Water Quality Limits of Nitrogen and Phosphorus in the Inflow Rivers of Poyang Lake
-
摘要: 鄱阳湖近年氮磷营养物浓度逐步升高,入湖河流是鄱阳湖氮磷输入的重要途径.采用BATHTUB模型建立了鄱阳湖入湖河流与湖区ρ(TP)、ρ(TN)的响应关系,模拟了入湖河流执行GB 3838—2002《地表水环境质量标准》中不同氮磷标准限值对湖区水质的影响,发现当入湖河流ρ(TP)执行河流Ⅲ类标准限值或超过Ⅲ类标准限值时,对应湖区ρ(TP)超标;入湖河流执行Ⅲ类及以上湖泊水质标准限值时,湖区水质可以达到Ⅲ类保护目标,但对入湖河流存在一定的过保护现象.因此,以满足现行湖泊水质达标为情景,以湖泊ρ(TP)、ρ(TN)各类别标准限值为目标,试算了入湖河流氮磷控制限值,提出了鄱阳湖入湖河流的氮磷控制限值建议方案,其中鄱阳湖湖体水质目标为Ⅲ类时,入湖河流ρ(TP)、ρ(TN)控制限值分别为0.075和1.20 mg/L,此时入湖河流氮磷控制限值方案既能保证湖泊水质达标,又不会造成对河流的水质控制过于严格.研究显示,基于湖泊水环境质量达标情况试算的入湖河流氮磷所需控制限值,建议可作为解决入湖氮磷污染控制问题的参考.Abstract: In recent years, the concentration of nitrogen and phosphorus in Poyang Lake has gradually increased, and river nutrient input is an important way for nitrogen and phosphorus in Poyang Lake. The BATHTUB model was used to simulate the relationship between TP and TN in the rivers and lake, and the effects of different nutrient standard limits on the water quality of the rivers entering lake. The study found that when ρ(TP) in rivers into Poyang Lake implemented or exceeded Class Ⅲ (Environmental Quality Standards for Surface Water(GB 3838-2002) of standard river limits), ρ(TP) in Poyang lake would exceed the standard. When the nutrient in rivers entering Poyang Lake implemented the standard values of lakes of Class Ⅲ and above, it could meet the standards, but there was a certain over-protection phenomenon. Therefore, in order to meet the current lake water quality standards, taking the different standard limits of TP and TN in lake as targets, calculate nutrient control limits for rivers entering lakes, and recommendations for the water quality control limits of the rivers entering Poyang Lake are proposed. The TP and TN control limits of the rivers entering the lake should be 0.075 and 1.20 mg/L respectively if the water quality target of Poyang Lake is Class Ⅲ, which can ensure that the water quality of the lake meets the standards and avoid that the control limits of the rivers are too strict. Studies have shown that the calculated control limits of nitrogen and phosphorus in lakes can be suggested as a reference for solving the problems of nitrogen and phosphorus pollution control in lakes, based on lake water environmental quality standards.
-
Key words:
- Poyang Lake /
- inflow river /
- BATHTUB model /
- TN /
- TP /
- control values
-
表 1 BATHTUB模型参数
Table 1. BATHTUB model parameters
项目 参数名称 全局 降雨量、蒸发量、水位变化、大气沉降外部负荷 分段 湖区表面积、平均深度、混合层深度、非藻类浊度以及
监测水体中ρ(TP)、ρ(TN)、ρ(Chla)、SD支流 支流流量、监测水体中ρ(TP)和ρ(TN) 表 2 BATHTUB模型模块选择及系数校正
Table 2. Coefficient correction and the selection of modules in BATHTUB model
参数 模型 因子系数 ρ(TP) 01 Second-order Available-P 0.3 ρ(TN) 01 Second-order Available-N 0.3 ρ(Chla) 02 P, N, Low-Turbidity 0.2 SD 01 Chla & Turbidity 1.0 表 3 入湖河流执行现行河流标准限值时湖区ρ(TP)模拟结果
Table 3. Simulation results of ρ(TP) in lake area under river standard limits
入湖河流 鄱阳湖湖区 执行河
流标准ρ(TP)/
(mg/L)模拟ρ(TP)/
(mg/L)湖泊水
质级别Ⅴ类 0.4 0.160 Ⅴ类 Ⅳ类 0.3 0.136 Ⅴ类 Ⅲ类 0.2 0.104 Ⅴ类 Ⅱ类 0.1 0.065 Ⅳ类 Ⅰ类 0.02 0.018 Ⅱ类 注:Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类、Ⅴ类均为GB 3838—2002《地表水环境质量标准》水质等级.下同. 表 4 入湖河流执行现行湖泊标准限值时湖区ρ(TP)、ρ(TN)模拟结果
Table 4. Simulation results of ρ(TP) and ρ(TN) in lake area under lake standard limits
入湖河流 鄱阳湖湖区 入湖河流 鄱阳湖湖区 执行湖
泊标准ρ(TP)/
(mg/L)模拟ρ(TP)/
(mg/L)湖泊
水质类别执行湖
泊标准ρ(TN)/
(mg/L)模拟ρ(TN)/
(mg/L)湖泊
水质类别Ⅴ类 0.2 0.105 Ⅳ类 Ⅴ类 2.0 1.45 Ⅳ类 Ⅳ类 0.1 0.065 Ⅳ类 Ⅳ类 1.5 1.15 Ⅳ类 Ⅲ类 0.05 0.038 Ⅲ类 Ⅲ类 1.0 0.82 Ⅲ类 Ⅱ类 0.025 0.021 Ⅱ类 Ⅱ类 0.5 0.46 Ⅱ类 Ⅰ类 0.01 0.010 Ⅰ类 Ⅰ类 0.2 0.20 Ⅰ类 表 5 依据湖泊不同保护类别试算的入湖河流ρ(TP)、ρ(TN)模拟结果
Table 5. Simulation results of ρ(TP) and ρ(TN) of inflow lakes based on different protection categories of lakes
鄱阳湖湖区 入湖河流 鄱阳湖湖区 入湖河流 湖泊水质级别 ρ(TP)/(mg/L) 试算的ρ(TP)控制限值/(mg/L) 湖泊水质级别 ρ(TN)/(mg/L) 试算的ρ(TN)控制限值/(mg/L) Ⅴ类 0.2 0.40 Ⅴ类 2.0 3.10 Ⅳ类 0.1 0.20 Ⅳ类 1.5 2.10 Ⅲ类 0.05 0.075 Ⅲ类 1.0 1.20 Ⅱ类 0.025 0.03 Ⅱ类 0.5 0.55 Ⅰ类 0.01 0.02 Ⅰ类 0.2 0.21 -
[1] 唐国华, 林玉茹, 胡振鹏, 等.鄱阳湖区氮磷污染物分布、转移和削减特征[J].长江流域资源与环境, 2017, 26(9):1436-1445. doi: 10.11870/cjlyzyyhj201709016TANG Guohua, LIN Yuru, HU Zhenpeng, et al.Characteristics of distribution, transfer and subtraction of nitrogen and phosphorus contaminants in Poyang Lake[J].Resources and Environment in the Yangtze Basin, 2017, 26(9):1436-1445. doi: 10.11870/cjlyzyyhj201709016 [2] 高桂青, 阮仁增, 欧阳球林.鄱阳湖水质状况及变化趋势分析[J].南昌工程学院学报, 2010, 29(4):50-53. doi: 10.3969/j.issn.1006-4869.2010.04.012GAO Guiqing, RUAN Renzeng, OUYANG Qiulin.Water quality status and changing trend in Poyang Lake[J].Journal of Nanchang Institute of Technology, 2010, 29(4):50-53. doi: 10.3969/j.issn.1006-4869.2010.04.012 [3] 胡春华, 周文斌, 王毛兰, 等.鄱阳湖氮、磷营养盐变化特征及潜在性富营养化评价[J].湖泊科学, 2010, 22(5):723-728. http://d.old.wanfangdata.com.cn/Periodical/hpkx201005013HU Chunhua, ZHOU Wenbin, WANG Maolan, et al.Inorganic nitrogen and phosphate and potential eutrophication assessment in Lake Poyang[J].Journal of Lake Sciences, 2010, 22(5):723-728. http://d.old.wanfangdata.com.cn/Periodical/hpkx201005013 [4] 黄冬凌, 倪兆奎, 赵爽, 等.基于湖泊与出入湖水质关联性研究:以鄱阳湖为例[J].环境科学, 2019, 40(10):4450-4460. http://d.old.wanfangdata.com.cn/Periodical/hjkx201910018HUANG Dongling, NI Zhaokui, ZHAO Shuang, et al.Correlation analysis of water quality between lake inflow and outflow:a case study of Poyang Lake[J].Environmental Science, 2019, 40(10):4450-4460. http://d.old.wanfangdata.com.cn/Periodical/hjkx201910018 [5] 田泽斌, 王丽婧, 李小宝.洞庭湖出入湖污染物通量特征[J].环境科学研究, 2014, 27(9):1008-1014. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20140909&flag=1TIAN Zebin, WANG Lijing, LI Xiaobao, et al.Characteristics analysis of pollutant influx and outflux in Dongting Lake[J].Research of Environmental Sciences, 2014, 27(9):1008-1014. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20140909&flag=1 [6] YAO Zhigang, BAO Zhengyu, ZHOU Lifa, et al.A statistical approach for determining the environment impact of surface sediments from the Dongting Lake Area, Central China[J].Chinese Journal of Geochemistry, 2009, 28:97-104. doi: 10.1007/s11631-009-0097-7 [7] 杨澄宇, 代超, 伊璇, 等.基于正交设计及EFDC模型的湖泊流域总量控制:以滇池流域为例[J].中国环境科学, 2016, 36(12):3696-3702. doi: 10.3969/j.issn.1000-6923.2016.12.022YANG Chengyu, DAI Chao, YI Xuan, et al.Total emission control of water pollutant for the lake basin based on orthogonal experimental design and EFDC model:a case study of Dianchi Basin[J].China Environmental Science, 2016, 36(12):3696-3702. doi: 10.3969/j.issn.1000-6923.2016.12.022 [8] ZHANG Ting, BAN Xuan, WANG Xuelei, et al.Analysis of nutrient transport and ecological response in Honghu Lake, China by using a mathematical model[J].Science of the Total Environment, 2017, 575:418-428. doi: 10.1016/j.scitotenv.2016.09.188 [9] ZHU Changjun, LIANG Qinag, YAN Feng, et al.Reduction of waste water in Erhai Lake based on MIKE21 hydrodynamic and water quality model[J].Scientific World Journal, 2013, 5:1-9. https://www.hindawi.com/journals/tswj/2013/958506/tab4/ [10] MOSTERT E.The European water frame work directive and water management research[J].Physics and Chemistry of the Earth, 2003, 28:523-527. doi: 10.1016/S1474-7065(03)00089-5 [11] HENOCQE Y, ANDRAL B.The French approach to managing water resources in the Mediterranean and the new European water framework directive[J].Marine Pollution Bulletin, 2003, 49:155-161. https://www.sciencedirect.com/science/article/abs/pii/S0025326X02004137 [12] 沈百鑫.德国湖泊治理的经验与启示(上)[J].水利发展研究, 2014, 14(5):72-79. doi: 10.3969/j.issn.1671-1408.2014.05.019 [13] EFFLER S W, ODONNELL S M, MATTHEWS D A, et al. Limnological and loading information and a phosphorus Total Maximum Daily Load (TMDL) analysis for Onondaga Lake[J]. Lake & Reservoir Management, 2002, 18(2):87-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/07438140209354140 [14] CANALE R P, HARRISON R, MOSKUS P, et al.Case study:reduction of total phosphorus loads to big latte Lake, MI through point source control and watershed management[J].Proceedings of the Water Environment Federation, 2004, 4:1060-1076. http://www.researchgate.net/publication/233605018_Case_Study_Reduction_of_Total_Phosphorus_Loads_to_Big_Platte_Lake_MI_Through_Point_Source_Control_and_Watershed_Management [15] CANALE R P, REDDER T, SWIECKI W, et al.Phosphorus budget and remediation plan for big Platte Lake, Michigan[J].Journal of Water Resources Planning & Management, 2010, 136(5):576-586. https://www.cabdirect.org/cabdirect/abstract/20103314355 [16] HAVENS K E, SCHELSKE C L.The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs[J].Environmental Pollution, 2001, 113(1):1-9. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM11351756 [17] EFFLER S W, ODONNELL S M, MATTHEWS D A, et al.Limnological and loading information and a phosphorus total maximum daily load (TMDL) analysis for Onondaga Lake[J].Lake & Reservoir Management, 2002, 18(2):87-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/07438140209354140 [18] HAVENS K E, WALKER W W.Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA)[J].Lake and Reservoir Management, 2002, 18(3):227-238. doi: 10.1080/07438140209354151 [19] 美国环境保护局.美国TMDL计划与典型案例实施[M].北京:中国环境科学出版社, 2012. [20] WANG S, HUGGINS D G, FREES L, et al.An integrated modeling approach to total watershed management:water quality and watershed assessment of Cheney Reservoir, Kansas, USA[J].Water Air and Soil Pollution, 2005:1-19. doi: 10.1007%2Fs11270-005-1658-y [21] KENNEDY R H.Application of the BATHTUB model to select-ed southeastern reservoirs[R].Mississippi: US Army Enginer Water-Ways Experiment Station Vicksburg Ms Environmental Lab, 1995. [22] FARHAD N, AMVROSSIOS C B, GEORGE E H, et al.Application of a steady-state nutrient model and inferences for load reduction strategy in two public water supply reservoirs in eastern Connecticut[J].Lake and Reservoir Management, 2007, 23:264-278. doi: 10.1080/07438140709354015 [23] Wisconsin Department of Nature Resources.Phosphorus total maximum daily load (TMDL) for Half Moon Lake[R].Wisconsin: Wisconsin Department of Nature Resources, 2004. [24] US EPA.Total maximum daily load (TMDL) for phosphorus in Moon Lake Jefferson Country[R].New York: US EPA, 2007. [25] 石春力.滨海新区水资源综合管理的典型模型技术应用[D].天津: 南开大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10055-1013174913.htm [26] 许晨, 万荣荣, 马倩, 等.太湖西北部湖区入湖河流氮磷水质标准修正方案研究[J].长江流域资源与环境, 2017, 26(8):1180-1188. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201708008XU Chen, WAN Rongrong, MA Qian, et al.The research in the revised plan of water quality standard of the nitrogen and phosphorus for the inflow rivers in the northwest of the Taihu Lake[J].Resources and Environment in the Yangtze Basin, 2017, 26(8):1180-1188. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201708008 [27] 余进祥, 刘娅菲, 钟小兰.鄱阳湖水环境承载力及主要污染源研究[J].江西农业学报, 2009, 21(3):90-93. doi: 10.3969/j.issn.1001-8581.2009.03.029YU Jinxiang, LIU Yafei, ZHONG Xiaolan.Study on water environment carrying capacity and main pollution sources of Poyang Lake[J].Acta Agriculturae Jiangxi, 2009, 21(3):90-93. doi: 10.3969/j.issn.1001-8581.2009.03.029 [28] 陈军宁.基于SWAT模型的鄱阳湖区非点源污染模拟研究[D].南昌: 南昌大学, 2013. http://d.wanfangdata.com.cn/Thesis/Y2402914 [29] WALKER W W.Simplified procedures for eutrophication assessment and prediction: user manual[R].Mississippi: US Army Corps of Engineers, 1999: 4-16. [30] 王绪鹏.BATHTUB水质模型及其应用研究[C]//中国环境科学学会.2009年中国环境科学学会学术年会论文集(第一卷).北京: 中国环境科学学会, 2009: 347-349. [31] 王绪鹏.水源地水质分析与预测方法及应用研究[D].天津: 南开大学, 2011. http://d.wanfangdata.com.cn/Thesis/Y2002791 [32] 杜冰雪, 徐力刚, 张杰, 等.鄱阳湖富营养化时空变化特征及其与水位的关系[J].环境科学研究, 2019, 32(5):795-801. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190509&flag=1DU Bingxue, XU Ligang, ZHANG Jie, et al.The spatial-temporal characteristics of eutrophication in Poyang Lake and its relationship with the water level[J].Research of Environmental Sciences, 2019, 32(5):795-801. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190509&flag=1 [33] TA G.UK environmental standards and conditions[EB/OL].London: UK Technical Advisory Group on the WFD, 2019-06-01[2020-02-05].http://www.wfduk.org/UK_Environmental_Standards. [34] 张红举.淀山湖环湖河流总磷入湖控制浓度分析[C]//中国环境科学学会.2010中国环境科学学会学术年会论文集(第三卷).北京: 中国环境科学学会, 2010: 77-81. -