ C, BUDMAN H, et al.Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices[J].Water Research, 2010, 44(1):185-194. doi: 10.1016/j.watres.2009.09.036 [25] ZHAO Qingliang, ZHONG Huiyuan, WANG Kun, et al.Removal and transformation of organic matters in domestic wastewater during lab-scale chemically enhanced primary treatment and a trickling filter treatment[J].Journal of Environmental Sciences, 2013, 1:56-68. http://ora.ox.ac.uk/objects/tsu:10054 [26] AZAMI H, SARRAFZADEH M H, MEHNIA M R.Soluble microbial products (SMPs) release in activated sludge systems:a review[J].Iranian Journal of Environmental Health Science & Engineering, 2012, 9(1):1735-1979. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_15d026070dcb82f3045b961bfc764882 [27] 马德方.城市污水MBR处理工艺出水回用消毒副产物的生成与控制[D].济南: 山东大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3034009 [28] LI Angzhen, ZHAO Xu, MAO Ran, et al.Characterization of dissolved organic matter from surface waters with low to high dissolved organic carbon and the related disinfection byproduct formation potential[J].Journal of Hazardous Material, 2014, 271:228-235. doi: 10.1016/j.jhazmat.2014.02.009 [29] CHANG E E, CHIANG P C, KO Y W, et al.Characteristics of organic precursors and their relationship with disinfection by-products[J].Chemosphere, 2001, 44:1231-1236. doi: 10.1016/S0045-6535(00)00499-9 -