Artificial Intelligence Technology for Water Pollution Control in the Yangtze River Basin
-
摘要: 随着经济的快速发展和城市化进程的不断加速,促使水污染严重的长江流域需从污染物去除过程的建模与优化、污水处理过程的优化控制、水污染监测系统的构建开展水污染治理研究.传统的水污染处理技术存在污染物去除效率预测精度较低、污水优化控制成本较高、水污染监测滞后效应严重的问题.人工智能技术能够有效克服上述问题,因此通过梳理国内外学者利用人工智能技术在污水污染物去除过程的建模与优化、污水处理过程的优化控制及水污染监测系统的构建等方面的研究成果,为全面加强长江流域水污染治理能力提供科学可靠的技术指导.结果表明:①利用人工神经网络技术(径向基神经网络、多层前馈网络-人工神经网络、多层感知器神经网络)对污水污染物去除过程进行建模与优化,为精确预测长江流域重金属(Cr、Cu)、营养盐(TN、TP)、持久性有机污染物〔PBDEs(多溴二苯醚)、HCH(六氯环己烷)〕的去除率提供重要参考价值.②采用污水处理的自动控制技术与人工智能技术(递归神经网络、支持向量机、模糊神经网络等)构建污水智能控制系统,为长江流域实现高效节能的污水优化控制提供重要的技术指导.③利用在线监测仪器和人工智能技术(小波神经网络、多元线性回归-人工神经网络、叠层去噪自动编码器等)建立水污染智能监测系统,为解决长江流域水污染监测响应滞后问题提供有力的技术支持.因此,人工智能技术对长江流域提高污水污染物去除率,降低污水优化控制成本,提升水污染监测时效性具有重要的推广价值.Abstract: With the rapid development of economy and the acceleration of urbanization, research on water pollution control needs to be carried out in the heavily polluted Yangtze River Basin, including the modeling and optimization of pollutant removal processes, the optimization control of sewage treatment processes, and the construction of water pollution monitoring system. The traditional water pollution treatment technology has the problems of low prediction accuracy of pollutant removal efficiency, high cost of sewage optimization control and serious lag effect of water pollution monitoring. Artificial intelligence technology can effectively overcome the above problems. By combing the existing research results of wastewater pollutant removal modeling and optimization, wastewater treatment process optimization control and water pollution monitoring system construction using artificial intelligence technology, we can provide scientific and reliable technical guidance for comprehensively strengthening the capacity of water pollution control in the Yangtze River Basin. The results show that: (1) Using artificial neural network technology (radial basis function neural network, multilayer feedforward neural network, multilayer perceptron neural network, etc.) to model and optimize the process of wastewater pollutant removal, which provides an important reference value for accurately predicting the removal efficiency of heavy metals (Cr, Cu), nutrients (TN, TP) and persistent organic pollutants (PBDEs, HCH) in the Yangtze River Basin. (2) Using automatic sewage treatment control technology and artificial intelligence technology (recurrent neural network, support vector machine, fuzzy neural network, etc.) to establish a sewage intelligent control system, which provides important technical guidance for achieving efficient and energy-saving sewage control in the Yangtze River Basin. (3) Using on-line monitoring instruments and artificial intelligence technology (wavelet neural network, multiple linear regression artificial neural network, automatic coder of laminated noise removal, etc.) to establish a water pollution intelligent monitoring system, which provides strong technical support for solving the problem of lagging response of water pollution monitoring in the Yangtze River Basin. Consequently, artificial intelligence technology has important promotion value to improve the efficiency of sewage pollutant removal, reduce the cost of sewage optimal control, and improve the timeliness of water pollution monitoring in the Yangtze River Basin.
-
表 1 不同人工神经网络方法在污水污染物去除率预测中的应用
Table 1. Application of different artificial neural network methods in prediction of sewage pollutant removal efficiency
人工智能方法 输入参数 输出参数 数据分区 绩效评估标准 数据来源 训练数据集/个 验证数据集/个 测试数据集/个 R2 RMSE BP-ANN Cr含量、pH、DO浓度、接触时间 Cr去除率 — — — 0.988 — 文献[27] 有机负荷率、NH4+-N浓度、pH、CODCr浓度、沼气产量、出水挥发性脂肪酸 CODCr去除率 152 33 3 0.870 — 文献[28] ANFIS Cu含量、pH、接触时间、吸附剂用量 Cu吸附率 38 6 6 0.999 0.353 文献[29] MLPNN Cu含量、pH、接触时间、吸附剂用量 Cu吸附率 38 6 6 0.989 1.248 文献[29] 萘浓度、盐度、通量率 萘去除率 116 38 38 0.943 0.042 文献[30] RBFNN pH、吸附剂用量、温度、接触时间 Cu去除率 50 — 50 0.999 0.012 5 文献[31] 注:RMSE为均方根误差,可衡量模拟值与实测值之间的偏差.下同. 表 2 不同人工智方法在污水优化控制中的应用
Table 2. Application of different artificial intelligence methods in wastewater optimal control
人工智能方法 影响因子 控制目标 效果 数据来源 RBFNN与MLPNN 温度及DO、NH4+-N、CODCr、NO2--N、NO3--N的浓度 逆变器输出频率 实现高脱氮效率,能够严密控制供氧 文献[33] MLPNN 温度及DO、NH4+-N、NO2--N、NO3--N、TP、TN、CODCr的浓度 水力停留时、曝气总时间以及NH4+-N、TP、CODCr的去除率 总曝气时间和水力停留时间分别减少了50%和56% 文献[34] RNN 生物反应器中DO浓度设定值和内循环流量 生物反应器和氨水中的硝酸盐浓度 降低了污水中NH4+-N浓度峰值、硝酸盐浓度及能耗成本 文献[35] SVM DO浓度、pH、好氧阶段控制pH与DO浓度的操作变量 好氧阶段时长 好氧总时长减少了9.54 d 文献[25] FNN SNO2和SO5最佳设定值和实际输出值之间的误差及其误差的变化 污水中SNO2和SO5 曝气能量减少了7.6% 文献[36] CODCr浓度、TN浓度、流量、pH、回流混合液比、缺氧区硝酸盐浓度 运行成本及污水中CODCr、TN浓度 CODCr和TN浓度在一周内分别降低了14%和10.5% 文献[37] ANFIS 流量、CODCr浓度、NH4+-N浓度 鼓风机提供的通风量 污水处理厂的运行成本降低了33%左右 文献[38] 底物、DO浓度、生物量 上升时间、沉降时间 上升时间和沉降时间分别减少了45.7%和3.5% 文献[39] 表 3 不同人工智能方法在水污染监测系统中的应用
Table 3. Application of different artificial intelligence methods in sewage monitoring system
人工智能方法 主要参数 次要参数 样本量/个 绩效评估标准 数据来源 R2 RMSE RBFNN TP浓度 pH、温度以及DO、CODCr、TSS、NH4+-N、NO3--N的浓度 800 — 0.104 文献[41] WNN CODCr浓度 流量、好氧反应器中NH4+-N和DO的浓度 250 — — 文献[42] PSO-SDAE CODCr、TN、NH4+-N的浓度 流量、生物膜系统回流比 80 — 5.94(CODCr)、1.26(TN)、1.27(NH4+-N) 文献[26] MLR-ANN BOD5浓度 水温、降水量、pH、流量以及NH4+-N、TP、NO3--N的浓度 2 364 0.584 — 文献[43] RSONN 污泥体积指数 pH及CODCr、TN、DO的浓度 220 — 0.143 文献[44] MLPNN CODCr、TN、TSS的浓度 流量、温度及NO3--N和NH4+-N的浓度 1 120 0.90(CODCr)、0.92(TN)、0.88(TSS) — 文献[45] FNN BOD5、CODCr、TSS的浓度 pH、温度 159 0.96(BOD5)、0.95(CODCr)、0.94(TSS) 1.13(BOD5)、1.67(CODCr)、0.98(TSS) 文献[46] 注:TSS为总悬浮固体. -
[1] 夏细禾, 戴昌军.切实加强长江流域水资源管理工作的实践与思考[J].长江技术经济, 2019, 3(4):35-38. http://d.old.wanfangdata.com.cn/Periodical/cjjsjj201904008XIA Xihe, DAI Changjun.Practice and thoughts on strengthening water resources management in the Yangtze River Basin[J].Technology and Economy of Changjiang, 2019, 3(4):35-38. http://d.old.wanfangdata.com.cn/Periodical/cjjsjj201904008 [2] 黄莎, 付湘, 秦嘉楠, 等.基于人类活动与气候变化的长江流域水资源压力评价[J].中国农村水利水电, 2019(5):12-16. http://d.old.wanfangdata.com.cn/Periodical/zgncslsd201905003HUANG Sha, FU Xiang, QIN Jianan, et al.Assessing water stress based on human activities and climate change in the Yangtze River Basin[J].China Rural Water and Hydropower, 2019(5):12-16. http://d.old.wanfangdata.com.cn/Periodical/zgncslsd201905003 [3] 王建华.生态大保护背景下长江流域水资源综合管理思考[J].人民长江, 2019, 50(10):1-6. http://d.old.wanfangdata.com.cn/Periodical/rmcj201910001WANG Jianhua.Discussion on integrated water resources management in Yangtze River Basin under background of ecological protection[J].Yangtze River, 2019, 50(10):1-6. http://d.old.wanfangdata.com.cn/Periodical/rmcj201910001 [4] 孔令桥, 张路, 郑华, 等.长江流域生态系统格局演变及驱动力[J].生态学报, 2018, 38(3):741-749. http://d.old.wanfangdata.com.cn/Periodical/stxb201803001KONG Lingqiao, ZHANG Lu, ZHENG Hua, et al.Driving forces behind ecosystem spatial changes in the Yangtze River Basin[J].Acta Ecologica Sinica, 2018, 38(3):741-749. http://d.old.wanfangdata.com.cn/Periodical/stxb201803001 [5] 王树堂, 陈坤, 田金平, 等.长江经济带工业园区水污染防治问题与对策研究[J].环境保护, 2019, 47(12):45-46. http://d.old.wanfangdata.com.cn/Periodical/hjbh201912011WANG Shutang, CHEN Kun, TIAN Jinping, et al.Study of water pollution prevention and control in industrial parks of the Yangtze River Economic Belt[J].Environmental Protection, 2019, 47(12):45-46. http://d.old.wanfangdata.com.cn/Periodical/hjbh201912011 [6] 刘辉, 卓海华, 陈水松.三峡水库试验性蓄水期间水环境质量监测分析[J].人民长江, 2012, 43(1):55-58. http://d.old.wanfangdata.com.cn/Periodical/rmcj201201017LIU Hui, ZHUO Haihua, CHEN Shuisong.Analysis of water environment quality during trial impoundment of Three Gorges Reservoir[J].Yangtze River, 2012, 43(1):55-58. http://d.old.wanfangdata.com.cn/Periodical/rmcj201201017 [7] 刘朋超, 麻泽浩, 魏鹏刚, 等.长江流域重金属污染特征及综合防治研究进展[J].三峡生态环境监测, 2018, 3(3):33-37. http://d.old.wanfangdata.com.cn/Periodical/sxsthjjc201803007LIU Pengchao, MA Zehao, WEI Penggang, et al.Progress of researches on heavy metal pollution characteristics and comprehensive prevention and control in the Yangtze River Basin[J].Ecology and Environmental Monitoring of Three Gorges, 2018, 3(3):33-37. http://d.old.wanfangdata.com.cn/Periodical/sxsthjjc201803007 [8] 崔海灵.以"智慧长江"建设推进长江大保护的思考与建议[J].长江技术经济, 2019, 3(4):103-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjjsjj201904022CUI Hailing.Reflections and suggestions on promoting protection of the Yangtze River by the construction of 'wise Yangtze River'[J].Technology and Economy of Changjiang, 2019, 3(4):103-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjjsjj201904022 [9] 陈强.长江流域水污染治理法律问题研究[D].武汉: 华中农业大学, 2019. [10] 王佳宁, 徐顺青, 武娟妮, 等.长江流域主要污染物总量减排及水质响应的时空特征[J].安全与环境学报, 2019, 19(3):1065-1074. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb201903046WANG Jianing, XU Shunqing, WU Juanni, et al.On tempora-spacial features for reduced pollutant exhaust emission of Yangtze River Basin[J].Journal of Safety and Environment, 2019, 19(3):1065-1074. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb201903046 [11] 李想, 江雪昕, 高红菊.太湖流域土壤重金属污染评价与来源分析[J].农业机械学报, 2017, 48(S1):247-253. http://www.cnki.com.cn/Article/CJFDTotal-NYJX2017S1038.htmLI Xiang, JIANG Xuexin, GAO Hongju.Pollution assessment and source analysis of soil heavy metals in Taihu Lake Basin[J].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1):247-253. http://www.cnki.com.cn/Article/CJFDTotal-NYJX2017S1038.htm [12] 冯敏, 杨晓琴, 陈玲, 等.鄱阳湖湖口段沉积物重金属污染特征及潜在生态风险评价[J].湖南生态科学学报, 2017, 4(3):1-7. http://d.old.wanfangdata.com.cn/Periodical/hnhjswzyjsxyxb201703001FENG Min, YANG Xiaoqin, CHEN Ling, et al.Pollutant characteristics and ecological risk assessment of heavy metals in sediments from the confluent area of Yangtze River and Poyang Lake[J].Journal of Hunan Ecological Science, 2017, 4(3):1-7. http://d.old.wanfangdata.com.cn/Periodical/hnhjswzyjsxyxb201703001 [13] 吴蕾, 刘桂建, 周春财, 等.巢湖水体可溶态重金属时空分布及污染评价[J].环境科学, 2018, 39(2):738-747. http://d.old.wanfangdata.com.cn/Periodical/hjkx201802032WU Lei, LIU Guijian, ZHOU Chuncai, et al.Temporal-spatial distribution and pollution assessment of dissolved heavy metals in Chaohu Lake[J].Environmental Science, 2018, 39(2):738-747. http://d.old.wanfangdata.com.cn/Periodical/hjkx201802032 [14] 张雪, 张聪, 宋超, 等.长江下游流域水体中重金属含量及风险评估[J].中国农学通报, 2017, 33(30):67-73. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201730013ZHANG Xue, ZHANG Cong, SONG Chao, et al.Heavy metal content of water and risk assessment in the lower reaches of the Yangtze River[J].Chinese Agricultural Science Bulletin, 2017, 33(30):67-73. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201730013 [15] 秦延文, 马迎群, 王丽婧, 等.长江流域总磷污染:分布特征·来源解析·控制对策[J].环境科学研究, 2018, 31(1):9-14. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180102&flag=1QIN Yanwen, MA Yingqun, WANG Lijing, et al.Pollution of the total phosphorus in the Yangtze River Basin:distribution characteristics, source and control strategy[J].Research of Environmental Sciences, 2018, 31(1):9-14. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180102&flag=1 [16] 刘明丽.长江流域水相、沉积相中多溴联苯醚及有机氯农药的污染特征和风险评价[D].北京: 北京交通大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10004-1018144433.htm [17] 李震, 汤睿, 苏杭.长江流域污水处理的状况分析:以无为县污水处理厂为例[J].污染防治技术, 2019, 32(5):2-4. http://www.cnki.com.cn/Article/CJFDTotal-WRFZ201905003.htmLI Zhen, TANG Rui, SU Hang.A study on the status of sewage treatment in the Yangtze River Basin:taking Wuwei County wastewater treatment plant as an example[J].Pollution Control Technology, 2019, 32(5):2-4. http://www.cnki.com.cn/Article/CJFDTotal-WRFZ201905003.htm [18] 郜志云, 姚瑞华, 续衍雪, 等.长江经济带生态环境保护修复的总体思考与谋划[J].环境保护, 2018, 46(9):13-17. http://d.old.wanfangdata.com.cn/Periodical/hjbh201809004GAO Zhiyun, YAO Ruihua, XU Yanxue, et al.General thinking and planning of promoting the ecological environmental protection and restoration in the Yangtze River Economic Belt[J].Environmental Protection, 2018, 46(9):13-17. http://d.old.wanfangdata.com.cn/Periodical/hjbh201809004 [19] 李义玲, 杨小林.长江流域水污染综合防控能力空间变异及影响因素分析[J].环境科学导刊, 2018, 37(6):22-28. http://d.old.wanfangdata.com.cn/Periodical/ynhjkx201806006LI Yiling, YANG Xiaolin.Spatial variation of water pollution prevention capability of Yangtze River Basin and its factors analysis based on objective weighting method[J].Environmental Science Survey, 2018, 37(6):22-28. http://d.old.wanfangdata.com.cn/Periodical/ynhjkx201806006 [20] ABIODUN O I, JANTAN A, OMOLARA A E, et al.State-of-the-art in artificial neural network applications:a survey[J].Heliyon, 2018, 4(11):e00938. https://www.sciencedirect.com/science/article/pii/S2405844018332067 [21] WANG Puze, YAO Jiping, WANG Guoqiang, et al.Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants[J].Science of the Total Environment, 2019, 693:133440. https://www.sciencedirect.com/science/article/pii/S0048969719333601 [22] CSABRAGI A, MOLNAR S, TANOS P, et al.Estimation of dissolved oxygen in riverine ecosystems:comparison of differently optimized neural networks[J].Ecological Engineering, 2019, 138:298-309. https://www.sciencedirect.com/science/article/pii/S0925857419302514 [23] FAN Mingyi, HU Jiwei, CAO Rensheng, et al.A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence[J].Chemosphere, 2018, 200:330-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0ded06dd6adefa8c24fd57d83c1a01c5 [24] GHAEDI A M, VAFAEI A.Applications of artificial neural networks for adsorption removal of dyes from aqueous solution:a review[J].Advances in Colloid and Interface Science, 2017, 245:20-39. https://www.sciencedirect.com/science/article/abs/pii/S0001868616303335 [25] JARAMILLO F, ORCHARD M, MUNOZ C, et al.On-line estimation of the aerobic phase length for partial nitrification processes in SBR based on features extraction and SVM classification[J].Chemical Engineering Journal, 2018, 331:114-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9327e06d256d72560f88fee6c0bf5d9c [26] SHI Shuai, XU Guoren.Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network[J].Chemical Engineering Journal, 2018, 347:280-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c5ea7c60aa044b2dce78394b71bb8a1d [27] YU R F, CHI F H, CHENG Wenpo, et al.Application of pH, ORP, and DO monitoring to evaluate chromium(Ⅵ) removal from wastewater by the nanoscale zero-valent iron (nZVI) process[J].Chemical Engineering Journal, 2014, 255:568-576. https://www.sciencedirect.com/science/article/abs/pii/S1385894714007256 [28] PHILIP A, LI Jianzheng, MENG Jia, et al.Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater[J].Bioresource Technology, 2018, 257:102-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=607e2fcf967ef6bb8f7a8d56df946c53 [29] DOLATABADI M, MEHRABPOUR M, ESFANDYARI M, et al.Modeling of simultaneous adsorption of dye and metal ion by sawdust from aqueous solution using of ANN and ANFIS[J].Chemometrics and Intelligent Laboratory Systems, 2018, 181:72-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c8fc79e5877f4d3310be6da72e3154d [30] JING Liang, CHEN Bing, ZHANG Baiyu.Modeling of UV-induced photodegradation of naphthalene in marine oily wastewater by artificial neural networks[J].Water Air and Soil Pollution, 2014.doi: 10.1007/s11270-014-1906-0. [31] TURAN N G, MESCI B, OZGONENEL O.The use of artificial neural networks (ANN) for modeling of adsorption of Cu(Ⅱ) from industrial leachate by pumice[J].Chemical Engineering Journal, 2011, 171(3):1091-1097. https://www.sciencedirect.com/science/article/abs/pii/S138589471100550X [32] BUYUKYILDIZ M, KUMCU S Y.An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network models[J].Water Resources Management, 2017, 31(4):1343-1359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=22404d7f0372d4f393eeb3c1a88bd832 [33] WEN Xin, GONG Benzhou, ZHOU Jian, et al.Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations[J].Water Research, 2017, 119:201-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a642a0ffbe580c60ebd96e6821ab7343 [34] DING Dahu, FENG Chuanping, JIN Yunxiao, et al.Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system[J].Desalination, 276(1/2/3):260-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ffad2765b21065f5a718cb06888e972 [35] FOSCOLIANO C, DEL V S, MULAS M, et al.Predictive control of an activated sludge process for long term operation[J].Chemical Engineering Journal, 2016, 304:1031-1044. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=321b27092cccf1ac8f3d8279bf831ca0 [36] QIAO Junfei, HOU Ying, ZHANG Lu, et al.Adaptive fuzzy neural network control of wastewater treatment process with multiobjective operation[J].Neurocomputing, 2018, 275:383-393. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31969df9f4a9bb4402250df6a2ec6ec5 [37] HUANG Mingzhi, MA Yongwen, WAN Jinquan, et al.Improving nitrogen removal using a fuzzy neural network-based control system in the anoxic/oxic process[J].Environmental Science and Pollution Research International, 2014, 21(20):12074-12084. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a9befafc58e36622dc9e80ef9d43f258 [38] HUANG Mingzhi, WAN Jinquan, MA Yongwen, et al.Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks[J].Expert Systems with Applications, 2009, 36(7):10428-10437. https://www.sciencedirect.com/science/article/pii/S0957417409000761 [39] GAYA M S, WAHAB N A, BATURE A, et al.Compensation control of dissolved oxygen in an activated sludge system via hybrid neuro fuzzy technique[J].Procedia Manufacturing, 2015, 2:307-312. https://www.sciencedirect.com/science/article/pii/S2351978915000554 [40] 姚瑞华, 赵越, 王东, 等.长江中下游流域水环境现状及污染防治对策[J].人民长江, 2014, 45(S1):45-47. http://www.cnki.com.cn/Article/CJFDTotal-RIVE2014S1015.htmYAO Ruihua, ZHAO Yue, WANG Dong, et al.Current situation of water environment in the middle and lower reaches of the Yangtze River and countermeasures for pollution control[J].Yangtze River, 2014, 45(S1):45-47. http://www.cnki.com.cn/Article/CJFDTotal-RIVE2014S1015.htm [41] ZHU Shuguang, HAN Honggui, GUO Min, et al.A data-derived soft-sensor method for monitoring effluent total phosphorus[J].Chinese Journal of Chemical Engineering, 2017, 25(12):1791-1797. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjce201712013 [42] CONG Qiumei, YU Wen.Integrated soft sensor with wavelet neural network and adaptive weighted fusion for water quality estimation in wastewater treatment process[J].Measurement, 2018, 124:436-446. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0ca7107bf099a92d8e0b6b5cbcf29808 [43] ZHU Junjie, KANG Lulu, ANDERSON P R.Predicting influent biochemical oxygen demand:balancing energy demand and risk management[J].Water Research, 2018, 128:304-313. https://www.sciencedirect.com/science/article/pii/S0043135417308874 [44] HAN Honggui, LI Ying, GUO Yanan, et al.A soft computing method to predict sludge volume index based on a recurrent self-organizing neural network[J].Applied Soft Computing, 2016, 38:477-486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eff3ad90141c87b4a514fcc6ea457abe [45] FERNANDEZ D C J, DEL S O P, BARATTI R, et al.Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network[J].Expert Systems with Applications, 2016, 63:8-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2aebcfc4967c264d0d7f991bd9aa8b72 [46] NADIRI A A, SHOKRI S, TSAI F T, et al.Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model[J].Journal of Cleaner Production, 2018, 180:539-549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d11e9e36d29b28cd7f552568f516397 -

计量
- 文章访问数: 1459
- HTML全文浏览量: 64
- PDF下载量: 491
- 被引次数: 0