Evaluation of Carbon Sequestration of Forest Ecosystem in Xiamen City
-
摘要: 生态系统固碳服务是生态系统服务评估的重要指标之一,也是区域碳循环研究的重要组成部分,可以为减缓气候变化的区域碳管理提供决策依据.以厦门市森林生态系统为研究对象,选取VPM(Vegetation Photosynthesis Model)和ReRSM(Remote Sensing Model for Ecosystem Respiration)评估其2015年的固碳服务,并阐明其固碳服务的时空变异.结果表明:2015年厦门市森林生态系统固碳量(以C计)为31.36×104 t/a,平均固碳量为644.86 g/(m2·a),其时间动态总体呈单峰曲线分布,但受台风影响该曲线波动较大.厦门市森林生态系统固碳量空间格局总体表现为西北边缘地区较高、其他地区相对较低,与DEM的空间分布较为相似,且绝大部分区域为碳汇区.厦门市分区统计显示,同安区森林生态系统面积和固碳量均最大,分别占厦门市总量的52.58%和57.10%,其与翔安区、集美区的固碳量之和占厦门市总量的88.27%,是厦门市森林生态系统固碳的主体;湖里区固碳量最少,平均固碳量仅为14.25 g/(m2·a),几乎为碳中性.研究显示,厦门市森林生态系统具有较好的固碳能力.Abstract: Carbon sequestration of terrestrial ecosystem is one of the most important indicators in ecosystem service assessment and is crucial to accurate estimation of regional carbon budget, which could support decision-making for the regional carbon management. In the present study, we estimated the forest ecosystem carbon sequestration and analyzed its spatio-temporal variation in Xiamen City in 2015 by using VPM (Vegetation Photosynthesis Model) and ReRSM (Remote Sensing Model for Ecosystem Respiration). The result showed that the carbon sequestration of forest ecosystem in Xiamen City was 31.36×104 t/a (measured on carbon) in 2015, with an average of 644.86 g/(m2·a). In general, the intra-annual dynamic of carbon sequestration exhibited a single peak curve, but fluctuated greatly under the influence of typhoons. The most areas of forest ecosystem in Xiamen City was carbon sink, with higher carbon sequestration at the edge of northwest and relative lower value in other regions, which was similar to the trend of DEM. At district scale, Tong'an District had the largest forest area and highest carbon sequestration, accounting for 52.58% and 57.10% of the total forest area and carbon sequestration in Xiamen, respectively. Tong'an District, coupled with Xiang'an and Jimei Districts made up 88.27% of the carbon sequestration of the whole city. Huli District was almost carbon neutral with an average carbon sequestration of 14.25 g/(m2·a). This research showed that the forest ecosystem in Xiamen City had a good carbon sequestration capacity.
-
Key words:
- forest /
- carbon budget /
- model /
- ecosystem services /
- Xiamen City
-
表 1 厦门市森林生态系统固碳服务评估所需数据介绍
Table 1. Brief description of data used in carbon sequestration estimating of forest ecosystem in Xiamen City
序号 数据名称 空分辨率 时间分辨率 数据来源 1 气温 站点 8 d 厦门市气象局 2 DEM 30 m a 厦门市国土资源与房产管理局 3 碳通量和气象观测数据 站点 d 中国通量观测研究联盟[17] 4 反射率 500 m 8 d NASA官网MOD09A1产品(DOI:10.5067/MODIS/MOD09A1.006)[ 18 ]5 光合有效辐射 5 km d 中国-东盟5 km分辨率光合有效辐射数据集[19] 表 2 ReRSM模型参数化及验证
Table 2. Marameterization and validation of the ReRSM
数据时段 模型参数化 模型验证 α Rref/[g/(m2·d)] E0/K R2 RMSE/[g/(m2·d)] 数据时段 R2 RMSE/[g/(m2·d)] 2004—2005年 0.48 0.99 232.26 0.91 0.50 2003年 0.94 0.48 2003年、2005年 0.40 1.17 254.64 0.93 0.43 2004年 0.91 0.60 2003—2004年 0.49 0.77 333.95 0.92 0.50 2005年 0.92 0.50 2003—2005年 0.46 0.98 272.87 0.92 0.49 表 3 2015年厦门市各辖区森林生态系统碳收支情况
Table 3. Carbon budgets of forest ecosystem in different districts of Xiamen City, 2015
辖区 碳收支平均值 碳收支总量 NEP/[g/(m2·a)] GPP/[g/(m2·a)] Re/[g/(m2·a)] NEP/(104 t/a) GPP/(104 t/a) Re/(104 t/a) 思明区 352.36 1 690.34 1 337.98 0.77 3.72 2.94 湖里区 14.25 1 108.95 1 094.71 0.01 0.62 0.61 集美区 635.59 2 166.37 1 530.78 4.73 16.11 11.39 海沧区 581.13 2 070.67 1 489.54 2.90 10.32 7.42 同安区 699.25 2 236.29 1 537.04 17.91 57.26 39.36 翔安区 638.15 2 151.36 1 513.21 5.04 17.00 11.96 -
[1] 李文华.生态系统服务研究是生态系统评估的核心[J].资源科学, 2006, 28(4):4. doi: 10.3321/j.issn:1007-7588.2006.04.002 [2] COSTANZA R, D'ARGE R, DE GROOT R, et al.The value of the world's ecosystem services and natural capital[J].Nature, 1997, 387:253-260. doi: 10.1038/387253a0 [3] Millennium Ecosystem Assessment.Ecosystems and human well-being:synthesis[M].Washington DC:Island Press, 2005. [4] TEEB (edited by KUMAR P).The economics of ecosystems and biodiversity: ecological and economic foundations[M].London: Earthscan Ltd., 2010. [5] 刘军会, 高吉喜, 王文杰, 等.我国典型陆地生态系统固碳重要区范围界定[J].环境科学研究, 2016, 29(12):1782-1789. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20161207&flag=1LIU Junhui, GAO Jixi, WANG Wenjie, et al.Delimiting important carbon sequestration areas for typical terrestrial ecosystems in China[J].Research of Environmental Sciences, 2016, 29(12):1782-1789. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20161207&flag=1 [6] 于贵瑞, 孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社, 2006. [7] YU Guirui, ZHU Xianjin, FU Yuling, et al.Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China[J].Global Change Biology, 2013, 19(3):798-810. doi: 10.1111/gcb.12079 [8] ZHU Xianjin, YU Guirui, HE Honglin, et al.Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China:results from upscaling network observations[J].Global and Planetary Change, 2014, 118:52-61. doi: 10.1016/j.gloplacha.2014.04.003 [9] RUNNING S W, HUNT E R.Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models[J].Scaling Physiological Processes:Leaf to Globe, 1993:141-158. http://cn.bing.com/academic/profile?id=38f283dc191bfc5badf80305acd739b1&encoded=0&v=paper_preview&mkt=zh-cn [10] CAO Mingkui, WOODWARD F I.Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change[J].Global Change Biology, 1998, 4(2):185-198. doi: 10.1046/j.1365-2486.1998.00125.x [11] POTTER C S, RANDERSON J T.FIELD C B, et al.Terrestrial ecosystem production:a process model based on global satellite and surface data[J].Global Biogeochemical Cycles, 1993, 7(4):811-841. doi: 10.1029/93GB02725 [12] PRINCE S D, GOWARD S N.Global primary production:a remote sensing approach[J].Journal of Biogeography, 1995, 22(4/5):815-835. doi: 10.2307/2845983 [13] XIAO Xiangming, HOLLINGER D, ABER J, et al.Satellite-based modeling of gross primary production in an evergreen needleleaf forest[J].Remote Sensing of Environment, 2004, 89(4):519-534. doi: 10.1016/j.rse.2003.11.008 [14] MAHADEVAD P, WOFSY S C, MATROSS D M, et al.A satellite-based biosphere parameterization for net ecosystem CO2 exchange:Vegetation Photosynthesis and Respiration Model (VPRM)[J].Global Biogeochemical Cycles, 2008, 22(2):521-539. http://cn.bing.com/academic/profile?id=b892cfa8fe0793009fa684b3b57f79d4&encoded=0&v=paper_preview&mkt=zh-cn [15] GAO Yanni, YU Guirui, YAN Huimin, et al.A MODIS-based Photosynthetic Capacity Model to estimate gross primary production in northern China and the Tibetan Plateau[J].Remote Sensing of Environment, 2014, 148(5):108-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2f8b2bcd987fd6dc041bc339a671bc5 [16] HUTCHINSON M F.Anusplin version 4.2 user guide[M].Canberra:the Australian National University, 2001. [17] YU Guirui, WEN Xuefa, SUN Xiaomin, et al.Overview of ChinaFLUX and evaluation of its eddy covariance measurement[J].Agricultural and Forest Meteorology, 2006, 137:125-137. doi: 10.1016/j.agrformet.2006.02.011 [18] VERMOTE E.MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006[DB/OL].NASA EOSDIS LP DAAC, 2015.doi: 10.5067/MODIS/MOD09A1.006. [19] 张海龙, 辛晓洲, 李丽, 等.中国-东盟5 km分辨率光合有效辐射数据集[DB/OL].全球变化科学研究数据出版系统, 2015.doi: 10.3974/geodb.2015.02.05.V1. [20] WU J B, XIAO X M, GUAN D X, et al.Estimation of the gross primary production of an old-growth temperate mixed forest using eddy covariance and remote sensing[J].International Journal of Remote Sensing, 2009, 30(2):463-479. doi: 10.1080/01431160802372143 [21] ZHANG Junhui, HU Yanling, XIAO Xiaoming, et al.Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest[J].Agricultural and Forest Meteorology, 2009, 149(6):976-984. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d11cb4058f4e51a6241251ff35131a0b [22] LI Zhengquan, YU Guirui, XIAO Xiangming, et al.Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data[J].Remote Sensing of Environment, 2007, 107(3):510-519. doi: 10.1016/j.rse.2006.10.003 [23] WU Weixing, WANG Shaoqiang, XIAO Xiangming, et al.Modeling gross primary production of a temperate grassland ecosystem in Inner Mongolia, China, using MODIS imagery and climate data[J].Science in China, Series D:Earth Sciences, 2008, 51(10):1501-1512. doi: 10.1007/s11430-008-0113-5 [24] YAN Huimin, FU Yuling, XIAO Xiangming, et al.Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data[J].Agriculture, Ecosystems and Environment, 2009, 129(4):391-400. doi: 10.1016/j.agee.2008.10.017 [25] 刘允芬, 宋霞, 孙晓敏, 等.千烟洲人工针叶林CO2通量季节变化及其环境因子的影响[J].中国科学D辑:地球科学, 2004, 34(S2):109-117. http://www.cnki.com.cn/Article/CJFDTotal-JDXK2004S200B.htm [26] RAICH J W, RASTETTER E B, MELILLO J M, et al.Potential net primary productivity in South America:application of a global model[J].Ecological Applications, 1991, 1(4):399-429. doi: 10.2307/1941899 [27] LIU Zhengjia, WANG Lunche, WANG Sisi.Comparison of different GPP models in China using MODIS image and ChinaFLUX data[J].Remote Sensing, 2014.doi: 10.3390/rs61010215. [28] HUETE A, DIDAN K, MIURA T, et al.Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J].Remote Sensing of Environment, 2002, 83:195-213. doi: 10.1016/S0034-4257(02)00096-2 [29] GAO Yanni, YU Guirui, LI Shenggong, et al.A remote sensing model to estimate ecosystem respiration in northern China and the Tibetan Plateau[J].Ecological Modelling, 2015, 304:34-43. doi: 10.1016/j.ecolmodel.2015.03.001 [30] 陈静清, 闫慧敏, 王绍强, 等.中国陆地生态系统总初级生产力VPM遥感模型估算[J].第四纪研究, 2014, 34(4):732-742. doi: 10.3969/j.issn.1001-7410.2014.04.05CHEN Jingqing, YAN Huimin, WANG Shaoqiang, et al.Estimation of gross primary productivity in Chinese terrestrial ecosystems by using VPM model[J].Quaternary Sciences, 2014, 34(4):732-742. doi: 10.3969/j.issn.1001-7410.2014.04.05 [31] WANG Hesong, JIA Gensuo, FU Congbin, et al.Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling[J].Remote Sensing of Environment, 2010, 114:2248-2258. doi: 10.1016/j.rse.2010.05.001 [32] 牛香, 王兵.基于分布式测算方法的福建省森林生态系统服务功能评估[J].中国水土保持科学, 2012, 10(2):36-43. doi: 10.3969/j.issn.1672-3007.2012.02.006NIU Xiang, WANG Bing.Evaluation on forest ecosystem services in Fujian Province based on distributions measurement methodology[J].Science of Soil and Water Conservation, 2012, 10(2):36-43. doi: 10.3969/j.issn.1672-3007.2012.02.006 [33] 周梦遥, 何东进, 覃德华, 等.1995—2015年厦门市土地利用变化对植被覆盖度的影响[J].森林与环境学报, 2017, 37(4):440-445. http://www.cqvip.com/QK/96406A/201704/673464568.htmlZHOU Mengyao, HE Dongjin, QIN Dehua, et al.Impacts of land use change on vegetation coverage in Xiamen City from 1995 to 2015[J].Journal of Forest and Environment, 2017, 37(4):440-445. http://www.cqvip.com/QK/96406A/201704/673464568.html -