Advanced Treatment Performance of Combined Constructed Wetland System on Secondary Effluent from Wastewater Treatment Plant
-
摘要: 为了解组合人工湿地系统深度处理污水的效果,利用水质分析和微生物多样性分析相结合的方法,研究了VF-HF组合人工湿地系统〔由VFCW(垂直流人工湿地)与HFCW(水平流人工湿地)串联组成〕深度处理污水处理厂二级出水的效果.结果表明:①稳定运行期间,VF-HF组合人工湿地系统出水的ρ(CODCr)、ρ(NH4+-N)、ρ(TN)和ρ(TP)的平均值分别为18.11、0.41、0.96和0.16 mg/L,对CODCr、NH4+-N、TN和TP的平均去除率分别为67.21%、89.83%、90.08%和70.91%,且VFCW对CODCr的去除性能好于HFCW,HFCW对氮的去除性能好于VFCW.②VF-HF组合人工湿地系统中细菌的丰富度和多样性差异明显,VFCW和HFCW中上层填料中细菌的丰富度和多样性均大于下层,且系统中优势细菌富集明显,其中VFCW沸石层富集了优势反硝化细菌菌科(Comamonadaceae)和优势菌属(Desulfomicrobium),HFCW的石英砂层富集了优势反硝化细菌菌科(Xanthomonadaceae)和优势菌属(Silanimonas),HFCW的沸石层富集了优势反硝化细菌菌科(Rhodocyclaceae).研究显示,VF-HF组合人工湿地系统深度处理二级出水的效果较好,出水水质达到GB 3938—2002《地表水环境质量标准》Ⅲ类水质要求,且系统中富集了优势反硝化细菌菌科(Comamonadaceae,Xanthomonadaceae,Rhodocyclacea)以及优势菌属(Desulfomicrobium,Silanimonas).Abstract: In order to study the performance of advanced treatment for contaminated water on a combined constructed wetland, two indicators, including water quality and microbial diversity, were analyzed in a lab-scale VF-HF combined constructed wetland system, consisting of VFCW (vertical flow constructed wetland) and HFCW (horizontal flow constructed wetland). Meanwhile, the removal rate and the microbial community structure in the system were discussed. The results indicated the average concentrations of chemical oxygen demand (CODCr), ammonium nitrogen (NH4+-N), total nitrogen (TN) and total phosphorus (TP) in the effluent of the system were 18.11, 0.41, 0.96 and 0.16 mg/L, respectively, and the average removal rates of CODCr, NH4+-N, TN and TP were 67.21%, 89.83%, 90.08% and 70.91%, respectively. VFCW had better removal performance of CODCr than HFCW, and HFCW had better nitrogen removal performance than VFCW. On the other hand, the richness and diversity of bacteria in the VF-HF combined constructed wetland system were significantly different. The richness and diversity of the bacteria in the upper layer of VFCW and HFCW were higher than that of the lower layer. And the system was obviously enriched with dominant bacteria. The VFCW zeolite layer was enriched with the dominant denitrifying bacteria family, Comarmonadaceae, and the dominant species, Desulfomicrobium. The quartz sand layer of HFCW was enriched with the dominant denitrifying bacteria family, Xanthomonadaceae, and the dominant species, Silanimonas. The zeolite layer of HFCW was enriched with the high relative abundance of denitrifying bacteria family, Rhodocyclaceae. The research shows that the combined constructed wetland system has better effect on the advanced treatment of secondary effluent, and the effluent quality meets the requirements of Class Ⅲ water quality of 'Surface Water Environmental Quality Standard'(GB 3938-2002). The system is enriched with high abundance denitrifying bacteria families, Comarmonadaceae, Xanthomonadaceae and Rhodocyclaceae and the species, Desulfomicrobium and Silanimonas.
-
Key words:
- constructed wetland /
- advanced treatment /
- denitrifying bacteria
-
表 1 VF1-1、VF1-2、VF1-3、HF1-1和HF1-2的细菌多样性、丰富度和覆盖度指数的比较
Table 1. Comparison of community diversity, richness and coverage of the five samples (VF1-1, VF1-2, VF1-3, HF1-1 and HF1-2)
样本名称 序列数/条 OUTs/个 Coverage指数 Sobs指数 ACE指数 Chao 1指数 Shannon-Wiener指数 Simpson指数 VF1-1 37 992 20 432 0.99 819 1 051 1 044 5.01 0.02 VF1-2 35 791 29 958 0.99 1 521 1 747 1 830 5.93 0.01 VF1-3 34 032 25 945 0.99 1 451 1 767 1 826 5.77 0.01 HF1-1 43 986 26 932 0.99 821 981 993 4.78 0.03 HF1-2 34 483 26 426 0.99 1 502 1 775 1 823 5.86 0.01 -
[1] ZHOU Xiaohong, WANG Guoxiang, YANG Fei.Characteristics of growth, nutrient uptake, purification effect of Ipomoea aquatica, Lolium multiflorum, and Sorghum sudanense grown under different nitrogen levels[J].Desalination, 2011, 273:366-374. doi: 10.1016/j.desal.2011.01.057 [2] LI Chunjie, DONG Yang, LEI Yuehua, et al.Removal of low concentration nutrients in hydroponic wetlands integrated with zeolite and calcium silicate hydrate functional substrates[J].Ecological Engineering, 2015, 82:442-450. doi: 10.1016/j.ecoleng.2015.05.003 [3] PRAMANIK B K, RODDICK F A, FAN L, et al.Assessment of biological activated carbon treatment to control membrane fouling in reverse osmosis of secondary effluent for reuse in irrigation[J].Desalination, 2015, 364:90-95. doi: 10.1016/j.desal.2015.01.040 [4] JAMES C P, GERMAIN E, JUDD S.Micropollutant removal by advanced oxidation of microfiltered secondary effluent for water reuse[J].Separation and Purification Technology, 2014, 127:77-83. doi: 10.1016/j.seppur.2014.02.016 [5] 尚兴宝.复合垂直流-水平流人工湿地系统处理二级生化尾水的实验研究[D].兰州: 兰州交通大学, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3284031 [6] GONZALO O G, RUIZ I, SOTO M.Integrating pretreatment and denitrification in constructed wetland systems[J].Science of the Total Environment, 2017, 584/585:1300-1309. doi: 10.1016/j.scitotenv.2017.01.217 [7] VYMAZAL J, KROPFELOVA L.A three-stage experimental constructed wetland for treatment of domestic sewage:first 2 years of operation[J].Ecological Engineering, 2011, 37:90-98. doi: 10.1016/j.ecoleng.2010.03.004 [8] VYMAZAL J, KROPFELOVA L.Multistage hybrid constructed wetland for enhanced removal of nitrogen[J].Ecological Engineering, 2015, 84:202-208. doi: 10.1016/j.ecoleng.2015.09.017 [9] XU Ming, LIU Weijing, LI Chao, et al.Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater[J].Environmental Science and Pollution Research, 2016, 23:10990-11001. doi: 10.1007/s11356-016-6181-8 [10] VYMAZAL J.The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal:a review of a recent development[J].Water Research, 2013, 47(14):4795-4811. doi: 10.1016/j.watres.2013.05.029 [11] DONG Huiyu, QIANG Zhimin, LI Tinggang, et al.Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water[J].Journal of Environmental Sciences, 2012, 24(4):596-601. doi: 10.1016/S1001-0742(11)60804-8 [12] LU Huijie, CHANDRAN K, STENSEL D.Microbial ecology of denitrification in biological wastewater treatment[J].Water Research, 2014, 64:237-254. doi: 10.1016/j.watres.2014.06.042 [13] 卢少勇, 张彭义, 余刚, 等.人工湿地沸石填充方式研究[J].环境科学研究, 2006, 19(3):91-95. doi: 10.3321/j.issn:1001-6929.2006.03.020LU Shaoyong, ZHANG Pengyi, YU Gang, et al.Research of zeolite filled modes in constructed wetland[J].Research of Environmental Sciences, 2006, 19(3):91-95. doi: 10.3321/j.issn:1001-6929.2006.03.020 [14] 赵赞.人工湿地处理城镇污水厂尾水深度脱氮实验研究[D].南京: 南京理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10288-1012319404.htm [15] ADRADOS B, SANCHEZ O, ARIAS C A, et al.Microbial communities from different types of natural wastewater treatment systems:vertical and horizontal flow constructed wetlands and biofilters[J].Water Research, 2014, 55:304-312. doi: 10.1016/j.watres.2014.02.011 [16] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社, 2002. [17] WANG Ping, YU Zhisheng, QI Rong, et al.Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant[J].Water Research, 2016, 105:157-166. doi: 10.1016/j.watres.2016.08.050 [18] ZHOU Xu, WANG Xuezhen, ZHANG Hai, et al.Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland[J].Bioresource Technology, 2017, 241:269-275. doi: 10.1016/j.biortech.2017.05.072 [19] DING Yi, WANG Wei, SONG Xinshan, et al.Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland[J].Chemosphere, 2014, 117:502-505. doi: 10.1016/j.chemosphere.2014.08.084 [20] WU Juan, ZHANG Jian, JIA Wenlin, et al.Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater[J].Bioresource Technology, 2009, 100:2910-2917. doi: 10.1016/j.biortech.2009.01.056 [21] 陆松柳, 胡洪营, 孙迎雪, 等.3种湿地植物在水培条件下的生长状况及根系分泌物研究[J].环境科学, 2009, 30(7):1901-1905. doi: 10.3321/j.issn:0250-3301.2009.07.005LU Songliu, HU Hongying, SUN Yingxue, et al.Study on the growth characteristics and root exudates of three wetlands plants at different culture conditions[J].Environmental Science, 2009, 30(7):1901-1905. doi: 10.3321/j.issn:0250-3301.2009.07.005 [22] 常军军, 吴苏青, 梁康, 等.复合垂直流人工湿地微生物特征对典型污水的响应差异[J].环境科学研究, 2016, 29(8):1200-1206. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160813&flag=1CHANG Junjun, WU Suqing, LIANG Kang, et al.Responses of microbial features in integrated vertical-flow constructed wetlands (IVCWs) for treatment of two types of representative wastewater[J].Research of Environmental Sciences, 2016, 29(8):1200-1206. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160813&flag=1 [23] 李辉, 徐新阳, 李培军, 等.人工湿地中氨化细菌去除有机氮的效果[J].环境工程学报, 2008, 2(8):1044-1047. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200808008LI Hui, XU Xinyang, LI Peijun, et al.Research on ammonibacteria removing organic nitrogen in construction wetland[J].Chinese Journal of Environmental Engineering, 2008, 2(8):1044-1047. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200808008 [24] XIA Xinghui, LIU Ting, YANG Zhifeng, et al.Dissolved organic nitrogen transformation in river water:effects of suspended sediment and organic nitrogen concentration[J].Journal of Hydrology, 2013, 484:96-104. doi: 10.1016/j.jhydrol.2013.01.012 [25] LU S Y, WU F C, LU Y F, et al.Phosphorus removal from agricultural runoff by constructed wetland[J].Ecological Engineering, 2009, 35:402-409. doi: 10.1016/j.ecoleng.2008.10.002 [26] 沈伊辰.人工湿地不同工艺污染物去除特性及聚磷菌分布规律研究[D].西安: 西安建筑科技大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10703-1014010587.htm [27] WU Yinghai, HAN Rui, YANG Xunan, et al.Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system[J].Applied Microbiology and Biotechnology, 2016, 100:6917-6926. doi: 10.1007/s00253-016-7526-4 [28] ZHONG Fei, WU Juan, DAI Yanran, et al.Bacterial community analysis by PCT-DGGE and 454-pyroaequencing of horizontal subsurface flow constructed wetlands with front aeration[J].Applied Microbiology and Biotechnology, 2015, 99:1499-1512. doi: 10.1007/s00253-014-6063-2 [29] GAO Y, XIE Y W, ZHANG Q, et al.Intensified nitrate and phosphorus removal in an electrolysis-intergrated horizontal subsurface-flow constructed wetland[J].Water Research, 2017, 108:39-45. doi: 10.1016/j.watres.2016.10.033 [30] JIN Zhan, JI Fangying, XU Xuan, et al.Microbial and metabolic characterization of a denitrifying phosphorus-uptake/side stream phosphorus removal system for treating domestic sewage[J].Biodegradation, 2014, 25:777-786. doi: 10.1007/s10532-014-9698-x [31] SU Yu, WANG Weidong, WU Di, et al.Stimulating ammonia oxidizing bacteria (AOB) activity drives the ammonium oxidation rate in a constructed wetland (CW)[J].Science of the Total Environment, 2017, 624:87-95. http://www.ncbi.nlm.nih.gov/pubmed/29248709 [32] 丁敏, 黄勇, 袁怡.同步脱氮除硫性能、模型和相关微生物研究进展[J].环境工程, 2015, 33(8):42-46. http://d.old.wanfangdata.com.cn/Periodical/hjgc201508010DING Min, HUANG Yong, YUAN Yi.Development of performance, model and microbial community of simultaneous biological nitrogen and sulfur removal[J].Environmental Engineering, 2015, 33(8):42-46. http://d.old.wanfangdata.com.cn/Periodical/hjgc201508010 [33] 李彭.不同电子供体深度脱氮工艺及微生物群落特征研究[D].北京: 清华大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10003-1015007236.htm -