Transformation Relationship of Different Water Body in Donggong River Basin Based on Hydrochemistry and Hydrogen-Oxygen Isotopes
-
摘要: 为明晰秦皇岛东宫河流域水环境特征,以该流域大气降水、地下水及地表水为研究对象,通过对水化学和氢氧稳定同位素样品测试及特征分析,揭示其时空变化特征及大气降水、地下水和地表水的相互转化关系.结果表明:①东宫河流域地下水(第四系孔隙水、岩溶水、裂隙水)和地表水(河水、泉水)的水化学类型,枯水期较丰水期丰富.丰水期水化学类型主要以HCO3-Ca型、HCO3·SO4-Ca型和HCO3-Ca·Mg型为主;枯水期水化学类型以HCO3-Ca型、HCO3-Ca·Mg型、HCO3·SO4-Ca型、HCO3·SO4-Ca·Mg型为主.②研究区第四系孔隙水和泉水的离子含量变化受季节影响较大,枯水期离子含量变化较丰水期显著;岩溶水和裂隙水各离子含量变幅较小,基本趋于稳定.岩溶含水层和裂隙含水层中富含石膏,为SO42-的主要来源;Na+和Cl-主要来源于易溶解盐NaCl,Ca2+和Mg2+主要来源于方解石的风化溶解.③东宫河流域地下水、地表水及大气降水之间存在密切的水力联系,针对氢氧同位素的组成分析表明,大气降水为地下水和河水的主要来源;不同泉水补给来源存在差异性,泉水主要接受岩溶水补给,同时也受蒸发作用影响;第四系孔隙水接受大气降水和河水的双重补给;裂隙水主要接受山区降水径流补给.研究显示,东宫河流域不同水体中离子含量受降雨量、温度和地质背景等影响,不同水体间联系密切,相互补给排泄.Abstract: In order to ascertain the water environment characteristics of the Donggong River Basin in Qinhuangdao, the atmospheric precipitation, groundwater and surface water in this basin were taken as the research objects. Through the analysis of its water chemistry and hydrogen-oxygen stable isotopic characteristics, the characteristics of its temporal and spatial changes and the characteristics of atmospheric precipitation, groundwater and surface water are revealed. The results show that: (1) The water chemistry of groundwater (Quaternary pore water, karst water, fissure water) and surface water (river water, spring water) in the Donggong River Basin are more abundant in dry periods than in wet periods. The water chemistry types in the rich season are HCO3-Ca type, HCO3·SO4-Ca type and HCO3-Ca·Mg type mainly; the water chemistry types in the dry season are HCO3-Ca type, HCO3-Ca·Mg type, HCO3·SO4-Ca type, HCO3·SO4-Ca·Mg type mainly. (2) The change of ion content in Quaternary pore water and spring water in the study area is greatly affected by the season, and the change in ion content in dry season is more significant than in wet season; the ions in karst water and fissure water have a small change range and tend to be stable. The karst aquifer and bedrock fissure aquifer are rich in gypsum, which is the main source of SO42-; Na+ and Cl- mainly come from the easily soluble salts NaCl, Ca2+ and Mg2+ mainly come from the weathering dissolution of calcite. (3) There is a close hydraulic relationship between groundwater, surface water and atmospheric precipitation in the Donggong River Basin, analysis of the composition of hydrogen and oxygen isotopes shows that atmospheric precipitation is the main source of groundwater and river water, and the spring water mainly comes from karst water replenishment and is affected by evaporation; pores water receives dual recharges from atmospheric precipitation and river water; fissure water is mainly recharged from mountain runoff. The studies have shown that the ion content in different water bodies of the Donggong River Basin is affected by rainfall, temperature and geological background. Different water bodies are closely connected and complement each other for excretion.
-
表 1 东宫河流域地下水水化学与同位素组成特征
Table 1. Results of hydrochemistry and isotopic compositions in groundwater in the Donggong River Basin
时间 地下水类型 编号 pH ρ(TDS)/
(mg/L)EC/
(μS/cm)ρ(DO)/
(mg/L)Eh/ mV ρ(Ca+)/
(mg/L)ρ(K+)/
(mg/L)ρ(Mg2+)/
(mg/L)ρ(Na+)/
(mg/L)ρ(HCO3-)/
(mg/L)ρ(Cl-)/
(mg/L)ρ(SO42-)/
(mg/L)δ18O/‰ δD/‰ 水化学类型 2014年7月 岩溶水 w8 7.49 442.0 663 — — 95.90 24.20 23.00 24.10 265.00 38.70 83.70 -8.4 -59 HCO3-Ca w9 7.56 488.8 733 — — 115.00 5.95 34.70 19.10 352.00 38.10 83.50 -8.2 -58 HCO3-Ca·Mg w10 7.45 362.3 543 — — 83.60 8.77 18.60 23.20 165.00 38.20 84.20 -8.1 -58 HCO3·SO4-Ca w11 7.46 276.3 414 — — 65.60 4.36 15.40 13.90 174.00 20.40 57.90 -8.2 -59 HCO3·SO4-Ca w15 7.49 491.4 737 — — 93.80 25.30 30.40 34.00 266.00 43.10 105.00 -8.0 -57 HCO3·SO4-Ca·Mg 第四系孔隙水 w16 7.54 866.0 1 299 — — 89.70 169.00 36.80 89.30 360.00 141.00 107.00 -8.1 -56 HCO3·Cl-Na·Ca w20 7.44 369.4 554 — — 128.00 20.60 41.30 26.80 128.00 20.60 41.30 -8.2 -59 HCO3-Ca·Mg 裂隙水 w21 7.57 268.2 402 — — 56.30 2.34 21.90 13.40 270.00 9.45 29.80 -8.5 -61 HCO3-Ca·Mg 2015年7月 岩溶水 w1 7.42 228.2 326 7.2 — 51.76 1.59 8.93 6.91 132.74 8.52 57.04 -8.4 -59 HCO3·SO4-Ca w4 7.22 460.8 727 6.5 — 120.60 9.38 16.47 11.10 306.46 14.51 55.78 -8.1 -60 HCO3-Ca w5 7.28 396.2 590 8.7 — 87.00 11.57 19.88 13.55 245.95 20.22 63.51 -8.1 -59 HCO3-Ca w8 7.30 593.7 823 7.6 — 89.02 38.42 25.12 35.25 288.90 33.86 75.06 -7.5 -59 HCO3-Ca·Na w9 7.12 561.4 858 8.1 — 117.80 3.69 36.01 19.53 372.83 32.66 79.68 -7.8 -59 HCO3-Ca·Mg 第四系孔隙水 w17 7.27 835.6 1 152 7.2 — 106.20 40.07 29.13 72.88 247.90 61.80 115.13 -8.3 -59 HCO3·SO4-Ca·Na w18 6.78 1 210.1 1 662 4.1 — 143.80 65.66 47.92 108.70 370.88 158.64 132.30 -7.6 -56 HCO3·Cl-Ca·Mg w19 7.23 710.4 950 8.0 — 103.50 8.43 40.17 45.93 263.52 72.36 80.24 -8.3 -59 HCO3·Cl-Ca·Mg 裂隙水 w21 7.41 247.0 498 4.1 — 50.99 2.11 20.82 13.79 238.14 8.86 30.31 -8.3 -60 HCO3-Ca·Mg 2015年10月 岩溶水 w1 7.64 268.9 439 7.0 196 68.33 1.21 11.86 7.76 160.06 10.65 61.68 -8.3 -58 HCO3·SO4-Ca w2 7.13 387.4 663 7.1 216 106.70 2.62 16.23 10.64 308.42 9.79 47.57 -8.0 -61 HCO3-Ca w3 7.60 273.9 456 7.0 223 73.69 3.30 9.51 7.85 171.78 8.20 60.38 -8.3 -58 HCO3·SO4-Ca w6 7.51 245.4 419 3.8 228 56.89 4.21 11.76 14.02 156.16 10.78 47.31 -7.5 -56 HCO3·SO4-Ca w7 7.25 450.9 667 6.4 189 60.57 42.79 16.69 26.98 175.68 26.30 77.17 -8.3 -58 HCO3·SO4-Ca·Na w9 7.44 439.1 727 6.1 177 94.33 3.24 28.74 14.74 306.46 21.13 67.97 -8.1 -58 HCO3-Ca·Mg w10 7.50 260.5 445 5.5 213 58.60 4.22 13.03 13.57 167.87 10.84 47.52 -7.8 -57 HCO3-Ca w12 7.72 302.1 496 7.7 208 66.31 2.23 18.00 10.61 189.34 10.61 50.39 -8.0 -59 HCO3-Ca·Mg w13 7.52 334.2 535 7.1 206 65.55 12.33 17.93 13.99 185.44 13.23 55.74 -7.7 -62 HCO3·SO4-Ca·Mg w14 7.55 306.9 540 7.3 219 66.32 2.47 17.68 10.62 212.77 9.83 51.27 -8.2 -60 HCO3-Ca·Mg 第四系孔隙水 w17 7.39 738.4 1 079 3.2 187 102.20 30.00 28.18 66.64 261.57 68.72 82.30 -8.1 -57 HCO3-Ca·Na w20 7.30 742.7 1 051 7.3 207 115.30 26.61 37.15 32.57 284.99 41.61 87.34 -8.4 -58 HCO3-Ca·Mg 裂隙水 w21 7.59 288.7 472 2.7 167 56.94 2.14 21.48 14.15 310.37 8.57 29.29 -8.1 -60 HCO3-Ca·Mg w22 7.51 526.2 797 6.0 226 86.95 36.84 18.17 34.53 222.53 35.31 73.64 -8.3 -61 HCO3-Ca·Na w23 7.35 322.6 514 4.7 224 72.30 4.95 12.62 18.17 187.39 13.28 39.31 -8.1 -59 HCO3-Ca w24 7.31 354.6 584 4.6 242 65.85 25.77 15.48 21.89 208.86 19.76 61.29 — — HCO3-Ca·Na 2016年4月 岩溶水 w1 7.29 274.8 416 8.5 86 69.50 0.71 12.09 6.31 175.43 11.44 63.91 -8.5 -59 HCO3·SO4-Ca w2 7.34 287.6 429 8.9 96 76.92 2.10 9.70 6.60 187.64 12.18 62.38 -8.5 -59 HCO3·SO4-Ca w7 7.27 262.8 408 7.1 212 49.06 17.69 12.73 11.42 164.75 14.96 57.05 -7.3 -55 HCO3·SO4-Ca w9 7.63 442.1 669 11.1 182 92.96 2.68 27.75 14.97 250.18 29.91 68.83 -8.1 -59 HCO3-Ca·Mg w10 7.21 263.4 409 8.0 54 60.39 2.04 13.66 9.63 170.86 13.70 53.77 -7.9 -56 HCO3·SO4-Ca w11 7.48 270.7 427 7.0 34 61.74 3.39 12.56 12.17 166.28 16.90 54.63 -7.7 -55 HCO3·SO4-Ca w12 7.78 380.6 498 8.3 54 120.64 2.16 19.19 10.30 218.15 15.98 59.56 -8.2 -58 HCO3-Ca w13 7.31 334.2 512 9.1 201 68.83 9.17 19.06 10.81 212.04 16.25 58.38 -8.3 -58 HCO3-Ca·Mg w14 7.67 316.5 489 9.9 214 75.38 0.71 18.64 7.14 218.15 13.39 57.67 -8.3 -59 HCO3-Ca·Mg 第四系孔隙水 w20 7.27 435.1 640 8.0 112 86.79 4.83 26.05 14.56 242.55 25.17 53.32 -8.5 -59 HCO3-Ca·Mg 裂隙水 w21 7.26 271.7 464 2.7 205 60.29 2.19 22.09 13.01 253.23 11.74 34.55 -8.3 -61 HCO3-Ca·Mg w23 7.04 329.1 489 5.7 130 75.53 3.55 13.03 15.45 196.79 20.48 49.33 -8.2 -58 HCO3-Ca w24 7.16 368.2 576 7.7 154 81.27 17.38 18.60 16.08 239.50 27.27 71.61 — — HCO3-Ca 表 2 东宫河流域泉水和河水水化学与同位素组成特征
Table 2. Results of hydrochemistry and isotopic compositions in spring and river in the Donggong River Basin
时间 地下水类型 编号 pH ρ(TDS)/
(mg/L)EC/
(μS/cm)ρ(DO)/
(mg/L)Eh/ mV ρ(Ca+)/
(mg/L)ρ(K+)/
(mg/L)ρ(Mg2+)/
(mg/L)ρ(Na+)/
(mg/L)ρ(HCO3-)/
(mg/L)ρ(Cl-)/
(mg/L)ρ(SO42-)/
(mg/L)δ18O/‰ δD/‰ 水化学类型 2014年7月 泉水 s1 7.61 286.2 429 — — 68.30 2.52 19.10 10.70 212.00 15.50 55.30 -8.2 -58 HCO3-Ca·Mg 河水 r1 7.56 201.5 302 — — 52.60 2.33 12.20 7.89 79.10 9.37 73.30 -8.6 -62 SO4·HCO3-Ca·Mg r3 7.45 149.3 224 — — 32.50 2.36 8.17 8.59 50.30 8.26 56.70 -8.9 -63 SO4·HCO3-Ca r4 7.46 192.3 288 — — 46.60 2.63 10.80 8.71 101.00 9.34 56.70 -8.9 -63 HCO3·SO4-Ca r5 7.49 209.4 314 — — 54.00 0.82 11.60 6.14 145.00 5.92 54.30 -9.0 -64 HCO3·SO4-Ca r6 7.54 209.9 315 — — 49.60 2.73 11.40 8.68 122.00 9.82 59.60 -8.8 -62 HCO3·SO4-Ca 2015年7月 泉水 s1 7.42 303.2 388 14.0 — 69.33 1.78 16.78 9.51 187.39 10.36 53.14 -8.0 -58 HCO3-Ca·Mg s2 7.22 332.3 468 6.6 — 68.59 2.08 17.81 11.09 185.44 33.36 94.31 -8.1 -60 HCO3·SO4-Ca·Mg s3 7.28 291.2 408 — — 68.36 1.83 18.00 9.94 162.02 11.49 50.82 -8.0 -59 HCO3·SO4-Ca·Mg s4 7.30 326.7 478 6.9 — 68.68 1.85 18.43 10.08 203.01 13.02 57.54 -8.7 -58 HCO3-Ca·Mg 河水 r1 7.79 301.3 438 8.3 — 66.57 2.44 13.16 9.24 169.82 12.95 61.97 -8.0 -58 HCO3·SO4-Ca r2 8.80 218.9 352 11.7 — 45.53 3.69 9.25 10.97 97.60 8.40 50.21 -8.2 -56 HCO3·SO4-Ca r4 8.33 248.8 388 14.0 — 43.47 2.81 12.84 10.88 142.50 10.61 54.62 -7.9 -59 HCO3·SO4-Ca·Mg 2015年10月 泉水 s1 7.74 286.4 486 9.0 216 59.36 0.86 18.69 8.28 177.63 10.93 52.34 -8.3 -59 HCO3·SO4-Ca·Mg s2 7.52 304.7 487 5.4 225 65.34 2.95 17.19 11.61 173.73 13.14 54.56 -8.2 -59 HCO3·SO4-Ca·Mg s3 7.63 299.4 487 7.6 215 66.27 2.51 17.79 10.78 187.39 10.46 49.95 -8.1 -60 HCO3·SO4-Ca s4 7.60 301.3 487 5.9 217 65.34 2.83 17.44 11.89 181.54 11.11 51.34 -8.4 -58 HCO3·SO4-Ca 河水 r1 8.19 298.4 512 10.0 183 73.08 4.57 14.84 12.24 203.01 10.34 61.69 -8.1 -58 HCO3·SO4-Ca r3 9.08 164.1 285 12.3 207 32.61 2.80 8.35 12.11 81.98 9.96 44.95 -7.2 -54 HCO3·SO4-Ca r4 7.53 263.9 499 3.8 226 53.64 1.54 12.48 10.51 206.91 10.95 53.68 -7.7 -58 HCO3-Ca 2016年4月 泉水 s1 8.17 256.5 416 4.5 97.1 46.79 3.98 19.12 14.03 167.81 18.52 60.88 — — HCO3·SO4-Ca·Mg s3 7.88 319.3 482 13.5 186 71.08 2.70 18.99 10.90 202.89 16.14 58.80 -8.2 -57 HCO3-Ca·Mg s4 7.48 323.5 501 5.9 89 72.15 2.42 18.95 10.69 204.42 15.85 58.14 -8.4 -58 HCO3-Ca·Mg 河水 r1 7.51 236.2 387 11.9 238 57.66 3.17 11.78 8.13 154.08 11.96 57.19 -7.3 -54 HCO3-Ca·Mg r3 8.69 125.5 286 14.7 168 1.98 0.59 0.42 0.45 96.11 12.65 50.53 -7.0 -51 HCO3·SO4-Ca r4 7.90 280.9 454 13.5 191 67.03 0.97 11.72 8.22 180.01 15.43 66.76 -8.1 -58 HCO3·SO4-Ca -
[1] 井柳新, 孙愿平, 孙宏亮, 等.中国地表水-地下水污染协同管理控制模式初探[J].环境污染与防治, 2016, 38(3):95-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwryfz201603018JING Liuxin, SUN Yuanping, SUN Hongliang, et al.The preliminary study of Chinese surface water-groundwater pollution collaborative management control mode[J].Environmental Pollution & Control, 2016, 38(3):95-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwryfz201603018 [2] 贾永锋, 姜永海, 席北斗.提升地表地下水协同管理能力, 促进水环境质量系统改善[J].环境经济, 2018(24):52-53. http://www.cnki.com.cn/Article/CJFDTotal-HJJI201824020.htm [3] LSSAR A, GAT J.Environmental isotopes as a tool in hydrogeological research in an arid basin[J].Groundwater, 1981, 19(5):490-494. doi: 10.1111/j.1745-6584.1981.tb03499.x [4] YEH H F, LEE C H, HSU K C.Oxygen and hydrogen isotopes for the characteristics of groundwater recharge:a case study from the Chih-Pen Creek Basin, Taiwan[J].Environmental Earth Sciences, 2011, 62(2):393-402. doi: 10.1007/s12665-010-0534-2 [5] BIRKS S J, EDWARDS T W D.Atmospheric circulation controls on precipitation isotope-climate relations in western Canada[J].Tellus Series B:Chemical and Physical Meteorology, 2009, 61(3):566-576. doi: 10.1111/j.1600-0889.2009.00423.x [6] ZHAI Yuanzheng, WANG Jinsheng, HUAN Huan, et al.Characterizing the groundwater renewability and evolution of the strongly exploited aquifers of the North China Plain by major ions and environmental tracers[J].Journal of Radioanalytical and Nuclear Chemistry, 2013, 296(3):1263-1274. doi: 10.1007/s10967-012-2409-3 [7] COCKERTON H E, STREET-PERROTT F A, LENG M J, et al.Stable-isotope (H, O, and Si) evidence for seasonal variations in hydrology and Si cycling from modern waters in the Nile Basin:implications for interpreting the Quaternary Record[J].Quaternary Science Reviews, 2013, 66:4-21. doi: 10.1016/j.quascirev.2012.12.005 [8] 聂振龙, 陈宗宇, 程旭学, 等.黑河干流浅层地下水与地表水相互转化的水化学特征[J].吉林大学学报(地球科学版), 2005, 35(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200501010NIE Zhenlong, CHEN Zongyu, CHENG Xuxue, et al.The chemical information of the interaction of unconfined groundwater and surface water along the Heihe River, northwestern China[J].Journal of Jilin University (Earth Science Edition), 2005, 35(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200501010 [9] ZHANG Y, SHEN Y, CHEN Y, et al.Spatial characteristics of surface water and groundwater using water stable isotope in the Tarim River Basin, northwestern China[J].Ecohydrology, 2013, 6(6):1031-1039. doi: 10.1002/eco.1416 [10] 文广超, 王文科, 段磊, 等.基于水化学和稳定同位素定量评价巴音河流域地表水与地下水转化关系[J].干旱区地理, 2018, 41(4):58-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqdl201804008WEN Guangchao, WANG Wenke, DUAN Lei, et al.Quantitatively evaluating exchanging relationship between riverwater and groundwater in Bayin River Basin of northwest China using hydrochemistry and stable isotope[J].Arid Land Geography, 2018, 41(4):58-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqdl201804008 [11] ZHANG B, SONG X, ZHANG Y, et al.A study of the interrelation between surface water and groundwater using isotopes and chlorofluorocarbons in Sanjiang Plain, northeast China[J].Environmental Earth Sciences, 2014, 72(10):3901-3913. doi: 10.1007/s12665-014-3279-5 [12] WANG L, DONG Y, XIE Y, et al.Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China[J].Hydrogeology Journal, 2016, 24(8):1967-1979. doi: 10.1007/s10040-016-1456-1 [13] 孙从建, 陈伟.基于稳定同位素的海河源区地下水与地表水相互关系分析[J].地理科学, 2018, 38(5):790-799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201805017SUN Congjian, CHEN Wei.Relationship between groundwater and surface water based on environmental isotope and hydrochemistry in upperstream of the Haihe River Basin[J].Scientia Geographica Sinica, 2018, 38(5):790-799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201805017 [14] WANG Y, CHEN Y, LI W.Temporal and spatial variation of water stable isotopes (18O and 2H) in the Kaidu River Basin, northwestern China[J].Hydrological Processes, 2014, 28(3):653-661. doi: 10.1002/hyp.9622 [15] 王贺, 谷洪彪, 姜纪沂, 等.新疆伊犁河流域河水同位素与水化学特征及成因[J].第四纪研究, 2016, 36(6):1383-1392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201606004WANG He, GU Hongbiao, JIANG Jiyi, et al.Hydrochemical characteristics and origin including isotope technique of the river water in the Yili River Basin, Xinjiang[J].Quaternary Sciences, 2016, 36(6):1383-1392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201606004 [16] 宋献方, 刘相超, 夏军, 等.基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J].中国科学(D辑:地球科学), 2007, 37(1):102-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200701012 [17] 肖国强, 杨吉龙, 胡云壮, 等.秦皇岛洋-戴河滨海平原海水入侵过程水文化学识别[J].安全与环境工程, 2014, 21(2):32-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzktaq201402008XIAO Guoqiang, YANG Jilong, HU Yunzhuang, et al.Hydrogeochemical recognition of seawater intrusion processes in Yang River and Dai River Coastal Plain of Qinhuangdao City[J].Safety and Environmental Engineering, 2014, 21(2):32-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzktaq201402008 [18] 谷洪彪, 迟宝明, 王贺, 等.柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J].地球科学进展, 2017, 32(8):789-799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201708001GU Hongbiao, CHI Baoming, WANG He, et al.Relationship between surface water and groundwater in the Liujiang Basin:hydrochemical constrains[J].Advances in Earth Science, 2017, 32(8):789-799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201708001 [19] 甄志磊, 李畅游, 李文宝, 等.内蒙古达里诺尔湖流域地表水和地下水环境同位素特征及补给关系[J].湖泊科学, 2014, 26(6):916-922. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hpkx201406014ZHEN Zhilei, LI Changyou, LI Wenbao, et al.Characteristics of environmental isotopes of surface water and groundwater and their recharge relationships in Lake Dali Basin[J].Journal of Lake Sciences, 2014, 26(6):916-922. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hpkx201406014 [20] 马雪梅.柳江盆地岩溶水系统特征及其地下水流场模拟研究[D].北京: 中国地质大学(北京), 2016: 22-25. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016068049.htm [21] 姚玉君.柳江盆地构造地貌的内营力分析[J].天津师范大学学报(自然科学版), 1996, 16(2):61-63. http://www.cnki.com.cn/Article/CJFDTOTAL-TJSD602.011.htmYAO Yujun.The analysis of the endogenetic force of the structural landform of the Liujiang Basin[J].Journal of Tianjin Normal University (Natural Science Edition), 1996, 16(2):61-63. http://www.cnki.com.cn/Article/CJFDTOTAL-TJSD602.011.htm [22] GU Hongbiao, CHI Baoming, LI Haijun, et al.Assessment of groundwater quality and identification of contaminant sources of Liujiang Basin in Qinhuangdao, North China[J].Environmental Earth Sciences, 2015, 73(10):6477-6493. doi: 10.1007/s12665-014-3870-9 [23] CHEN Jingsheng, WANG Feiyue, XIA Xinghui, et al.Major element chemistry of the Changjiang (Yangtze River)[J].Chemical Geology, 2002, 187(3/4):231-255. doi: 10.1016/S0009-2541(02)00032-3 [24] 陈堂清, 饶文波, 金可, 等.阿拉善沙漠高原降水化学特征与离子来源判别[J].环境科学研究, 2018, 31(12):2083-2093. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20181212&flag=1CHEN Tangqing, RAO Wenbo, JIN Ke, et al.Chemical characteristics and major ion sources of precipitation in the Alxa Desert Plateau[J].Research of Environmental Sciences, 2018, 31(12):2083-2093. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20181212&flag=1 [25] 王周锋, 郝瑞娟, 杨红斌, 等.水岩相互作用的研究进展[J].水资源与水工程学报, 2015, 26(3):210-216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbszyysgc201503044WANG Zhoufeng, HAO Ruijuan, YANG Hongbin, et al.Research progress on water-rock interaction[J].Journal of Water Resources & Water Engineering, 2015, 26(3):210-216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbszyysgc201503044 [26] TOTH J.Groundwater as a geologic agent:an overview of the causes, processes, and manifestations[J].Hydrogeology Journal, 1999, 7:1-4. doi: 10.1007/s100400050176 [27] GLYNN P D, PLUMMER L N.Geochemistry and the understanding of ground-water systems[J].Hydrogeology Journal, 2005, 13:263-287. doi: 10.1007/s10040-004-0429-y [28] HAN Dongmei, LIANG Xing, JIN Menggui.Hydrogeochemical indicators of groundwater flow systems in the Yangwu River Alluvial Fan, Xinzhou Basin, Shanxi, China[J].Environmental Management, 2009, 44:243-255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=121a6fe61cb32cdc11b962b6a1612525 [29] 魏宸, 黄虹, 邹长伟, 等.南昌市新城区大气降水化学特征与主要成分来源解析[J].环境科学研究, 2016, 29(11):1582-1589. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20161103&flag=1WEI Chen, HUANG Hong, ZOU Changwei, et al.Chemical characteristics and main sources of atmospheric precipitation in new urban district of Nanchang City[J].Research of Environmental Sciences, 2016, 29(11):1582-1589. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20161103&flag=1 [30] KUMAR S K, RAMMOHAN V, SAHAVAM J D, et al.Assessment of groundwater quality and hydrogeochemistry of Manimuktha River Basin, TamilNadu, India[J].Environmental Monitoring and Assessment, 2009, 159(1/2/3/4):341-351. doi: 10.1007/s10661-008-0633-7 [31] CHIDAMBARAM S, ANANDHAN P, PRASANNA M V, et al.Major ion chemistry and identification of hydrogeochemical processes controlling groundwater in and around Neyveli Lignite Mines, TamilNadu, South India[J].Arabian Journal of Geosciences, 2013, 6(9):3451-3467. doi: 10.1007/s12517-012-0589-3 [32] 禤映雪, 唐常源, 曹英杰, 等.北江流域水化学时空变化及化学风化特征[J].环境科学研究, 2018, 31(6):1078-1087. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180612&flag=1XUAN Yingxue, TANG Changyuan, CAO Yingjie, et al.Spatial and temporal variation of hydrochemistry and chemical weathering characteristics in the Beijiang River Basin[J].Research of Environmental Science, 2018, 31(6):1078-1087. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180612&flag=1 [33] 郭晓军, 苏凤洹, 洪勇, 等.蒋家沟流域雨季降水中氢氧同位素特征分析[J].水土保持研究, 2012, 19(2):82-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201202019GUO Xiaojun, SU Fenghuan, HONG Yong, et al.Characteristics of hydrogen and oxygen isotopes in rainy season precipitation in Jiangjiagou Watershed[J].Research of Soil and Water Conservation, 2012, 19(2):82-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201202019 [34] CRAIG H.Isotopic variations in meteoric waters[J].Science, 1961, 133(3465):1702-1703. doi: 10.1126/science.133.3465.1702 -