Analysis on Alteration of Water Quality and Pollutant Fluxes in the Yangtze Mainstem during Recently 18 Years
-
摘要: 长江是我国第一大河,2000年以来长江流域水环境形势发生了巨大变化,长江水质现状及其变化和原因备受关注.采用水质、水量、污染物通量、污染负荷等多要素综合分析方法,研究了近18年长江干流水质和污染物通量的时空分布、变化趋势及原因.结果表明:①宜宾以下长江干流总磷浓度高于金沙江;从源区至入海口,长江干流氨氮浓度总体呈沿程上升趋势.②2011—2013年是长江干流水质重要转折期.2003—2010年,长江下游江段氨氮浓度总体呈明显上升趋势,2013—2018年大幅下降,下降约65%;2012—2018年,长江干流大部分江段总磷浓度呈明显下降趋势,其中上游下降最大,为45%~60%;2003—2018年,长江干流高锰酸盐指数、重金属和石油类污染均明显减轻.③2000年以来,长江水量未有明显增大或减小趋势,但输沙量大幅下降.总磷年通量与年径流量密切相关,年内丰水期总磷通量较高.2001—2006年宜昌断面、汉口37码头断面氨氮年通量大幅下降;2013—2018年,大通断面氨氮年通量呈明显下降趋势.④2018年,大通断面总磷、氨氮年通量分别约为9.37×104和21.47×104 t.总磷汇入量中游强于下游,氨氮汇入量下游强于中游.上游向下游磷的输送由21世纪初以颗粒态为主转变为2017—2018年以溶解态为主.⑤长江下游江段氨氮浓度和大通断面氨氮年通量的显著下降,以及长江整体石油类超标率大幅下降均主要归因于水污染防治;长江干流大部分江段总磷的明显下降主要归因于随泥沙汇入水体磷的减少,以及长江流域水污染防治.研究显示,近18年来长江干流污染物浓度、时空特征、输送形态发生了巨大变化.Abstract: The Yangtze River is the largest river in China. Since 2000, great changes have taken place in the water environment of the Yangtze River Basin. The changes in the water quality of the Yangtze River and its causes have attracted widespread concern. Therefore, the status and trends of water quality and pollutant flux in the mainstem of the Yangtze River in recently 18 years were analyzed, and results indicate: (1) The concentration of total phosphorus (TP) in the reach downstream from Yibin was higher than that in the Jinsha River, and the ammonia nitrogen concentration showed an upward trend from the source area to the estuary. (2) Ammonia nitrogen concentration in the lower reach increased significantly during 2003-2013, then decreased by 65% during 2013-2018. Since 2013, the concentration of TP in the mainstem has declined significantly, especially in the upper mainstem with the reduction of 45%-60%. From 2003 to 2018, Permanganate Index, the concentration of heavy metals and petroleum in the mainstem were greatly reduced. (3) Since 2000, there has been no significant increase or decrease in the water volume of the Yangtze River, but the sediment transported has decreased greatly. The annual flux of total phosphorus is closely related to the annual runoff, and the flux in wet season is larger than that in other seasons. From 2001 to 2006, the annual ammonia nitrogen fluxes in Yichang section and No.37 Hankou Port section decreased significantly, and from 2013 to 2018, the annual ammonia nitrogen flux at Datong section decreased significantly. (4) The TP flux and ammonia nitrogen flux in Datong section were 9.37×104 and 21.47×104 t, respectively, in 2018. Phosphorus inflow in the middle reach was stronger than that in the lower reach, and the ammonia nitrogen inflow in the lower reach was stronger than that in the middle reach. The main transport form of phosphorus from upstream to downstream has changed from the granular state at the beginning of this century to the dissolved state at present. (5) Significant decrease of ammonia nitrogen concentration in the lower reach and declination of standard-exceeding rate of petroleum in the mainstem are mainly due to water pollution control; the significant decrease of TP, permanganate index in the mainstem are mainly due to the reduction of sediment entering the water and water pollution control. The results show that the concentration, temporal and spatial characteristics and transport patterns of pollutants in the mainstem of the Yangtze River have changed dramatically in the past 18 years.
-
图 1 长江干流水质趋势分析断面示意
监测断面:1—攀枝花;2—宜宾;3—朱沱;4—寸滩;5—万州沱口;6—官渡口;7—太平溪;8—宜昌;9—沙市五七码头;10—汉口37码头;11—黄石西塞山;12—九江化工厂下游;13—大通;14—南京化工厂下游;15—镇江青龙山;16—徐六泾.
注:宜宾以上为金沙江,以下为长江.第一个断面(攀枝花)距长江起点约2 700 km,距上海南汇嘴约3 530 km.Figure 1. Schematic map for monitoring sections for water quality trend in the mainstem of Yangtze River
图 4 2003—2018年长江干流不同江段氨氮浓度年际变化
注:攀枝花至江津江段包含攀枝花、宜宾、朱沱断面; 江津至三峡大坝江段包含寸滩、沱口、官渡口、太平溪断面; 三峡大坝至武穴江段包含宜昌、沙市五七码头、汉口37码头、黄石西塞山断面; 武穴至入海口江段包含九江化工厂下游、大通、南京化工厂下游、镇江青龙山、徐六泾断面.
Figure 4. Interannual variation of ammonia nitrogen concentrations in different reaches in the mainstem of Yangtze River from 2003 to 2018
表 1 2001—2018年宜昌、汉口37码头、大通3断面年径流量和污染物年通量特征值
Table 1. Characteristic values of annual runoff and pollutant fluxes at Yichang, No.37 Hankou Port and Datong sections from 2001 to 2018
项目 宜昌断面 汉口37码头断面 大通断面 数值 年份 数值 年份 数值 年份 平均值 4 086 — 6 836 — 8 652 — 年径流量/
(108 m3)最小值 2 848 2006 5 341 2006 6 671 2011 最大值 4 738 2018 7 687 2002 10 450 2016 ] 平均值 4.289 — 8.122 — 10.45 — 总磷年通量/
(104 t)最小值 2.063 2006 5.229 2001 5.51 2006 最大值 6.272 2012 10.880 2016 13.89 2016 平均值 5.260 — 6.254 — 29.77 — 氨氮年通量/
(104 t)最小值 3.405 2011 3.129 2018 17.02 2017 最大值 12.18 2001 19.790 2004 50.27 2010 表 2 不同时期长江流域水污染防治和水土流失控制及具有拦沙作用的水电工程情况
Table 2. Prevention and control of water pollution and soil erosion and hydropower projects with trapping sands in different periods in the Yangtze River Basir
时期 水污染防治 水土流失治理 拦沙作用水电工程 “九五”期间
(1995—2000年)1996年第1次修订《水污染防治法》,将重点流域污染防治纳入法律. 1996年《国务院关于环境保护若干问题的决定》提出“一控双达标”.淮河水污染事件的出现促进了全国对水环境保护的认识和重视 1980年调查结果表明,长江流域水土流失面积为62.2 km2; 1990年调查结果表明,长江流域水土流失面积为53.1×104 km2[31] “十五”期间
(2001—2005年)“十五”期间进入废污水排放迅速增长期,根据“九五”和“十五”计划的实施情况评估发现, 两期计划的水质目标过于超前, 对水污染状况的治理难度评估不足,虽然制定了COD、氨氮总量消减目标,但效果有限[30] 截至2005年,长江流域累计治理水土流失面积28.4×104 km2[31] 2003年三峡工程蓄水成库 “十一五”期间
(2006—2010年)“十一五”期间水污染防治规划首次明确了“五到省”原则,即“规划到省、任务到省、目标到省、项目到省、责任到省”,依据《水污染防治法》地方政府对当地水环境质量负责,突出水污染防治地方政府责任;COD正式纳入总量控制约束性指标.做到了既有总量控制,又有制度保障[30] “十二五”期间
(2011—2015年)水环境保护力度大为加强.建立了流域—控制区—控制单元的三级分区体系;采用水污染物总量控制和水质改善双约束指标体系,强化了考核.流域废污水治理投资从2010年的77×108元增至2015年的196×108元,污水处理厂数量增加了近2倍.氨氮正式纳入总量控制约束性指标.较好地完成了COD、氨氮总量控制目标[30] 2013年公布水土流失面积38.46×104 km2; 2006—2015年长江流域累计治理水土流失面积14.73×104 km2[32] 2012年向家坝水电站建蓄水成库; 2013年溪洛渡水电站蓄水成库 “十三五”期间
(2016—2018年)长江流域水生态环境保护向纵深发展;长江“共抓大保护,不搞大开发”深入人心;“河湖长制”落地生根;实施“长江水污染防治攻坚战”“长江生态修复攻坚战”.由“以总量控制为核心”转变为“以总量控制和质量改善为核心”.建立现代化水环境治理体系,逐步形成“大环保”格局 2018年水土流失面积34.67×104 km2[33] -
[1] 水利部长江水利委员会.长江流域地图集[M].北京:中国地图出版社, 1999:239-240. [2] 李保, 张昀哲.长江近十年水质时空演变趋势分析[J].人民长江, 2018, 49(18):33-37. http://d.old.wanfangdata.com.cn/Periodical/rmcj201818008LI Bao, ZHANG Yunzhe.Analysis on spatial-temporal evolution trend of water quality of Yangtze River Estuary in recent ten years[J].Yangtze River, 2018, 49(18):33-37. http://d.old.wanfangdata.com.cn/Periodical/rmcj201818008 [3] 王佳宁, 徐顺青, 武娟妮, 等.长江流域主要污染物总量减排及水质响应的时空特征研究[J].安全与环境学报, 2019, 19(3):1065-1074. http://www.cqvip.com/QK/83738X/20193/7002434819.htmlWANG Jianing, XU Shunqing, WU Juanni, et al.Ontempora-spatial features for reduced pollutant exhaust emission of Yangtze River Basin[J].Journal of Safety and Environment, 2019, 19(3):1065-1074. http://www.cqvip.com/QK/83738X/20193/7002434819.html [4] 陈进, 刘志明.近年来长江水功能区水质达标情况分析[J], 长江科学院院报, 2019, 36(1):1-6. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201901001CHEN Jin, LIU Zhiming.Standard-reaching rate of water quality in water function regions in Changjiang River Basin in recent years[J].Journal of Yangtze River Scientific Research Institute, 2019, 36(1):1-6. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201901001 [5] 王丛丹, 冷阳, 严林浩, 等.三峡水库蓄水前后长江枝城至沙市段水质评价[J].水利水电快报, 2016, 37(11):23-34. http://d.old.wanfangdata.com.cn/Periodical/slsdkb201611008WANG Congdan, LENG Yang, YAN Linhao, et al.Water quality assessment of reach during Zhicheng and Shashi before and after impoundment of Three Gorges Reservoir[J].Express Water Resources & Hydropower Information, 2016, 37(11):23-34. http://d.old.wanfangdata.com.cn/Periodical/slsdkb201611008 [6] 龚清莲, 刘颖, 汤冰冰.长江宜宾段水质时空分布特征分析[J].环境科学与技术, 2016, 39(3):111-116.GONG Qinglian, LIU Ying, TANG Bingbing.Temporal and spatial distribution characteristics of water quality in Yibin Section of the Yangtze River[J].Environmental Science & Technology (China), 2016, 39(3):111-116. [7] 姚家芬, 姚青梅, 王俊.长江荆州段水质变化趋势分析[J].水生态学杂志, 2015, 36(4):50-55. http://d.old.wanfangdata.com.cn/Periodical/sstxzz201504007YAO Jiafen, YAO Qingmei, WANG Jun.Water quality trends in the Jingzhou Section of the Yangtze River[J].Journal of Water Ecology, 2015, 36(4):50-55. http://d.old.wanfangdata.com.cn/Periodical/sstxzz201504007 [8] LI Zhe, MA Jianrong, GUO Jinsong, et al.Water quality trends in the Three Gorges Reservoir region before and after impoundment (1992-2016)[J].Ecohydrology & Hydrobiology, 2019, 19:317-327. http://www.researchgate.net/publication/327235782_Water_quality_trends_in_the_Three_Gorges_Reservoir_region_before_and_after_impoundment_1992-2016/download [9] HUANG Zhuo, LIU Yuexiao, ZHAO Weihua, et al.Discussion on recent spatial-temporal distribution of water quality in Changjiang River source area[J].Journal of Yangtze River Scientific Research Institute, 2016, 33(7):46-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201607009 [10] QU Bin, MIKA S, ZHANG Yulan, et al.Water chemistry of the headwaters of the Yangtze River[J].Environmental Earth Sciences, 2015, 74(8):6443-6458. doi: 10.1007/s12665-015-4174-4 [11] 国家环境保护总局, 国家质量监督检验检疫总局.GB 3838-2002地表水环境质量标准[S].北京: 国家环境保护总局, 2002. [12] 国家环境保护总局.GB 3838-1988地面水环境质量标准[S].北京: 国家环境保护总局, 1988. [13] 娄保锋, 朱圣清.GB 3838-2002实施前后水质参数可比性研究[J].人民长江, 2008, 39(23):127-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rmcj200823042LOU Baofeng, ZHU Shengqing.Effect of GB 3838-2002 execution on measured values of water quality parameters[J].Yangtze River, 2008, 39(23):127-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rmcj200823042 [14] 郝晨林, 邓义祥, 汪永辉, 等.河流污染物通量估算方法筛选及误差分析[J].环境科学学报, 2012, 32(7):1670-1676. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201207018HAO Chenlin, DENG Yixiang, WANG Yonghui, et al.Study on the selection and error analysis of riverine pollutant flux estimation methods[J].Acta Scientiae Circumstantia, 2012, 32(7):1670-1676. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201207018 [15] US Environmental Protection Agency.Quality criteria for water 1986[S].Washington DC: Office of Water Regulations and Standards, 1985. [16] SMITH R A, ALEXANDER R B, SCHWARZ G E.Natural background concentrations of nutrients in streams and rivers of the coterminous United States[J].Environmental Science & Technology, 2003, 37:3039-3047. [17] DODDS W K, WELCH E B.Establishing nutrient criteria in streams[J].Journal of the North American Benthological Society, 2000, 19(1):186-196. doi: 10.2307/1468291 [18] 王俊, 汪金成, 徐剑秋, 等.2018年汉江中下游水华成因分析与治理对策[J].人民长江, 2018, 39(17):7-11. http://d.old.wanfangdata.com.cn/Periodical/rmcj201817002WANG Jun, WANG Jincheng, XU Jianqiu, et al.Causes and anaysis of water problem in middle and lower reaches of Hanjiang River in 2018 and its contermeasures[J].Yangtze River, 2018, 39(17):7-11. http://d.old.wanfangdata.com.cn/Periodical/rmcj201817002 [19] 水利部.中国河流泥沙公报(2002)[R].北京: 水利部, 2003: 6-7. [20] 娄保锋, 臧小平, 洪一平, 等.水样不同处理方式对总磷监测值的影响[J].环境科学学报, 2006, 26(8):1393-1399. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb200608026LOU Baofeng, ZANG Xiaoping, HONG Yiping, et al.The effect of sample pretreatment on determination of total phosphorus in water[J].Acta Scientiae Circumstantia, 2006, 26(8):1393-1399. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb200608026 [21] US Environmental Protection Agency.Hypoxia in the northern Gulf of Mexico, an update by the EPA Science Advisory Board[M].Washington DC:EPA Science Advisory Board, 2007:101-102. [22] 徐慧娟, 黎育红, 孙燕.长江宜昌水文站流量、含沙量和悬移质粒度关系[J].长江流域资源与环境, 2006, 15(S1):110-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25791882XU Huijuan, LI Yuhong, SUN Yan.On the relationship of the water discharge, sediment concentration and suspended sediment size at Yichang hydrological station of the Yangtze River[J].Resources and Environment in the Yangtze Basin, 2006, 15(S1):110-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25791882 [23] 曹承进, 秦延文, 郑丙辉, 等.三峡水库主要河流磷营养盐特征及其来源分[J].环境科学, 2008, 29(2):310-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200802007CAO Chengjin, QIN Yanwen, ZHENG Binghui, et al.Analysis of phosphorus distribution characters and their sources of the major input rivers of Three Gorges Reservoir[J].Environmental Science, 2008, 29(2):310-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200802007 [24] 张瑞, 汪亚平, 潘少明.近50年来长江入河口区含沙量和输沙量的变化趋势[J].长江流域资源与环境, 2008, 27(2):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hytb200802001ZHANG Rui, WANG Yaping, PAN Shaoming.Variations of suspended sediment concentrations and loads into the estuary area from Yangtze Riverin recent 50 years[J].Resources and Environment in the Yangtze Basin, 2008, 27(2):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hytb200802001 [25] 罗以生, 吕平毓, 陈虎.长江、嘉陵江重庆主城区段悬浮泥沙与总磷浓度相关性分析[J].三峡环境与生态, 2012, 34(6):14-16. http://d.old.wanfangdata.com.cn/Periodical/sxhjyst201206005LUO Yisheng, LV Pingyu, CHEN Hu.Analysis for correlation between suspended sand and total phosphorus in Chongqing urban sections of Yangtze River and Jialing River[J].Environment and Ecology in the Three Gorges, 2012, 34(6):14-16. http://d.old.wanfangdata.com.cn/Periodical/sxhjyst201206005 [26] 刘尚武, 张小峰, 吕平毓, 等.金沙江下游梯级水库对氮、磷营养盐的滞留效应[J].湖泊科学, 2019, 31(3):656-666. http://d.old.wanfangdata.com.cn/Periodical/hpkx201903005LIU Shangwu, ZHANG Xiaofeng, LV Pingyu, et al.Effects of cascade reservoir in the lower reaches of Jinsha River on nitrogen and phosphorus retention[J].Journal of Lake Sciences, 2019, 31(3):656-666. http://d.old.wanfangdata.com.cn/Periodical/hpkx201903005 [27] ARIAS C A, BUBBA M D, BRIX H.Phosphorus removal by sands for use as media in subsurface flow constructed reed beds[J].Water Research, 2001, 35(5):1159-1168. http://www.sciencedirect.com/science/article/pii/S0043135400003687 [28] 娄保锋, 陈永柏, 翁立达, 等.水样不同处理方式对高锰酸钾指数测定值的影响[J].长江流域资源与环境, 2008, 17(1):143-147.LOU Baofeng, CHEN Yongbai, WENG Lida, et al.Effect of sample pretreatment on determination of permanganate index in water[J].Resources and Environment in the Yangtze Basin, 2008, 17(1):143-147. [29] MURRAY K S, CAUVET, D, MARK L Y, et al.Particle size and chemical control of heavy metals in bed sediment from the Rouge River, south-east Michigan[J].Environmental Science & Technology, 1999, 33:987-992. http://www.researchgate.net/publication/255799356_Particle_size_and_chemical_control_of_heavy_metals_in_bed_sediment_from_the_Rouge_River_southeast_Michigan [30] 王金南, 蒋春来, 张文静.关于"十三五"污染物排放总量控制制度改革的思考[J].环境保护, 2015, 43(21):21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbh201521004WANG Jinnan, JIANG Chunlai, ZHANG Wenjing.Reform on China's total emission control in the '13th Five-Years Plan'[J].Environmental Protection, 2015, 43(21):21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbh201521004 [31] 水利部长江水利委员会.长江流域水土保持公报(2007年)[R].武汉: 水利部长江水利委员会, 2007: 2-3. [32] 水利部长江水利委员会.长江流域水土保持公报(2006-2015)[R].武汉: 水利部长江水利委员会. [33] 水利部长江水利委员会.长江流域水土保持公报(2018年)[R].武汉: 水利部长江水利委员会, 2019: 3-4. [34] DUAN S W, LIANG T, ZHANG S, et al.Seasonal changes in nitrogen and phosphorus transport in the lower Changjiang River before the construction of the Three Gorges Dam[J].Estuarine, Coastal and Shelf Science, 2008, 79:239-250. doi: 10.1016-j.ecss.2008.04.002/ [35] LOU Baofeng, YIN Shiyong.Spatial and seasonal distribution of phosphorus in the mainstem within the Three Gorges Reservoir before and after impoundment[J].Water Science and Technology, 2016, 73(3):636-642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcc817a622e578b59fdba3aac202fe75 [36] 朱玲玲, 董先勇, 陈泽方.金沙江下游梯级水库淤积及其对三峡水库影响研究[J].长江科学院院报, 2017, 34(3):1-7. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201703001ZHU Lingling, DONG Xianyong, CHEN Zefang.Sediment deposition of cascade reservoirs in the lower jinsha river and its impact on Three Gorges Reservoir[J].Journal of Yangtze River Scientific Research Institute, 2017, 34(3):1-7. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201703001 [37] ZHOU J, ZHANG M, LU P.The effect of dams on phosphorus in the middle and lower Yangtze River[J].Water Resources Research, 2013, 49(6):3659-3669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/wrcr.20283 [38] US Environmental Protection Agency.Consolidated assessment and listing methodology toward a compendium of best practices[M].Washington DC:Office of Wetlands, Oceans, and Watersheds, 2002:32-34. [39] 张慧, 高吉喜, 乔亚军.长江经济带生态环境形势和问题及建议[J].环境与可持续发展, 2019, 44(5):28-32. http://d.old.wanfangdata.com.cn/Periodical/hjkxdt201905007ZHANG Hui, GAO Jixi, QIAO Yajun.Current situation problems and suggestions on ecology and environment in the Yangtze River Belt[J].Environment and Sustainable Development, 2019, 44(5):28-32. http://d.old.wanfangdata.com.cn/Periodical/hjkxdt201905007 [40] US Environmental Protection Agency.National rivers and streams Assessment 2008-2009: a collaborative survey[R].Washington DC: Office of Water and Office of Research and Development, 2016: 30-31. [41] National Research Council.Nutrient control actions for improving water quality in the Mississippi River Basin and northern gulf of mexico[M].Washington DC:National Academies Press, 2009:13-16. [42] ALEXANDER R B, SMITH R A, SCHWARZ G E, et al.Differences in phosphorous and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin[J].Environmental Science & Technology, 2008, 42(3):822-830. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM18323108 [43] 江摇磊, 朱德军, 陈永灿, 等.我国地表水体粪大肠菌群污染现状分析[J].水利水电科技进展, 2015, 35(3):11-18. http://d.old.wanfangdata.com.cn/Periodical/slsdkjjz201503004JIANG Yaolei, ZHU Dejun, CHEN Yongcan, et al.Analysis on fecal coliform pollution in surface waters of China[J].Advances in Science and Technology of Water Resources, 2015, 35(3):11-18. http://d.old.wanfangdata.com.cn/Periodical/slsdkjjz201503004 [44] 宋在兰, 张兰, 黄斌.宜宾市三江水体粪大肠菌群污染现状调查[J].四川环境, 2003, 22(6):36-38. http://d.old.wanfangdata.com.cn/Periodical/schj200306011SONG Zailan, ZHANG Lan, HUANG Bing.Investigation on pollution of faecal coliform at the Three River Joint[J].Sicuan Environment, 2003, 22(6):36-38. http://d.old.wanfangdata.com.cn/Periodical/schj200306011 -