Phytoplankton Succession Process in Xiangxi River under Different Light Intensity
-
摘要: 为丰富三峡水库浮游植物演替机制,为三峡水库“潮汐式”调度提供理论依据和基础数据,基于前期香溪河水华易发区现场监测结果,其水下光照强度变化范围为1 800~17 000 lx,据此开展不同梯度恒定光照条件下香溪河源水混合浮游植物群落演替过程的室内控制试验.结果表明:①按照R*法则和关键光强假说,在其他环境条件适宜的情况下,光照为4 500 lx时,香溪河源水中混合浮游植物的生物量和多样性最高.②CSR理论(Competitor-Stress Tolerator-Ruderals Theory)中的浮游植物环境适应机制及生长策略不能准确解释不同梯度恒定光照控制条件下浮游植物的演替规律.光照条件是影响浮游植物群落演替方向的关键要素,而演替方向由群落发生演替时的光照条件与该群落中藻种关键光强的匹配程度决定.③香溪河源水中混合藻种的不同梯度恒定光照控制试验结果显示,小球藻(Chlorella sp.)、衣藻(Chlamydomonas sp.)、栅藻(Scenedesmus sp.)、肾形藻(Nephrocytium sp.)、微囊藻(Microcystis sp.)、色球藻(Chroococcus sp.)、隐藻(Cryptomonas sp.)和小环藻(Cyclotella sp.)的最适光强分别为3 000、8 000、13 000、6 000、6 000、13 000、13 000和6 000 lx.研究显示,将光照控制在合适的阈值范围,有助于维持浮游植物的多样性,对水华防治具有重要意义.Abstract: In order to enrich the phytoplankton succession mechanism of the Three Gorges Reservoir and provide a theoretical basis and basic data for the 'tidal' operation of the Three Gorges Reservoir, based on early field monitoring results in the water bloom prone area of the Xiangxi River, underwater light intensity ranges from 1, 800 to 17, 000 lx, and combined with the field monitoring results, indoor control experiments on the succession process of mixed phytoplankton community in the source water of the Xiangxi River under different gradient and constant illumination conditions were carried out. The results showed that: (1) According to the R* rule and the key light intensity hypothesis, under other appropriate environmental conditions, the biomass and diversity of mixed phytoplankton in the source water of the Xiangxi River were the highest when the light was 4, 500 lx. (2) The mechanism and growth strategy of phytoplankton environmental adaptation in Competitor-Stress Tolerator-Ruderals Theory cannot accurately explain the rules of phytoplankton succession under different gradient constant illumination control conditions. The illumination condition was the key factor affecting the succession direction of the community, which was determined by the matching degree of the light condition and the key light intensity of the algae species in the community at that time. (3) The results of different gradient constant light control experiments of mixed algae species in the source water showed that the optimal light intensities for Chlorella sp., Chlamydomonas sp., Scenedesmus sp., Nephrocytium sp., Microcystis sp., Chroococcus sp., Cryptomonas sp. and Cyclotella sp. respectively were 3, 000, 8, 000, 13, 000, 6, 000, 6, 000, 13, 000, 13, 000 and 6, 000 lx. This study shows that controlling the light in the appropriate threshold range is helpful to maintain the diversity of phytoplankton and is important for preventing and controlling water blooms.
-
表 1 试验用藻种属及占比
Table 1. Species and proportion of algae for experiments
门类 属名 占比/% 小球藻属(Chlorella) 46.34 衣藻属(Chlamydomonas) 17.46 栅藻属(Scenedesmus) 4.77 纤维藻属(Ankistrodesmus) 0.70 绿梭藻属(Chlorogonium) 0.25 绿藻门 鼓藻属(Cosmarium) 1.33 肾形藻属(Nephrocytium) 1.30 新月藻属(Closterium) 0.10 月牙藻属(Selenastruwn) 0.01 顶棘藻属(Chodatella) 0.03 多突藻属(Polyedriopsis) 0.01 席藻属(Phormidium) 9.99 蓝藻门 微囊藻属(Microcystis) 9.64 色球藻属(Chroococcus) 5.49 硅藻门 小环藻属(Cyclotella) 1.76 隐藻门 隐藻属(Cryptomonas) 0.71 裸藻门 裸藻属(Euglena) 0.10 表 2 试验期间浮游植物群落演替序列
Table 2. Phytoplankton community succession sequence during the experiment
光照强度/lx 1 d (初始期) 4 d (延滞期) 7 d (对数增长期) 10 d (对数增长期) 13 d (稳定增长期) 0 小球藻(C型)、衣藻(C型) 小球藻(C型)、衣藻(C型)、微囊藻(S型)、席藻(R型) 小球藻(C型)、微囊藻(S型)、衣藻(C型) 小球藻(C型)、席藻(R型)、衣藻(C型) 小球藻(C型)、衣藻(C型)、席藻(R型) 1 500 小球藻(C型)、衣藻(C型) 小球藻(C型)、衣藻(C型) 衣藻(C型)、小球藻(C型) 衣藻(C型)、小球藻(C型) 衣藻(C型)、小球藻(C型) 3 000 小球藻(C型)、衣藻(C型) 小球藻(C型)、衣藻(C型) 衣藻(C型)、小球藻(C型)、色球藻(S型) 衣藻(C型)、肾形藻(R型) 衣藻(C型) 4 500 小球藻(C型)、衣藻(C型) 小球藻(C型)、衣藻(C型)、微囊藻(S型) 衣藻(C型)、小球藻(C型)、色球藻(S型) 衣藻(C型)、肾形藻(R型)、色球藻(S型) 衣藻(C型)、肾形藻(R型) 6 000 小球藻(C型)、衣藻(C型) 小球藻(C型)、微囊藻(S型)、衣藻(C型) 衣藻(C型)、小球藻(C型)、微囊藻(S型) 衣藻(C型)、色球藻(S型)、肾形藻(R型) 衣藻(C型)、肾形藻(R型)、微囊藻(S型) 8 000 小球藻(C型)、衣藻(C型) 小球藻(C型)、衣藻(C型)、微囊藻(S型) 衣藻(C型)、小球藻(C型)、微囊藻(S型)、隐藻(C型) 衣藻(C型)、微囊藻(S型)、色球藻(S型) 衣藻(C型)、栅藻(C型) 10 000 小球藻(C型)、衣藻(C型) 小球藻(C型)、衣藻(C型)、微囊藻(S型) 衣藻(C型)、小球藻(C型)、隐藻(C型) 衣藻(C型)、微囊藻(S型)、色球藻(S型) 衣藻(C型)、栅藻(C型) 13 000 小球藻(C型)、衣藻(C型) 小球藻(C型)、微囊藻(S型)、衣藻(C型)、色球藻(S型) 衣藻(C型)、小球藻(C型)、微囊藻(S型)、隐藻(C型) 衣藻(C型)、栅藻(C型)、色球藻(S型)、微囊藻(S型)、隐藻(C型) 衣藻(C型)、栅藻(C型)、隐藻(C型) -
[1] 郭劲松, 李哲, 方芳.三峡水库运行对其生态环境的影响与机制:典型支流澎溪河水环境变化研究[M].北京:科学出版社, 2017. [2] CUI Yujie, LIU Defu, ZHANG Jialei, et al.Diel migration of microcystis during an algal bloom event in the Three Gorges Reservoir, China[J].Environmental Earth Sciences, 2016, 75(7):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05c87f5973f85cb53ede4954f32aa350 [3] 周广杰, 况琪军, 胡征宇, 等.三峡库区四条支流藻类多样性评价及"水华"防治[J].中国环境科学, 2006, 26(3):337-341. doi: 10.3321/j.issn:1000-6923.2006.03.019ZHOU Guangjie, KUANG Qijun, HU Zhengyu, et al.Assessment of algal diversity and water blooms prevention in four tributaries of Three Gorges Reservoir[J].China Environmental Science, 2006, 26(3):337-341. doi: 10.3321/j.issn:1000-6923.2006.03.019 [4] YANG Zhengjian, CHENG Bao, XU Yaqian, et al.Stable isotopes in water indicate sources of nutrients that drive algal blooms in the tributary bay of a subtropical reservoir[J].Science of the Total Environment, 2018, 634(1):205-213. http://cn.bing.com/academic/profile?id=df16f097786c4c882163f532b60aaf55&encoded=0&v=paper_preview&mkt=zh-cn [5] 王晓彤, 罗光富, 操满, 等.库湾营养盐循环对三峡库区营养盐输运的影响:以草堂河为例[J].环境科学, 2016, 37(8):2957-2963. http://d.old.wanfangdata.com.cn/Periodical/hjkx201608017WANG Xiaotong, LUO Guangfu, CAO Man, et al.Effect of nutrient cycles in tributaries on the transport of nutrient in the Three Gorge Reservoirs:a case study of Caotang River[J].Environmental Science, 2016, 37(8):2957-2963. http://d.old.wanfangdata.com.cn/Periodical/hjkx201608017 [6] REYNOLDS C S.The ecology of phytoplankton[M]. Oxford:Cambridge University Press, 2006. [7] TILMAN D.Resources:a graphical-mechanistic approach to competition and predation[J].American Naturalist, 1980, 116(3):362-393. doi: 10.1086/283633 [8] TILMAN D, KILHAM S, KILHAM P.Phytoplankton community ecology:the role of limiting nutrients[J].Annual Review of Ecology Evolution and Systematics, 1982, 13(1):349-372. doi: 10.1146/annurev.es.13.110182.002025 [9] HUISMAN J, WEISSING F J.Light-limited growth and competition for light in well-mixed aquatic environments:an elementary model[J].Ecology, 1994, 75(2):507-520. doi: 10.2307-1939554/ [10] HUISMAN J, WEISSING F J.Competition for nutrients and light in a mixed water column:a theoretical analysis[J].American Naturalist, 1995, 146(4):536-564. doi: 10.1086/285814 [11] HUISMAN J, MATTHIJS H C P, VISSER P M, et al.Principles of the light-limited chemostat:theory and ecological applications[J].Antonie Van Leeuwenhoek, 2002, 81(1/2/3/4):117-133. http://cn.bing.com/academic/profile?id=6695ac2d8bc440f7f393f3c52178dca6&encoded=0&v=paper_preview&mkt=zh-cn [12] REYNOLDS C S, HUSZAR V, KRUK C, et al.Towards a functional classification of the freshwater phytoplankton[J].Journal of Plankton Research, 2002, 24(5):417-428. doi: 10.1093/plankt/24.5.417 [13] 张磊, 夏志强, 周伟, 等.三峡水库春季营养盐和浮游植物空间分布及其影响机制[J].环境科学研究, 2015, 28(7):1069-1077. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150708&flag=1ZHANG Lei, XIA Zhiqiang, ZHOU Wei, et al.spatial distribution of nutrient and phytoplankton and causes for their differences in Three Gorges Reservoir in spring[J].Research of Environmental Sciences, 2015, 28(7):1069-1077. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150708&flag=1 [14] YANG Zhengjian, LIU Defu, JI Daobing, et al.Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay[J].Science China:Technological Sciences, 2010, 53(4):1114-1125. doi: 10.1007/s11431-009-0387-7 [15] LIU Liu, LIU Defu, JOHNSON D M, et al.Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir:implications for management[J].Water Research, 2012, 46(7):2121-2130. doi: 10.1016/j.watres.2012.01.029 [16] XU Yaoyang, CAI Qinghua, YE Lin, et al.Asynchrony of spring phytoplankton response to temperature driver within a spatial heterogeneity bay of Three Gorges Reservoir, China[J].Limnologica-Ecology and Management of Inland Waters, 2011, 41(3):174-180. doi: 10.1016/j.limno.2010.10.004 [17] 张佳磊, 郑丙辉, 熊超军, 等.三峡大宁河水体光学特征及其对浮游植物生物量的影响[J].环境科学研究, 2014, 27(5):492-497. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20140506&flag=1ZHANG Jialei, ZHENG Binghui, XIONG Chaojun, et al.Optical characteristics of the Daning River in the Three Gorges and its impact on algal biomass[J].Research of Environmental Sciences, 2014, 27(5):492-497. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20140506&flag=1 [18] LITCHMAN E.Competition and coexistence of phytoplankton under fluctuating light:experiments with two cyanobacteria[J].Aquatic Microbial Ecology, 2003, 31(3):241-248. doi: 10.3354-ame031241/ [19] COLES J F, JONES R C.Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river[J].Journal of Phycology, 2000, 36(1):7-16. doi: 10.1046/j.1529-8817.2000.98219.x [20] XU Kui, JIANG Haibo, JUNEAU P, et al.Comparative studies on the photosynthetic responses of three freshwater phytoplankton species to temperature and light regimes[J].Journal of Applied Phycology, 2012, 24(5):1113-1122. doi: 10.1007/s10811-011-9741-9 [21] 张琪, 袁轶君, 米武娟, 等.三峡水库香溪河初级生产力及其影响因素分析[J].湖泊科学, 2015, 27(3):436-444. http://d.old.wanfangdata.com.cn/Periodical/hpkx201503010ZHANG Qi, YUAN Yijun, MI Wujuan, et al.Primary production and its influencing factors in Xiangxi River, Three-Gorges Reservoir[J].Journal of Lake Sciences, 2015, 27(3):436-444. http://d.old.wanfangdata.com.cn/Periodical/hpkx201503010 [22] 张欢.香溪河藻类生长分布特征及其影响因素[D].武汉: 湖北工业大学, 2018. [23] 田泽斌, 刘德富, 杨正健, 等.三峡水库香溪河库湾夏季蓝藻水华成因研究[J].中国环境科学, 2012, 32(11):2083-2089. doi: 10.3969/j.issn.1000-6923.2012.11.023TIAN Zebin, LIU Defu, YANG Zhengjian, et al.Cyanobacterial bloom in Xiangxi Bay, Three Gorges Reservoir.[J].China Environmental Science, 2012, 32(11):2083-2089. doi: 10.3969/j.issn.1000-6923.2012.11.023 [24] 胡鸿钧, 魏印心.中国淡水藻类:系统、分类及生态[M].北京:科学出版社, 2006. [25] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社, 2002. [26] 杨霞, 刘德富, 杨正健.三峡水库香溪河库湾春季水华暴发藻类种源研究[J].生态环境学报, 2009, 18(6):2051-2056. doi: 10.3969/j.issn.1674-5906.2009.06.008YANG Xia, LIU Defu, YANG Zhengjian.The origin of algae in the spring phytoplankon bloom in Xiangxi Bay[J].Ecology and Environmental Sciences, 2009, 18(6):2051-2056. doi: 10.3969/j.issn.1674-5906.2009.06.008 [27] 杨苏文, 金相灿, 姜霞.铜绿微囊藻、四尾栅藻和小环藻竞争实验培养基的选择[J].生态环境, 2006, 15(1):129-133. doi: 10.3969/j.issn.1674-5906.2006.01.028YANG Suwen, JIN Xiangcan, JIANG Xia.Medium option for Microcystis aeruginosa, Scenedesmus quadricauda and Cyclotella in competiton experimentations[J].Ecological and Environment, 2006, 15(1):129-133. doi: 10.3969/j.issn.1674-5906.2006.01.028 [28] 贡丹丹, 刘德富, 张佳磊, 等.周期性的温度扰动对浮游植物群落结构演替的影响[J].环境科学, 2016, 37(6):2149-2157.GONG Dandan, LIU Defu, ZHANG Jialei, et al.Influence of periodic temperature disturbance on the succession of algal community structure[J].Environmental Science, 2016, 37(6):2149-2157. [29] 贡丹丹.不同光照扰动条件对浮游植物的影响规律研究[D].宜昌: 三峡大学, 2017. [30] 严广寒.脉冲式添加营养盐对藻类群落结构的影响[D].宜昌: 三峡大学, 2018. [31] 金相灿, 杨苏文, 姜霞.非稳态条件下藻类种间非生物资源竞争理论及研究进展[J].生态环境, 2007, 16(2):632-638. doi: 10.3969/j.issn.1674-5906.2007.02.072JIN Xiangcan, YANG Suwen, JIANG Xia.Theory and test of algae competition among species for resources under non-steady-state:a review[J].Ecology and Environment, 2007, 16(2):632-638. doi: 10.3969/j.issn.1674-5906.2007.02.072 [32] HUBBLE D S, HARPER D M.Phytoplankton community structure and succession in the water column of Lake Naivasha, Kenya:a shallow tropical lake[J].Hydrobiologia, 2002, 488(1/2/3):89-98. http://cn.bing.com/academic/profile?id=6c8964edc193f9869b5d40ff1d06d6cf&encoded=0&v=paper_preview&mkt=zh-cn [33] REYNOLDS C S.Scales of disturbance and their role in plankton ecology[J].Hydrobiologia, 1993, 249(1/2/3):157-171. http://cn.bing.com/academic/profile?id=e56dd83c19e418c4308847e3e7718fdc&encoded=0&v=paper_preview&mkt=zh-cn [34] PADISAK J, CROSSETTI L O, NASELLI-FLORES L.Use and misuse in the application of the phytoplankton functional classification:a critical review with updates[J].Hydrobiologia, 2009, 621(1):1-19. doi: 10.1007/s10750-008-9645-0 [35] FRANGOPULOS M, GUISAUDE C, DEBLAS E, et al.Toxin production and competitive abilities under phosphorus limitation of Alexandrium species[J].Harmful Algae, 2004, 3(2):131-139. doi: 10.1016/S1568-9883(03)00061-1 [36] MARGALEF D R.Information theory in ecology[J].General Systems, 1958, 3(1):36-71. http://d.old.wanfangdata.com.cn/Periodical/tsqbgz201222021 [37] 马克平, 刘玉明.生物群落多样性的测度方法:α多样性的测度方法(下)[J].生物多样性, 1994, 2(4):231-239. doi: 10.3321/j.issn:1005-0094.1994.04.009 [38] LEWIS W M.Analysis of succession in a tropical phytoplankton community and a new measure of succession rate[J].American Naturalist, 1978, 112(984):401-414. doi: 10.1086/283282 [39] XUE Shengzhang, SU Zhenfeng, CONG Wei.Growth of Spirulina platensis enhancedunder intermittent illumination[J].Journal of Biotechnology, 2010, 151(3):271-277. doi: 10.1016/j.jbiotec.2010.12.012 [40] ZHANG Min, DUAN Hongtao, SHI Xiaoli, et al.Contributions of meteorology to the phenology of cyanobacterial blooms:implications for future climate change[J].Water Research, 2012, 46(2):442-452. http://cn.bing.com/academic/profile?id=57b6d93345f1c81359795db5a6f39607&encoded=0&v=paper_preview&mkt=zh-cn [41] LITCHMAN E, KLAUSMEIER C A.Competition of phytoplankton under fluctuating light[J].American Naturalist, 2001, 157(2):170-187. doi: 10.1086/318628 [42] ZNACHOR P, VISOCKA V, NEDOMA J, et al.Spatial heterogeneity of diatom silicification and growth in a eutrophic reservoir[J].Freshwater Biology, 2013, 58(9):1889-1902. doi: 10.1111/fwb.12178 [43] BRUNET C, CONVERSANO F, MARGIOTTA F, et al.Role of light and photophysiological properties on phytoplankton succession during the spring bloom in the north-western Mediterranean Sea[J].Advances in Oceanography and Limnology, 2013, 4(1):1-19. doi: 10.4081/aiol.2013.5334 [44] HARPER D.Eutrophication of freshwaters:principles, problems and restoration[J].Reviews in Fish Biology and Fisheries, 1993, 3(4):376-377. doi: 10.1007/BF00043389 [45] WENG Huanxin, QIN Yachao, SUN Xiangwei, et al.Effects of light intensity on the growth of Cryptomonas sp.(Cryptophyceae)[J].Environmental Geology, 2009, 57(1):9-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b59260ca320145a270c1182ede5b5d7d [46] IHNKEN S, EGGERT A, BEARDALL J.Exposure times in rapid light curves affect photosynthetic parameters in algae[J].Aquatic Botany, 2010, 93(3):185-194. doi: 10.1016/j.aquabot.2010.07.002 [47] 严广寒, 刘德富, 张佳磊, 等.不同光照条件对浮游植物生物量与多样性的影响[J].水生态学杂志, 2018, 39(1):37-43. http://d.old.wanfangdata.com.cn/Periodical/sstxzz201801006YAN Guanghan, LIU Defu, ZHANG Jialei, et al.Effects of illumination intensity on phytoplankton community biomass and diversity[J].Journal of Hydroecology, 2018, 39(1):37-43. http://d.old.wanfangdata.com.cn/Periodical/sstxzz201801006 [48] 严佳琦, 黄旭雄, 陶妍, 等.五种淡水微藻的适宜培养温度和光照强度[J].生态学杂志, 2012, 31(5):1104-1110. http://d.old.wanfangdata.com.cn/Periodical/stxzz201205010YAN Jiaqi, HUANG Xuxiong, TAO Yan, et al.Suitable temperature and light intensity for culturing five species of freshwater microalgae[J].Chinese Journal of Ecology, 2012, 31(5):1104-1110. http://d.old.wanfangdata.com.cn/Periodical/stxzz201205010 [49] 宋正光, 高磊, 范婧, 等.环境因子对汾河水上公园再生水中藻类生长的影响[J].环境工程学报, 2013, 7(10):3997-4003. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201310051SONG Zhengguang, GAO Lei, FAN Jing, et al.Effects of environmental factors on algal growth in Fenhe water park[J].Chinese Journal of Environmental Engineering, 2013, 7(10):3997-4003. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201310051 [50] 宋菲菲, 胡小贞, 金相灿, 等.国外不同类型湖泊治理思路分析与启示[J].环境工程技术学报, 2013, 3(2):156-162. doi: 10.3969/j.issn.1674-991X.2013.02.025SONG Feifei, HU Xiaozhen, JIN Xiangcan, et al.Analysis of lake management strategies of different types of lakes abroad and enlightenments for China[J].Journal of Environmental Engineering Technology, 2013, 3(2):156-162. doi: 10.3969/j.issn.1674-991X.2013.02.025 [51] 孙扬才, 陈雪初, 孔海南, 等.长江口边滩水库藻类增殖潜力及遮光控藻研究[J].环境污染与防治, 2007(11):805-808. doi: 10.3969/j.issn.1001-3865.2007.11.002SUN Yangcai, CHEN Xuechu, KONG Hainan, et al.Algae growth potential of Changjiang estuary reservoirs and effectiveness of light shading for algae control[J].Environmental Pollution & Control, 2007(11):805-808. doi: 10.3969/j.issn.1001-3865.2007.11.002 [52] 陈雪初, 孙扬才, 张海春, 等.遮光法控藻的中试研究[J].环境科学学报, 2007, 27(11):1830-1834. doi: 10.3321/j.issn:0253-2468.2007.11.013CHEN Xuechu, SUN Yangcai, ZHANG Haichun, et al.Pilot scale alga control by light shading[J].Acta Scientiae Circam Stantiae, 2007, 27(11):1830-1834. doi: 10.3321/j.issn:0253-2468.2007.11.013 [53] 啜明英, 马骏, 杨正健, 等.整流幕在防控水库水华中的应用研究综述[J].长江科学院院报, 2018, 35(10):15-20. doi: 10.11988/ckyyb.20170509CHUO Mingying, MA Jun, YANG Zhengjian, et al.Review on the application of curtain weirs to controlling algal blooms of reservoirs[J].Journal of Yangtze River Scientific Research Institute, 2018, 35(10):15-20. doi: 10.11988/ckyyb.20170509 [54] 啜明英, 马骏, 刘德富, 等.整流幕对香溪河库湾水温特性影响数值模拟[J].长江流域资源与环境, 2018, 27(9):2101-2113. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201809020CHUO Mingying, MA Jun, LIU Defu, et al.Numerical simulation of the influence of curtain weirs on characteristics of water temperature in Xiangxi Bay[J].Resources and Environment in the Yangtze Basin, 2018, 27(9):2101-2113. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201809020 -