留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

组合人工湿地系统对污水处理厂二级出水的深度处理效果

祝志超 缪恒锋 崔健 黄振兴 阮文权

祝志超, 缪恒锋, 崔健, 黄振兴, 阮文权. 组合人工湿地系统对污水处理厂二级出水的深度处理效果[J]. 环境科学研究, 2018, 31(12): 2028-2036. doi: 10.13198/j.issn.1001-6929.2018.09.29
引用本文: 祝志超, 缪恒锋, 崔健, 黄振兴, 阮文权. 组合人工湿地系统对污水处理厂二级出水的深度处理效果[J]. 环境科学研究, 2018, 31(12): 2028-2036. doi: 10.13198/j.issn.1001-6929.2018.09.29
ZHU Zhichao, MIAO Hengfeng, CUI Jian, HUANG Zhenxing, RUAN Wenquan. Advanced Treatment Performance of Combined Constructed Wetland System on Secondary Effluent from Wastewater Treatment Plant[J]. Research of Environmental Sciences, 2018, 31(12): 2028-2036. doi: 10.13198/j.issn.1001-6929.2018.09.29
Citation: ZHU Zhichao, MIAO Hengfeng, CUI Jian, HUANG Zhenxing, RUAN Wenquan. Advanced Treatment Performance of Combined Constructed Wetland System on Secondary Effluent from Wastewater Treatment Plant[J]. Research of Environmental Sciences, 2018, 31(12): 2028-2036. doi: 10.13198/j.issn.1001-6929.2018.09.29

组合人工湿地系统对污水处理厂二级出水的深度处理效果

doi: 10.13198/j.issn.1001-6929.2018.09.29
基金项目: 

国家水体污染控制与治理科技重大专项 2017ZX07203-003

国家水体污染控制与治理科技重大专项 2017ZX07204-002

详细信息
    作者简介:

    祝志超(1990-), 男, 江西鹰潭人, zczhujn@163.com

    通讯作者:

    缪恒锋(1980-), 男, 江苏无锡人, 教授, 博士, 主要从事环境生物技术、环境化学研究, hfmiao@jiangnan.edu.cn

  • 中图分类号: X52

Advanced Treatment Performance of Combined Constructed Wetland System on Secondary Effluent from Wastewater Treatment Plant

Funds: 

National Major Science and Technology Program for Water Pollution Control and Treatment, China 2017ZX07203-003

National Major Science and Technology Program for Water Pollution Control and Treatment, China 2017ZX07204-002

  • 摘要: 为了解组合人工湿地系统深度处理污水的效果,利用水质分析和微生物多样性分析相结合的方法,研究了VF-HF组合人工湿地系统〔由VFCW(垂直流人工湿地)与HFCW(水平流人工湿地)串联组成〕深度处理污水处理厂二级出水的效果.结果表明:①稳定运行期间,VF-HF组合人工湿地系统出水的ρ(CODCr)、ρ(NH4+-N)、ρ(TN)和ρ(TP)的平均值分别为18.11、0.41、0.96和0.16 mg/L,对CODCr、NH4+-N、TN和TP的平均去除率分别为67.21%、89.83%、90.08%和70.91%,且VFCW对CODCr的去除性能好于HFCW,HFCW对氮的去除性能好于VFCW.②VF-HF组合人工湿地系统中细菌的丰富度和多样性差异明显,VFCW和HFCW中上层填料中细菌的丰富度和多样性均大于下层,且系统中优势细菌富集明显,其中VFCW沸石层富集了优势反硝化细菌菌科(Comamonadaceae)和优势菌属(Desulfomicrobium),HFCW的石英砂层富集了优势反硝化细菌菌科(Xanthomonadaceae)和优势菌属(Silanimonas),HFCW的沸石层富集了优势反硝化细菌菌科(Rhodocyclaceae).研究显示,VF-HF组合人工湿地系统深度处理二级出水的效果较好,出水水质达到GB 3938—2002《地表水环境质量标准》Ⅲ类水质要求,且系统中富集了优势反硝化细菌菌科(Comamonadaceae,Xanthomonadaceae,Rhodocyclacea)以及优势菌属(Desulfomicrobium,Silanimonas).

     

  • 图  1  VF-HF组合人工湿地系统示意

    Figure  1.  The diagram of VF-HF combined constructed wetland system

    图  2  VF-HF组合人工湿地系统对CODCr的去除规律

    Figure  2.  The removal of CODCr by the VF-HF combined constructed wetland system

    图  3  VF-HF组合人工湿地系统对氮的去除规律

    Figure  3.  The removal of nitrogen by the VF-HF combined constructed wetland system

    图  4  VF-HF组合人工湿地系统运行期间不同采样点ρ(DO)的平均值

    Figure  4.  Average DO concentrations of the different sampling areas in VF-HF combined constructed wetland system during operation period

    图  5  VF-HF组合人工湿地系统对TP的去除规律

    Figure  5.  The removal of TP by the VF-HF combined constructed wetland system

    图  6  门、科和属水平下不同样本的细菌群落结构

    Figure  6.  Composition of bacterial community collected from the different samples at the phylum, family, genus levels

    表  1  VF1-1、VF1-2、VF1-3、HF1-1和HF1-2的细菌多样性、丰富度和覆盖度指数的比较

    Table  1.   Comparison of community diversity, richness and coverage of the five samples (VF1-1, VF1-2, VF1-3, HF1-1 and HF1-2)

    样本名称 序列数/条 OUTs/个 Coverage指数 Sobs指数 ACE指数 Chao 1指数 Shannon-Wiener指数 Simpson指数
    VF1-1 37 992 20 432 0.99 819 1 051 1 044 5.01 0.02
    VF1-2 35 791 29 958 0.99 1 521 1 747 1 830 5.93 0.01
    VF1-3 34 032 25 945 0.99 1 451 1 767 1 826 5.77 0.01
    HF1-1 43 986 26 932 0.99 821 981 993 4.78 0.03
    HF1-2 34 483 26 426 0.99 1 502 1 775 1 823 5.86 0.01
    下载: 导出CSV
  • [1] ZHOU Xiaohong, WANG Guoxiang, YANG Fei.Characteristics of growth, nutrient uptake, purification effect of Ipomoea aquatica, Lolium multiflorum, and Sorghum sudanense grown under different nitrogen levels[J].Desalination, 2011, 273:366-374. doi: 10.1016/j.desal.2011.01.057
    [2] LI Chunjie, DONG Yang, LEI Yuehua, et al.Removal of low concentration nutrients in hydroponic wetlands integrated with zeolite and calcium silicate hydrate functional substrates[J].Ecological Engineering, 2015, 82:442-450. doi: 10.1016/j.ecoleng.2015.05.003
    [3] PRAMANIK B K, RODDICK F A, FAN L, et al.Assessment of biological activated carbon treatment to control membrane fouling in reverse osmosis of secondary effluent for reuse in irrigation[J].Desalination, 2015, 364:90-95. doi: 10.1016/j.desal.2015.01.040
    [4] JAMES C P, GERMAIN E, JUDD S.Micropollutant removal by advanced oxidation of microfiltered secondary effluent for water reuse[J].Separation and Purification Technology, 2014, 127:77-83. doi: 10.1016/j.seppur.2014.02.016
    [5] 尚兴宝.复合垂直流-水平流人工湿地系统处理二级生化尾水的实验研究[D].兰州: 兰州交通大学, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3284031
    [6] GONZALO O G, RUIZ I, SOTO M.Integrating pretreatment and denitrification in constructed wetland systems[J].Science of the Total Environment, 2017, 584/585:1300-1309. doi: 10.1016/j.scitotenv.2017.01.217
    [7] VYMAZAL J, KROPFELOVA L.A three-stage experimental constructed wetland for treatment of domestic sewage:first 2 years of operation[J].Ecological Engineering, 2011, 37:90-98. doi: 10.1016/j.ecoleng.2010.03.004
    [8] VYMAZAL J, KROPFELOVA L.Multistage hybrid constructed wetland for enhanced removal of nitrogen[J].Ecological Engineering, 2015, 84:202-208. doi: 10.1016/j.ecoleng.2015.09.017
    [9] XU Ming, LIU Weijing, LI Chao, et al.Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater[J].Environmental Science and Pollution Research, 2016, 23:10990-11001. doi: 10.1007/s11356-016-6181-8
    [10] VYMAZAL J.The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal:a review of a recent development[J].Water Research, 2013, 47(14):4795-4811. doi: 10.1016/j.watres.2013.05.029
    [11] DONG Huiyu, QIANG Zhimin, LI Tinggang, et al.Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water[J].Journal of Environmental Sciences, 2012, 24(4):596-601. doi: 10.1016/S1001-0742(11)60804-8
    [12] LU Huijie, CHANDRAN K, STENSEL D.Microbial ecology of denitrification in biological wastewater treatment[J].Water Research, 2014, 64:237-254. doi: 10.1016/j.watres.2014.06.042
    [13] 卢少勇, 张彭义, 余刚, 等.人工湿地沸石填充方式研究[J].环境科学研究, 2006, 19(3):91-95. doi: 10.3321/j.issn:1001-6929.2006.03.020

    LU Shaoyong, ZHANG Pengyi, YU Gang, et al.Research of zeolite filled modes in constructed wetland[J].Research of Environmental Sciences, 2006, 19(3):91-95. doi: 10.3321/j.issn:1001-6929.2006.03.020
    [14] 赵赞.人工湿地处理城镇污水厂尾水深度脱氮实验研究[D].南京: 南京理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10288-1012319404.htm
    [15] ADRADOS B, SANCHEZ O, ARIAS C A, et al.Microbial communities from different types of natural wastewater treatment systems:vertical and horizontal flow constructed wetlands and biofilters[J].Water Research, 2014, 55:304-312. doi: 10.1016/j.watres.2014.02.011
    [16] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社, 2002.
    [17] WANG Ping, YU Zhisheng, QI Rong, et al.Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant[J].Water Research, 2016, 105:157-166. doi: 10.1016/j.watres.2016.08.050
    [18] ZHOU Xu, WANG Xuezhen, ZHANG Hai, et al.Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland[J].Bioresource Technology, 2017, 241:269-275. doi: 10.1016/j.biortech.2017.05.072
    [19] DING Yi, WANG Wei, SONG Xinshan, et al.Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland[J].Chemosphere, 2014, 117:502-505. doi: 10.1016/j.chemosphere.2014.08.084
    [20] WU Juan, ZHANG Jian, JIA Wenlin, et al.Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater[J].Bioresource Technology, 2009, 100:2910-2917. doi: 10.1016/j.biortech.2009.01.056
    [21] 陆松柳, 胡洪营, 孙迎雪, 等.3种湿地植物在水培条件下的生长状况及根系分泌物研究[J].环境科学, 2009, 30(7):1901-1905. doi: 10.3321/j.issn:0250-3301.2009.07.005

    LU Songliu, HU Hongying, SUN Yingxue, et al.Study on the growth characteristics and root exudates of three wetlands plants at different culture conditions[J].Environmental Science, 2009, 30(7):1901-1905. doi: 10.3321/j.issn:0250-3301.2009.07.005
    [22] 常军军, 吴苏青, 梁康, 等.复合垂直流人工湿地微生物特征对典型污水的响应差异[J].环境科学研究, 2016, 29(8):1200-1206. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160813&flag=1

    CHANG Junjun, WU Suqing, LIANG Kang, et al.Responses of microbial features in integrated vertical-flow constructed wetlands (IVCWs) for treatment of two types of representative wastewater[J].Research of Environmental Sciences, 2016, 29(8):1200-1206. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160813&flag=1
    [23] 李辉, 徐新阳, 李培军, 等.人工湿地中氨化细菌去除有机氮的效果[J].环境工程学报, 2008, 2(8):1044-1047. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200808008

    LI Hui, XU Xinyang, LI Peijun, et al.Research on ammonibacteria removing organic nitrogen in construction wetland[J].Chinese Journal of Environmental Engineering, 2008, 2(8):1044-1047. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200808008
    [24] XIA Xinghui, LIU Ting, YANG Zhifeng, et al.Dissolved organic nitrogen transformation in river water:effects of suspended sediment and organic nitrogen concentration[J].Journal of Hydrology, 2013, 484:96-104. doi: 10.1016/j.jhydrol.2013.01.012
    [25] LU S Y, WU F C, LU Y F, et al.Phosphorus removal from agricultural runoff by constructed wetland[J].Ecological Engineering, 2009, 35:402-409. doi: 10.1016/j.ecoleng.2008.10.002
    [26] 沈伊辰.人工湿地不同工艺污染物去除特性及聚磷菌分布规律研究[D].西安: 西安建筑科技大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10703-1014010587.htm
    [27] WU Yinghai, HAN Rui, YANG Xunan, et al.Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system[J].Applied Microbiology and Biotechnology, 2016, 100:6917-6926. doi: 10.1007/s00253-016-7526-4
    [28] ZHONG Fei, WU Juan, DAI Yanran, et al.Bacterial community analysis by PCT-DGGE and 454-pyroaequencing of horizontal subsurface flow constructed wetlands with front aeration[J].Applied Microbiology and Biotechnology, 2015, 99:1499-1512. doi: 10.1007/s00253-014-6063-2
    [29] GAO Y, XIE Y W, ZHANG Q, et al.Intensified nitrate and phosphorus removal in an electrolysis-intergrated horizontal subsurface-flow constructed wetland[J].Water Research, 2017, 108:39-45. doi: 10.1016/j.watres.2016.10.033
    [30] JIN Zhan, JI Fangying, XU Xuan, et al.Microbial and metabolic characterization of a denitrifying phosphorus-uptake/side stream phosphorus removal system for treating domestic sewage[J].Biodegradation, 2014, 25:777-786. doi: 10.1007/s10532-014-9698-x
    [31] SU Yu, WANG Weidong, WU Di, et al.Stimulating ammonia oxidizing bacteria (AOB) activity drives the ammonium oxidation rate in a constructed wetland (CW)[J].Science of the Total Environment, 2017, 624:87-95. http://www.ncbi.nlm.nih.gov/pubmed/29248709
    [32] 丁敏, 黄勇, 袁怡.同步脱氮除硫性能、模型和相关微生物研究进展[J].环境工程, 2015, 33(8):42-46. http://d.old.wanfangdata.com.cn/Periodical/hjgc201508010

    DING Min, HUANG Yong, YUAN Yi.Development of performance, model and microbial community of simultaneous biological nitrogen and sulfur removal[J].Environmental Engineering, 2015, 33(8):42-46. http://d.old.wanfangdata.com.cn/Periodical/hjgc201508010
    [33] 李彭.不同电子供体深度脱氮工艺及微生物群落特征研究[D].北京: 清华大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10003-1015007236.htm
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1191
  • HTML全文浏览量:  28
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-09-28
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回