留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁纳米线对水中Cu2+的吸附性能及机理

罗梦婷 邓红梅 张紫君 黄静文 陈永亨

罗梦婷, 邓红梅, 张紫君, 黄静文, 陈永亨. 铁纳米线对水中Cu2+的吸附性能及机理[J]. 环境科学研究, 2018, 31(12): 2146-2154. doi: 10.13198/j.issn.1001-6929.2018.09.24
引用本文: 罗梦婷, 邓红梅, 张紫君, 黄静文, 陈永亨. 铁纳米线对水中Cu2+的吸附性能及机理[J]. 环境科学研究, 2018, 31(12): 2146-2154. doi: 10.13198/j.issn.1001-6929.2018.09.24
LUO Mengting, DENG Hongmei, ZHANG Zijun, HUANG Jingwen, CHEN Yongheng. Adsorption Performance and Mechanisms of Cu2+ from Aqueous Solution by Fe@Fe2O3 Core-Shell Nanowires[J]. Research of Environmental Sciences, 2018, 31(12): 2146-2154. doi: 10.13198/j.issn.1001-6929.2018.09.24
Citation: LUO Mengting, DENG Hongmei, ZHANG Zijun, HUANG Jingwen, CHEN Yongheng. Adsorption Performance and Mechanisms of Cu2+ from Aqueous Solution by Fe@Fe2O3 Core-Shell Nanowires[J]. Research of Environmental Sciences, 2018, 31(12): 2146-2154. doi: 10.13198/j.issn.1001-6929.2018.09.24

铁纳米线对水中Cu2+的吸附性能及机理

doi: 10.13198/j.issn.1001-6929.2018.09.24
基金项目: 

广州市属高校科研项目 1201620157

国土资源部放射性与稀有稀散矿产重点实验室开放基金项目 RRSM-KF2018-04

广州大学研究生创新研究资助计划项目 2017GDJC-M08

详细信息
    作者简介:

    罗梦婷(1993-), 女, 四川眉山人, mengting_l@163.com

    通讯作者:

    邓红梅(1978-), 女, 湖南郴州人, 副教授, 博士, 主要从事痕量毒害污染物环境行为研究, denghongmei51@126.com

  • 中图分类号: X703

Adsorption Performance and Mechanisms of Cu2+ from Aqueous Solution by Fe@Fe2O3 Core-Shell Nanowires

Funds: 

Scientific Research Project of Guangzhou, China 1201620157

Key Laboratory of Radioactive and Rare Scattered Minerals, Ministry of Land and Resources, China RRSM-KF2018-04

Graduate Student Innovation Research Funding Program of Guangzhou University, China 2017GDJC-M08

  • 摘要: 为研究nZVI(纳米零价铁)材料对水中Cu2+的吸附性能,采用液相还原法合成核壳结构的nZVI,即FSCNs(铁纳米线,Fe@Fe2O3 core-shell nanowires).通过批处理吸附试验研究pH、离子强度、FSCNs投加量、反应时间、初始ρ(Cu2+)、反应温度等因素对Cu2+去除率的影响,运用动力学模型、等温吸附模型和吸附热力学模型分析FSCNs对Cu2+的吸附特性,并利用SEM(扫描电镜)、XRD(X射线衍射)和XPS(X射线光电子能谱)等表征手段探讨FSCNs对Cu2+的吸附机制.结果表明:①在pH为5、离子强度为0.01 mol/L、FSCNs投加量为0.5 g/L、反应温度为318 K条件下,FSCNs对Cu2+产生的吸附容量最大,为387.6 mg/g.②FSCNs对Cu2+的吸附反应在30 min内达到吸附平衡,此时的最大吸附率可达96%;FSCNs对Cu2+的吸附更符合准二级动力学模型(R2≥0.992),表明化学吸附可能为该反应的限制步骤;Langmuir和Freundlich等温吸附模型均能较好地拟合吸附结果(R2≥0.992);该吸附过程是自发的吸热反应〔ΔG0(吉布斯标准自由能) < 0,ΔH0(标准焓变)>0〕.③大部分Cu2+在加入FSCNs后转化为Cu、Cu2O和CuO,被吸附在FSCNs表面,吸附、还原与共沉淀可能是FSCNs去除水中Cu2+的主要机理.研究显示,FSCNs对Cu2+的最大吸附容量为387.6 mg/g,能快速高效吸附水中的Cu2+,应用前景良好.

     

  • 图  1  不同离子强度下pH对FCSNs吸附Cu2+的影响

    Figure  1.  Effect of pH on the adsorption of Cu2+ on FCSNs at different ion strength

    图  2  FSCNs投加量和反应时间对FCSNs吸附Cu2+吸附容量和吸附率的影响

    Figure  2.  Effect of dosage of FSCNs and contact time on adsorption capacity and efficiency of Cu2+ adsorption by FCSNs

    图  3  不同反应温度下初始ρ(Cu2+)对Cu2+在FCSNs上吸附容量的影响

    Figure  3.  Effect of initial ρ(Cu2+) on adsorption capacity of Cu2+on FCSNs at different temperatures

    图  4  FCSNs吸附Cu2+前后SEM图

    Figure  4.  SEM images of FCSNs before and after adsorption Cu2+

    图  5  FSCNs吸附Cu2+前后的XRD结果

    Figure  5.  XRD pattern of FCSNs before and after adsorption Cu2+

    图  6  吸附前后FCSNs的XPS结果

    Figure  6.  XPS spectra of FCSNs before and after adsorption

    表  1  吸附试验参数设置

    Table  1.   Parameters of batch experiments

    批次 离子强度/(mol/L) 初始pH FCSNS投加量/(g/L) 反应温度/K 反应时间/min 初始ρ(Cu2+)/(mg/L)
    1 0.001、0.010、0.050 2~7 0.50 303 360 50
    2 0.010 5 0.25、0.50、0.75 303 0~360 50
    3 0.010 5 0.50 288、303、318 30 10~500
    下载: 导出CSV

    表  2  不同FSCNs投加量条件下FCSNs吸附Cu2+的动力学拟合参数

    Table  2.   Kinetic parameters for Cu2+ adsorbed on FCSNs at different dosage of FSCNs

    FSCNs投加量/(g/L) qe/(mg/g) 准一级动力学模型 准二级动力学模型
    k1/min-1 qe, cal/(mg/g) R2 k2/[g/(mg·min)] qe, cal/(mg/g) R2
    0.25 173.9 0.170 98.57 0.975 3.40×10-3 181.8 0.999
    0.50 96.7 0.223 61.80 0.955 8.77×10-3 100.0 0.993
    0.75 48.7 0.134 13.98 0.965 2.08×10-2 50.0 0.992
    下载: 导出CSV

    表  3  不同反应温度下FCSNs吸附Cu2+的等温吸附模型拟合参数

    Table  3.   Isotherm parameters for Cu2+ adsorption on FCSNs at the different temperatures

    反应温度/K Langmuir等温吸附模型 Freundlich等温吸附模型
    qmax/(mg/g) KL/(L/mg) R2 KF/(mg/g) n R2
    288 349.7 549 0.992 69.38 3.69 0.994
    303 365.0 599 0.992 74.44 3.73 0.994
    318 387.6 629 0.992 78.78 3.70 0.994
    下载: 导出CSV

    表  4  FCSNs吸附Cu2+的热力学参数

    Table  4.   Thermodynamic parameters of Cu2+ adsorption on FCSNs

    反应温度/K KC ΔG0/(kJ/mol) ΔH0/(kJ/mol) ΔS0/[J/(mol·K)]
    288 15.70 -6.59 56.39
    303 21.89 -7.78 12.42 57.50
    318 26.18 -8.63 57.48
    下载: 导出CSV
  • [1] MEDELLIN-CASTILLO N A, PADILLA-ORTEGA E, REGULES-MARTÍNEZ M C, et al.Single and competitive adsorption of Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste[J].Sustainable Environment Research, 2017, 27(2):61-69. doi: 10.1016/j.serj.2017.01.004
    [2] World Health Organization.Guidelines for drinking water quality[S].Geneva, Switzerland: World Health Organization, 2004.
    [3] LEÓN L, LEÓN G, SENENT J, et al.Optimization of copper removal from aqueous solutions using emulsion liquid membranes with benzoylacetone as a carrier[J].Metals-Open Access Metallurgy Journal, 2017, 7(1):19. http://www.mdpi.com/2075-4701/7/1/19
    [4] AWUAL M R.A novel facial composite adsorbent for enhanced copper(Ⅱ) detection and removal from wastewater[J].Chemical Engineering Journal, 2015, 266:368-375. doi: 10.1016/j.cej.2014.12.094
    [5] CÔA F, STRAUSS M, CLEMENTE Z, et al.Coating carbon nanotubes with humic acid using an eco-friendly mechanochemical method:application for Cu(Ⅱ) ions removal from water and aquatic ecotoxicity[J].Science of the Total Environment, 2017, 607/608:1479-1486. doi: 10.1016/j.scitotenv.2017.07.045
    [6] CULITA D C, SIMONESCU C M, PATESCU R E, et al.Polyamine functionalized magnetite nanoparticles as novel adsorbents for Cu(Ⅱ) removal from aqueous solutions[J].Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27(2):1-13. doi: 10.1007/s10904-016-0491-7
    [7] 环境保护部.GB 8978-1996污水综合排放标准[S].北京: 中国标准出版社, 1996.
    [8] 卫生部.GB 5749-2006生活饮用水卫生标准[S].北京: 中国标准出版社, 2006.
    [9] ZAHRA N.Studies of various adsorbents for the removal of copper (Ⅱ) from drinking water[J].Journal of Engineering Science and Technology Review, 2014, 6(5):72-75. http://www.sciencedirect.com/science/article/pii/S1385894714007608
    [10] WANJALE S, BIRAJDAR M, JOG J, et al.Surface tailored PS/TiO2 composite nanofiber membrane for copper removal from water[J].Journal of Colloid and Interface Science, 2016, 469:31-37. doi: 10.1016/j.jcis.2016.01.054
    [11] WANG Xiaohuan, ZHENG Yian, WANG Aiqin.Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites[J].Journal of Hazardous Materials, 2009, 168(2/3):970-977. http://www.cabdirect.org/abstracts/20093205802.html
    [12] YANG Shengtao, CHANG Yanli, WANG Haifang, et al.Folding/aggregation of graphene oxide and its application in Cu2+ removal[J].Journal of Colloid and Interface Science, 2010, 351(1):122-127. doi: 10.1016/j.jcis.2010.07.042
    [13] WANG Wenbo, TIAN Guangyan, ZHANG Zhifang, et al.A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of Methylene blue and Cu(Ⅱ) ions[J].Chemical Engineering Journal, 2015, 265:228-238. doi: 10.1016/j.cej.2014.11.135
    [14] LIU Shinshou, LEE Chungkung, CHEN Huangchi, et al.Application of titanate nanotubes for Cu(Ⅱ) ions adsorptive removal from aqueous solution[J].Chemical Engineering Journal, 2009, 147(2/3):188-193. http://www.sciencedirect.com/science/article/pii/S1385894708003914
    [15] OSVALDO K J, LEANDROVINÍCIUSALVES G, ROSSIMIRIAM-PEREIRADE F, et al.Adsorption of Cu(Ⅱ), Cd(Ⅱ), and Pb(Ⅱ) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD)[J].Carbohydrate Polymers, 2009, 77(3):643-650. doi: 10.1016/j.carbpol.2009.02.016
    [16] BEN-ALI S, JAOUALI I, SOUISSI-NAJAR S, et al.Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal[J].Journal of Cleaner Production, 2017, 142:3809-3821. doi: 10.1016/j.jclepro.2016.10.081
    [17] HSU Tingchu, YU Chungchin, YEH Chinming.Adsorption of Cu2+ from water using raw and modified coal fly ashes[J].Fuel, 2008, 87(7):1355-1359. doi: 10.1016/j.fuel.2007.05.055
    [18] GUO Yige, HUANG Wenli, CHEN Bin, et al.Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron:synthesis, characteristic, adsorption performance and mechanism[J].Journal of Hazardous Materials, 2017, 339:22-32. doi: 10.1016/j.jhazmat.2017.06.006
    [19] RATHOR G, CHOPRA N, ADHIKARI T.Remediation of nickel ion from soil and water using nanoparticles of zero-valent iron (nZVI)[J].Oriental Journal of Chemistry, 2017, 33(2):1025-1029. doi: 10.13005/ojc
    [20] DENG Hongmei, ZHANG Zijun, XU Nan, et al.Removal of Tl(Ⅰ) ions from aqueous solution using Fe@Fe2O3 core-shell nanowires[J].Clean-Soil, Air, Water, 2016, 44(9):1214-1224. doi: 10.1002/clen.v44.9
    [21] LU Lirong, AI Zhihui, LI Jinpo, et al.Synthesis and characterization of Fe-Fe2O3 core-shell nanowires and nanonecklaces[J].Crystal Growth and Design, 2007, 7(2):459-464. doi: 10.1021/cg060633a
    [22] AI Zhihui, CHENG Yin, ZHANG Lizhi, et al.Efficient removal of Cr(Ⅵ) from aqueous solution with Fe@Fe2O3 core-shell nanowires[J].Environmental Science & Technology, 2008, 42(18):6955-6960. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7907832
    [23] LAGERGREN S.Zur theorie der sogenannten adsorption gel ster stoffe[J].Kungliga Svenska Vetenskapsakad Handl, 1898, 24:1-39. doi: 10.1007/BF01501332
    [24] HO Y S, MCKAY G.A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J].Process Safety and Environmental Protection, 1998, 76(4):332-340. doi: 10.1205/095758298529696
    [25] LANGMUIR I.The constitution and fundamental properties of solids and liquids[J].Journal of the Franklin Institute, 1916, 184(5):102-105. doi: 10.1021-ja02254a006/
    [26] 邓红梅, 王耀龙, 吴宏海, 等.γ-MnO2对Tl(Ⅰ)的吸附性能[J].环境科学研究, 2015, 28(1):103-109. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150115&flag=1

    DENG Hongmei, WANG Yaolong, WU Honghai, et al.Characteristics of Tl(Ⅰ)adsorption on γ-MnO2[J].Research of Environmental Sciences, 2015, 28(1):103-109. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150115&flag=1
    [27] KARABELLI D, ÇAĞIÜZÜM, SHAHWAN T, et al.Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron:a study of the capacity and mechanism of uptake[J].Industrial and Engineering Chemistry Research, 2008, 47(14):4758-4764. doi: 10.1021/ie800081s
    [28] AI Zhihui, LU Lirong, LI Jinpo, et al.Fe@Fe2O3 core-shell nanowires as iron reagent.1.efficient degradation of rhodamine B by a novel sono-fenton process[J].Journal of Physical Chemistry C, 2007, 111(11):4087-4093. doi: 10.1021/jp065559l
    [29] ÖZDEMIR G, YAPAR S.Adsorption and desorption behavior of copper ions on Na-montmorillonite:effect of rhamnolipids and pH[J].Journal of Hazardous Materials, 2009, 166(2):1307-1313. http://europepmc.org/abstract/MED/19178999
    [30] WIESNER A D, KATZ L E, CHEN C C.The impact of ionic strength and background electrolyte on pH measurements in metal ion adsorption experiments[J].Journal of Colloid and Interface Science, 2006, 301(1):329-332. doi: 10.1016/j.jcis.2006.05.011
    [31] HU Xinjiang, LIU Yunguo, ZENG Guangming, et al.Effects of background electrolytes and ionic strength on enrichment of Cd(Ⅱ) ions with magnetic graphene oxide-supported sulfanilic acid[J].Journal of Colloid and Interface Science, 2014, 435:138-144. doi: 10.1016/j.jcis.2014.08.054
    [32] ZHANG Hongxia, WANG Xiaoyun, LIANG Honghong, et al.Adsorption behavior of Th(Ⅳ) onto illite:effect of contact time, pH value, ionic strength, humic acid and temperature[J].Applied Clay Science, 2016, 127/128:35-43. doi: 10.1016/j.clay.2016.03.038
    [33] YI Zhengji, YAO Jun, CHEN Huilun, et al.Equilibrium and kinetic studies on adsorption of Pb(Ⅱ) by activated palm kernel husk carbon[J].Desalination and Water Treatment, 2016, 57(16):7245-7253. doi: 10.1080/19443994.2015.1015172
    [34] LI Mi, LIU Qiang, GUO Lijing, et al.Cu(Ⅱ) removal from aqueous solution by Spartina alterniflora derived biochar[J].Bioresource Technology, 2013, 141(4):83-88. http://www.sciencedirect.com/science/article/pii/S0960852412019542
    [35] GROSVENOR A P, KOBE B A, BIESINGER M C, et al.Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J].Surface and Interface Analysis, 2004, 36(12):1564-1574. doi: 10.1002/(ISSN)1096-9918
    [36] WU Ningmei, LI Zhengkui.Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water[J].Chemical Engineering Journal, 2013, 215/216(3):894-902. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=370d67dd706f4152c580e4a39035f7b3
    [37] ESPINÓS J P, MORALES J, BARRANCO A, et al.Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2:XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 Catalysts[J].Journal of Physical Chemistry B, 2002, 106(27):6921-6929. doi: 10.1021/jp014618m
    [38] WANG Yanfei, BIRADAR A V, WANG Gang, et al.Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties[J].Chemistry, 2010, 16(35):10735-10743. doi: 10.1002/chem.201000354
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1141
  • HTML全文浏览量:  33
  • PDF下载量:  630
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-08-30
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回