留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄱阳湖入湖河流氮磷水质控制限值研究

王子为 林佳宁 张远 王慧 钱昶 陈焰 夏瑞 王强 张晓娇

王子为, 林佳宁, 张远, 王慧, 钱昶, 陈焰, 夏瑞, 王强, 张晓娇. 鄱阳湖入湖河流氮磷水质控制限值研究[J]. 环境科学研究, 2020, 33(5): 1163-1169. doi: 10.13198/j.issn.1001-6929.2020.03.45
引用本文: 王子为, 林佳宁, 张远, 王慧, 钱昶, 陈焰, 夏瑞, 王强, 张晓娇. 鄱阳湖入湖河流氮磷水质控制限值研究[J]. 环境科学研究, 2020, 33(5): 1163-1169. doi: 10.13198/j.issn.1001-6929.2020.03.45
WANG Ziwei, LIN Jianing, ZHANG Yuan, WANG Hui, QIAN Chang, CHEN Yan, XIA Rui, WANG Qiang, ZHANG Xiaojiao. Water Quality Limits of Nitrogen and Phosphorus in the Inflow Rivers of Poyang Lake[J]. Research of Environmental Sciences, 2020, 33(5): 1163-1169. doi: 10.13198/j.issn.1001-6929.2020.03.45
Citation: WANG Ziwei, LIN Jianing, ZHANG Yuan, WANG Hui, QIAN Chang, CHEN Yan, XIA Rui, WANG Qiang, ZHANG Xiaojiao. Water Quality Limits of Nitrogen and Phosphorus in the Inflow Rivers of Poyang Lake[J]. Research of Environmental Sciences, 2020, 33(5): 1163-1169. doi: 10.13198/j.issn.1001-6929.2020.03.45

鄱阳湖入湖河流氮磷水质控制限值研究

doi: 10.13198/j.issn.1001-6929.2020.03.45
基金项目: 

家水体污染控制与治理科技重大专项 2018ZX07601-001-02

家水体污染控制与治理科技重大专项 2017ZX07301-001-01

家水体污染控制与治理科技重大专项 2018ZX07601-003

详细信息
    作者简介:

    王子为(1996-), 男, 辽宁阜新人, WWziwei@163.com

    通讯作者:

    林佳宁(1988-), 女, 山东烟台人, 副研究员, 博士, 主要从事水生态保护技术研究, linjn@craes.org.cn

  • 中图分类号: X524

Water Quality Limits of Nitrogen and Phosphorus in the Inflow Rivers of Poyang Lake

Funds: 

National Major Science and Technology Program for Water Pollution Control and Treatment, China 2018ZX07601-001-02

National Major Science and Technology Program for Water Pollution Control and Treatment, China 2017ZX07301-001-01

National Major Science and Technology Program for Water Pollution Control and Treatment, China 2018ZX07601-003

  • 摘要: 鄱阳湖近年氮磷营养物浓度逐步升高,入湖河流是鄱阳湖氮磷输入的重要途径.采用BATHTUB模型建立了鄱阳湖入湖河流与湖区ρ(TP)、ρ(TN)的响应关系,模拟了入湖河流执行GB 3838—2002《地表水环境质量标准》中不同氮磷标准限值对湖区水质的影响,发现当入湖河流ρ(TP)执行河流Ⅲ类标准限值或超过Ⅲ类标准限值时,对应湖区ρ(TP)超标;入湖河流执行Ⅲ类及以上湖泊水质标准限值时,湖区水质可以达到Ⅲ类保护目标,但对入湖河流存在一定的过保护现象.因此,以满足现行湖泊水质达标为情景,以湖泊ρ(TP)、ρ(TN)各类别标准限值为目标,试算了入湖河流氮磷控制限值,提出了鄱阳湖入湖河流的氮磷控制限值建议方案,其中鄱阳湖湖体水质目标为Ⅲ类时,入湖河流ρ(TP)、ρ(TN)控制限值分别为0.075和1.20 mg/L,此时入湖河流氮磷控制限值方案既能保证湖泊水质达标,又不会造成对河流的水质控制过于严格.研究显示,基于湖泊水环境质量达标情况试算的入湖河流氮磷所需控制限值,建议可作为解决入湖氮磷污染控制问题的参考.

     

  • 图  1  鄱阳湖流域监测点位示意

    注:1—吴城修河;2—吴城赣江;3—昌邑;4—塔城;5—梅港;6—赵家湾;7—焦石坝;8—吴城:9—三山;10—老爷庙;11—都昌;12—蚌湖;13—金溪咀刘家;14—南湖村;15—南矶山;16—伍湖分场;17—白沙洲;18—康山;19—莲湖;20—梅溪咀;21—余干.下同.

    Figure  1.  Schematic diagram of monitoring points in Poyang Lake Basin

    图  2  BATHTUB模型验证期效果

    Figure  2.  Calibration effect of BATHTUB model

    图  3  鄱阳湖及入湖河流ρ(TP)和ρ(TN)空间分布

    Figure  3.  The spatial distribution of ρ(TP) and ρ(TN) of Poyang Lake and incoming rivers

    表  1  BATHTUB模型参数

    Table  1.   BATHTUB model parameters

    项目参数名称
    全局降雨量、蒸发量、水位变化、大气沉降外部负荷
    分段湖区表面积、平均深度、混合层深度、非藻类浊度以及
    监测水体中ρ(TP)、ρ(TN)、ρ(Chla)、SD
    支流支流流量、监测水体中ρ(TP)和ρ(TN)
    下载: 导出CSV

    表  2  BATHTUB模型模块选择及系数校正

    Table  2.   Coefficient correction and the selection of modules in BATHTUB model

    参数模型因子系数
    ρ(TP)01 Second-order Available-P0.3
    ρ(TN)01 Second-order Available-N0.3
    ρ(Chla)02 P, N, Low-Turbidity0.2
    SD01 Chla & Turbidity1.0
    下载: 导出CSV

    表  3  入湖河流执行现行河流标准限值时湖区ρ(TP)模拟结果

    Table  3.   Simulation results of ρ(TP) in lake area under river standard limits

    入湖河流鄱阳湖湖区
    执行河
    流标准
    ρ(TP)/
    (mg/L)
    模拟ρ(TP)/
    (mg/L)
    湖泊水
    质级别
    Ⅴ类0.40.160Ⅴ类
    Ⅳ类0.30.136Ⅴ类
    Ⅲ类0.20.104Ⅴ类
    Ⅱ类0.10.065Ⅳ类
    Ⅰ类0.020.018Ⅱ类
    注:Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类、Ⅴ类均为GB 3838—2002《地表水环境质量标准》水质等级.下同.
    下载: 导出CSV

    表  4  入湖河流执行现行湖泊标准限值时湖区ρ(TP)、ρ(TN)模拟结果

    Table  4.   Simulation results of ρ(TP) and ρ(TN) in lake area under lake standard limits

    入湖河流鄱阳湖湖区入湖河流鄱阳湖湖区
    执行湖
    泊标准
    ρ(TP)/
    (mg/L)
    模拟ρ(TP)/
    (mg/L)
    湖泊
    水质类别
    执行湖
    泊标准
    ρ(TN)/
    (mg/L)
    模拟ρ(TN)/
    (mg/L)
    湖泊
    水质类别
    Ⅴ类0.20.105Ⅳ类Ⅴ类2.01.45Ⅳ类
    Ⅳ类0.10.065Ⅳ类Ⅳ类1.51.15Ⅳ类
    Ⅲ类0.050.038Ⅲ类Ⅲ类1.00.82Ⅲ类
    Ⅱ类0.0250.021Ⅱ类Ⅱ类0.50.46Ⅱ类
    Ⅰ类0.010.010Ⅰ类Ⅰ类0.20.20Ⅰ类
    下载: 导出CSV

    表  5  依据湖泊不同保护类别试算的入湖河流ρ(TP)、ρ(TN)模拟结果

    Table  5.   Simulation results of ρ(TP) and ρ(TN) of inflow lakes based on different protection categories of lakes

    鄱阳湖湖区入湖河流鄱阳湖湖区入湖河流
    湖泊水质级别ρ(TP)/(mg/L)试算的ρ(TP)控制限值/(mg/L)湖泊水质级别ρ(TN)/(mg/L)试算的ρ(TN)控制限值/(mg/L)
    Ⅴ类0.20.40Ⅴ类2.03.10
    Ⅳ类0.10.20Ⅳ类1.52.10
    Ⅲ类0.050.075Ⅲ类1.01.20
    Ⅱ类0.0250.03Ⅱ类0.50.55
    Ⅰ类0.010.02Ⅰ类0.20.21
    下载: 导出CSV
  • [1] 唐国华, 林玉茹, 胡振鹏, 等.鄱阳湖区氮磷污染物分布、转移和削减特征[J].长江流域资源与环境, 2017, 26(9):1436-1445. doi: 10.11870/cjlyzyyhj201709016

    TANG Guohua, LIN Yuru, HU Zhenpeng, et al.Characteristics of distribution, transfer and subtraction of nitrogen and phosphorus contaminants in Poyang Lake[J].Resources and Environment in the Yangtze Basin, 2017, 26(9):1436-1445. doi: 10.11870/cjlyzyyhj201709016
    [2] 高桂青, 阮仁增, 欧阳球林.鄱阳湖水质状况及变化趋势分析[J].南昌工程学院学报, 2010, 29(4):50-53. doi: 10.3969/j.issn.1006-4869.2010.04.012

    GAO Guiqing, RUAN Renzeng, OUYANG Qiulin.Water quality status and changing trend in Poyang Lake[J].Journal of Nanchang Institute of Technology, 2010, 29(4):50-53. doi: 10.3969/j.issn.1006-4869.2010.04.012
    [3] 胡春华, 周文斌, 王毛兰, 等.鄱阳湖氮、磷营养盐变化特征及潜在性富营养化评价[J].湖泊科学, 2010, 22(5):723-728. http://d.old.wanfangdata.com.cn/Periodical/hpkx201005013

    HU Chunhua, ZHOU Wenbin, WANG Maolan, et al.Inorganic nitrogen and phosphate and potential eutrophication assessment in Lake Poyang[J].Journal of Lake Sciences, 2010, 22(5):723-728. http://d.old.wanfangdata.com.cn/Periodical/hpkx201005013
    [4] 黄冬凌, 倪兆奎, 赵爽, 等.基于湖泊与出入湖水质关联性研究:以鄱阳湖为例[J].环境科学, 2019, 40(10):4450-4460. http://d.old.wanfangdata.com.cn/Periodical/hjkx201910018

    HUANG Dongling, NI Zhaokui, ZHAO Shuang, et al.Correlation analysis of water quality between lake inflow and outflow:a case study of Poyang Lake[J].Environmental Science, 2019, 40(10):4450-4460. http://d.old.wanfangdata.com.cn/Periodical/hjkx201910018
    [5] 田泽斌, 王丽婧, 李小宝.洞庭湖出入湖污染物通量特征[J].环境科学研究, 2014, 27(9):1008-1014. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20140909&flag=1

    TIAN Zebin, WANG Lijing, LI Xiaobao, et al.Characteristics analysis of pollutant influx and outflux in Dongting Lake[J].Research of Environmental Sciences, 2014, 27(9):1008-1014. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20140909&flag=1
    [6] YAO Zhigang, BAO Zhengyu, ZHOU Lifa, et al.A statistical approach for determining the environment impact of surface sediments from the Dongting Lake Area, Central China[J].Chinese Journal of Geochemistry, 2009, 28:97-104. doi: 10.1007/s11631-009-0097-7
    [7] 杨澄宇, 代超, 伊璇, 等.基于正交设计及EFDC模型的湖泊流域总量控制:以滇池流域为例[J].中国环境科学, 2016, 36(12):3696-3702. doi: 10.3969/j.issn.1000-6923.2016.12.022

    YANG Chengyu, DAI Chao, YI Xuan, et al.Total emission control of water pollutant for the lake basin based on orthogonal experimental design and EFDC model:a case study of Dianchi Basin[J].China Environmental Science, 2016, 36(12):3696-3702. doi: 10.3969/j.issn.1000-6923.2016.12.022
    [8] ZHANG Ting, BAN Xuan, WANG Xuelei, et al.Analysis of nutrient transport and ecological response in Honghu Lake, China by using a mathematical model[J].Science of the Total Environment, 2017, 575:418-428. doi: 10.1016/j.scitotenv.2016.09.188
    [9] ZHU Changjun, LIANG Qinag, YAN Feng, et al.Reduction of waste water in Erhai Lake based on MIKE21 hydrodynamic and water quality model[J].Scientific World Journal, 2013, 5:1-9. https://www.hindawi.com/journals/tswj/2013/958506/tab4/
    [10] MOSTERT E.The European water frame work directive and water management research[J].Physics and Chemistry of the Earth, 2003, 28:523-527. doi: 10.1016/S1474-7065(03)00089-5
    [11] HENOCQE Y, ANDRAL B.The French approach to managing water resources in the Mediterranean and the new European water framework directive[J].Marine Pollution Bulletin, 2003, 49:155-161. https://www.sciencedirect.com/science/article/abs/pii/S0025326X02004137
    [12] 沈百鑫.德国湖泊治理的经验与启示(上)[J].水利发展研究, 2014, 14(5):72-79. doi: 10.3969/j.issn.1671-1408.2014.05.019
    [13] EFFLER S W, ODONNELL S M, MATTHEWS D A, et al. Limnological and loading information and a phosphorus Total Maximum Daily Load (TMDL) analysis for Onondaga Lake[J]. Lake & Reservoir Management, 2002, 18(2):87-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/07438140209354140
    [14] CANALE R P, HARRISON R, MOSKUS P, et al.Case study:reduction of total phosphorus loads to big latte Lake, MI through point source control and watershed management[J].Proceedings of the Water Environment Federation, 2004, 4:1060-1076. http://www.researchgate.net/publication/233605018_Case_Study_Reduction_of_Total_Phosphorus_Loads_to_Big_Platte_Lake_MI_Through_Point_Source_Control_and_Watershed_Management
    [15] CANALE R P, REDDER T, SWIECKI W, et al.Phosphorus budget and remediation plan for big Platte Lake, Michigan[J].Journal of Water Resources Planning & Management, 2010, 136(5):576-586. https://www.cabdirect.org/cabdirect/abstract/20103314355
    [16] HAVENS K E, SCHELSKE C L.The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs[J].Environmental Pollution, 2001, 113(1):1-9. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM11351756
    [17] EFFLER S W, ODONNELL S M, MATTHEWS D A, et al.Limnological and loading information and a phosphorus total maximum daily load (TMDL) analysis for Onondaga Lake[J].Lake & Reservoir Management, 2002, 18(2):87-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/07438140209354140
    [18] HAVENS K E, WALKER W W.Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA)[J].Lake and Reservoir Management, 2002, 18(3):227-238. doi: 10.1080/07438140209354151
    [19] 美国环境保护局.美国TMDL计划与典型案例实施[M].北京:中国环境科学出版社, 2012.
    [20] WANG S, HUGGINS D G, FREES L, et al.An integrated modeling approach to total watershed management:water quality and watershed assessment of Cheney Reservoir, Kansas, USA[J].Water Air and Soil Pollution, 2005:1-19. doi: 10.1007%2Fs11270-005-1658-y
    [21] KENNEDY R H.Application of the BATHTUB model to select-ed southeastern reservoirs[R].Mississippi: US Army Enginer Water-Ways Experiment Station Vicksburg Ms Environmental Lab, 1995.
    [22] FARHAD N, AMVROSSIOS C B, GEORGE E H, et al.Application of a steady-state nutrient model and inferences for load reduction strategy in two public water supply reservoirs in eastern Connecticut[J].Lake and Reservoir Management, 2007, 23:264-278. doi: 10.1080/07438140709354015
    [23] Wisconsin Department of Nature Resources.Phosphorus total maximum daily load (TMDL) for Half Moon Lake[R].Wisconsin: Wisconsin Department of Nature Resources, 2004.
    [24] US EPA.Total maximum daily load (TMDL) for phosphorus in Moon Lake Jefferson Country[R].New York: US EPA, 2007.
    [25] 石春力.滨海新区水资源综合管理的典型模型技术应用[D].天津: 南开大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10055-1013174913.htm
    [26] 许晨, 万荣荣, 马倩, 等.太湖西北部湖区入湖河流氮磷水质标准修正方案研究[J].长江流域资源与环境, 2017, 26(8):1180-1188. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201708008

    XU Chen, WAN Rongrong, MA Qian, et al.The research in the revised plan of water quality standard of the nitrogen and phosphorus for the inflow rivers in the northwest of the Taihu Lake[J].Resources and Environment in the Yangtze Basin, 2017, 26(8):1180-1188. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201708008
    [27] 余进祥, 刘娅菲, 钟小兰.鄱阳湖水环境承载力及主要污染源研究[J].江西农业学报, 2009, 21(3):90-93. doi: 10.3969/j.issn.1001-8581.2009.03.029

    YU Jinxiang, LIU Yafei, ZHONG Xiaolan.Study on water environment carrying capacity and main pollution sources of Poyang Lake[J].Acta Agriculturae Jiangxi, 2009, 21(3):90-93. doi: 10.3969/j.issn.1001-8581.2009.03.029
    [28] 陈军宁.基于SWAT模型的鄱阳湖区非点源污染模拟研究[D].南昌: 南昌大学, 2013. http://d.wanfangdata.com.cn/Thesis/Y2402914
    [29] WALKER W W.Simplified procedures for eutrophication assessment and prediction: user manual[R].Mississippi: US Army Corps of Engineers, 1999: 4-16.
    [30] 王绪鹏.BATHTUB水质模型及其应用研究[C]//中国环境科学学会.2009年中国环境科学学会学术年会论文集(第一卷).北京: 中国环境科学学会, 2009: 347-349.
    [31] 王绪鹏.水源地水质分析与预测方法及应用研究[D].天津: 南开大学, 2011. http://d.wanfangdata.com.cn/Thesis/Y2002791
    [32] 杜冰雪, 徐力刚, 张杰, 等.鄱阳湖富营养化时空变化特征及其与水位的关系[J].环境科学研究, 2019, 32(5):795-801. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190509&flag=1

    DU Bingxue, XU Ligang, ZHANG Jie, et al.The spatial-temporal characteristics of eutrophication in Poyang Lake and its relationship with the water level[J].Research of Environmental Sciences, 2019, 32(5):795-801. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190509&flag=1
    [33] TA G.UK environmental standards and conditions[EB/OL].London: UK Technical Advisory Group on the WFD, 2019-06-01[2020-02-05].http://www.wfduk.org/UK_Environmental_Standards.
    [34] 张红举.淀山湖环湖河流总磷入湖控制浓度分析[C]//中国环境科学学会.2010中国环境科学学会学术年会论文集(第三卷).北京: 中国环境科学学会, 2010: 77-81.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  881
  • HTML全文浏览量:  62
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-04
  • 修回日期:  2020-03-28
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回