留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进DPSIR模型的京津冀地区优先回补地下水水源地筛选方法

朱玉晨 李亚松 刘雅慈 郝奇琛 陈李宁 李炳华 孔祥科

朱玉晨, 李亚松, 刘雅慈, 郝奇琛, 陈李宁, 李炳华, 孔祥科. 基于改进DPSIR模型的京津冀地区优先回补地下水水源地筛选方法[J]. 环境科学研究, 2020, 33(6): 1357-1365. doi: 10.13198/j.issn.1001-6929.2020.05.18
引用本文: 朱玉晨, 李亚松, 刘雅慈, 郝奇琛, 陈李宁, 李炳华, 孔祥科. 基于改进DPSIR模型的京津冀地区优先回补地下水水源地筛选方法[J]. 环境科学研究, 2020, 33(6): 1357-1365. doi: 10.13198/j.issn.1001-6929.2020.05.18
ZHU Yuchen, LI Yasong, LIU Yaci, HAO Qichen, CHEN Lining, LI Binghua, KONG Xiangke. Screening Method of Preferred Groundwater Recharge Source Fields in the Beijing-Tianjin-Hebei Region Based on Improved DPSIR Model[J]. Research of Environmental Sciences, 2020, 33(6): 1357-1365. doi: 10.13198/j.issn.1001-6929.2020.05.18
Citation: ZHU Yuchen, LI Yasong, LIU Yaci, HAO Qichen, CHEN Lining, LI Binghua, KONG Xiangke. Screening Method of Preferred Groundwater Recharge Source Fields in the Beijing-Tianjin-Hebei Region Based on Improved DPSIR Model[J]. Research of Environmental Sciences, 2020, 33(6): 1357-1365. doi: 10.13198/j.issn.1001-6929.2020.05.18

基于改进DPSIR模型的京津冀地区优先回补地下水水源地筛选方法

doi: 10.13198/j.issn.1001-6929.2020.05.18
基金项目: 

水体污染控制与治理科技重大专项 2018ZX07109-004

中国地质调查项目 DD20190303

国家科技基础资源调查专项 2017FY100405

详细信息
    作者简介:

    朱玉晨(1986-), 男, 河北石家庄人, 助理研究员, 硕士, 主要从事地下水数值模拟方面研究, zhuyuchen413@163.com

    通讯作者:

    孔祥科(1987-), 男, 山东济宁人, 助理研究员, 博士, 主要从事地下水污染机理与修复研究, kongxiangke1987@163.com

  • 中图分类号: X523

Screening Method of Preferred Groundwater Recharge Source Fields in the Beijing-Tianjin-Hebei Region Based on Improved DPSIR Model

Funds: 

National Major Science and Technology Program for Water Pollution Control and Treatment 2018ZX07109-004

China Geological Survey Program DD20190303

National Basic Resources Survey Program of China 2017FY100405

  • 摘要: 京津冀地区地下水水源地超采问题严重,引发了地下水水位持续下降等一系列问题,南水北调中线输水贯通为该地区地下水水源地的回补涵养提供了契机;然而,京津冀地区众多地下水水源地在回补条件和回补需求等方面各异,在有限回补水源条件下,亟需建立该地区地下水水源地回补优先性评价和分级方法,从而筛选出可优先回补的水源地.借助DPSIR(驱动力—压力—状态—影响—响应)评价模型理念,在综合分析地下水水源地产生资源环境问题的根本原因、存在压力、不利状态、对人类社会的影响以及地下水回补工程产生的响应基础上,解析影响地下水回补的关键因素,并以此为依据进行专家咨询和评分,建立了涵盖5个准则和21个指标的综合评价指标集.在阈值确定和数据标准化基础上,依据评分数据确定各准则和指标权重,最后通过综合指数法构建基于DPSIR模型的地下水水源地回补优先性评价体系,并对京津冀地区具有代表性的76个浅层地下水水源地进行了评价和分级.结果表明:以南水北调中线工程为轴,分布在山前冲洪积扇的32个浅层地下水水源地为优先和较优先回补等级,从山前至中部平原地下水水源地回补优先性逐渐变差;回补水源类型、浅层含水层储水空间、区域浅层地下水质量、浅层含水层防污性能是影响评价结果的最重要指标.研究显示,位于京津冀山前的冲洪积扇地区的地下水水源地应最优先考虑回补,中部平原地下水水源地大多为一般或暂不考虑,东部平原区地下水水源地普遍不适宜回补.该评价方法指标选取和权重计算科学客观,可为京津冀地下水水源地的涵养提供标靶和决策的理论支撑.

     

  • 图  1  改进DPSIR准则层体系架构

    Figure  1.  Criteria of improved DPSIR framework

    图  2  各准则层指标结构

    Figure  2.  Evaluation indicators in each criterion of DPSIR

    图  3  京津冀地下水水源地回补优先性评价结果

    Figure  3.  The priority evaluation results of groundwater recharge in the Beijing-Tianjin-Hebei Region

    表  1  DPSIR准则层专家打分及检验结果

    Table  1.   Results of experts′ evaluation and global tests of DPSIR criteria

    准则层 专家打分人数 集中程度(EC) 离散程度(δ) 协调程度(V)
    极重要 很重要 重要 一般 不重要
    驱动 7 6 5 2 0 3.90 1.02 0.26
    压力 9 9 2 0 0 4.35 0.67 0.15
    状态 11 6 3 0 0 4.40 0.75 0.17
    影响 7 8 3 2 0 4.00 0.97 0.24
    响应 10 9 1 0 0 4.45 0.60 0.14
    下载: 导出CSV

    表  2  地水源地回补优先性指标专家打分及检验结果

    Table  2.   Results of experts marking and global test of DPSIR indicators

    准则层 指标层 专家打分人数 集中程度(EC) 离散程度(δ) 协调程度(V)
    极重要 很重要 重要 一般 不重要
    驱动 人口数量 3 5 6 5 1 3.20 1.15 0.35
    地区GDP增速 4 9 5 1 1 3.70 1.03 0.27
    压力 浅层地下水开采强度 7 4 5 3 1 3.65 1.27 0.35
    单位面积农药(化肥)施用量 6 6 5 2 1 3.70 1.17 0.32
    生活污水排放强度 7 7 3 2 1 3.85 1.18 0.31
    工业废水排放强度 7 7 5 0 1 3.95 1.05 0.27
    状态 区域浅层地下水水位降幅 7 7 4 1 1 3.90 1.12 0.29
    区域地下水位下降速率 7 8 3 2 0 4.00 0.97 0.24
    区域浅层地下水质量 9 7 3 1 0 4.20 0.89 0.21
    区域地下水质量变化 7 8 3 1 1 3.95 1.10 0.28
    浅层含水层防污性能 8 7 5 0 0 4.15 0.81 0.20
    影响 浅层含水层疏干程度 8 4 5 2 1 3.80 1.24 0.33
    地面沉降面积占比 6 5 5 3 1 3.60 1.23 0.34
    生活用水单价 6 5 5 4 0 3.65 1.14 0.31
    响应 回补水源类型 13 4 3 0 0 4.50 0.76 0.16
    回补场地距最近水源距离 2 6 9 3 0 3.35 0.87 0.26
    回补方式 6 10 3 1 0 4.05 0.82 0.20
    单位供水量减少水价 0 7 7 6 0 3.05 0.82 0.27
    可供回补水量 4 6 7 2 1 3.50 1.10 0.31
    入渗能力 5 5 7 2 1 3.55 1.14 0.32
    浅层含水层储水空间 10 8 2 0 0 4.40 0.68 0.15
    下载: 导出CSV

    表  3  准则层及指标层权重

    Table  3.   Weights of criteria and indicators

    准则层 准则权重 指标 属性 指标权重(W)
    驱动 0.184 8 人口数量 0.463 8
    地区GDP增速 0.536 2
    压力 0.206 2 浅层地下水开采强度 0.240 9
    单位面积农药(化肥)施用量 0.244 2
    生活污水排放强度 0.254 1
    工业废水排放强度 0.260 7
    状态 0.208 5 浅层地下水水位降幅 0.193 1
    区域地下水位下降速率 0.198 0
    区域浅层地下水质量 0.207 9
    区域地下水质量变化 0.195 5
    浅层含水层防污性能 0.205 4
    影响 0.189 6 浅层含水层疏干程度 0.343 9
    地面沉降面积占比 0.325 8
    生活用水单价 0.330 3
    响应 0.210 9 回补水源类型 0.170 5
    回补场地距最近水源距离 0.126 9
    回补方式 0.153 4
    单位供水量减少水价 0.115 5
    可供回补水量 0.132 6
    入渗能力 0.134 5
    浅层含水层储水空间 0.166 7
    下载: 导出CSV
  • [1] 席北斗, 李娟, 汪洋, 等.京津冀地区地下水污染防治现状, 问题及科技发展对策[J].环境科学研究, 2019, 32(1):1-9. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190101&flag=1

    XI Beidou, LI Juan, WANG Yang, et al.Strengthening the innovation capability of groundwater science and technology to support the coordinated development of Beijing-Tianjin-Hebei Region:status quo, problems and goals[J]. Research of Environmental Sciences, 2019, 32(1):1-9. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190101&flag=1
    [2] CHEN Z, JIANG W, WANG W, et al.The impact of precipitation deficit and urbanization on variations in water storage in the Beijing-Tianjin-Hebei urban agglomeration[J]. Remote Sensing, 2018.doi: 10.3390/rs10010004.
    [3] ZHOU C, GONG H, CHEN B, et al.Land subsidence response to different land use types and water resource utilization in Beijing-Tianjin-Hebei, China[J]. Remote Sensing, 2020.doi: 10.3390/rs12030457.
    [4] DILLON P, STUYFZAND P, GRISCHEK T, et al.Sixty years of global progress in managed aquifer recharge[J]. Hydrogeology Journal, 2019, 27(1):1-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=148f0b0ee488a2d14ac6c83b7cd14f65
    [5] BOUWER H.Artificial recharge of groundwater:hydrogeology and engineering[J]. Hydrogeology Journal, 2002, 10(1):121-142. http://d.old.wanfangdata.com.cn/Periodical/jes-e201505018
    [6] DILLON P.Future management of aquifer recharge[J]. Hydrogeology Journal, 2005, 13(1):313-316.
    [7] DILLON P, GALE I, CONTRERAS S, et al.Managing aquifer recharge and discharge to sustain irrigation livelihoods under water scarcity and climate change[C]//BLÖSCHL G.Improving integrated surface and groundwater resources management in a vulnerable and changing world.Hyderabad, India: IAHS & IAH, 2009: 1-12.
    [8] CHANGMING L, JINGJIE Y, KENDY E.Groundwater exploitation and its impact on the environment in the North China Plain[J]. Water International, 2001, 26(2):265-272. doi: 10.1080-02508060108686913/
    [9] 李雪, 张元, 周鹏鹏, 等.长时间尺度的京津冀平原区地下水动态模拟及演变特征[J].干旱区资源与环境, 2017, 31(3):164-170. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201703027

    LI Xue, ZHANG Yuan, ZHOU Pengpeng, et al.Dynamics and evolution of the groundwater in Beijing-Tianjin-Hebei Plain in a long time scale[J]. Journal of Arid Land Resources and Environment, 2017, 31(3):164-170. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201703027
    [10] JIA X, O'CONNOR D, HOU D, et al.Groundwater depletion and contamination:spatial distribution of groundwater resources sustainability in China[J]. Science of the Total Environment, 2019, 672:551-562.
    [11] 欧志亮.北京市潮白河地下水库建库条件与方案建议[J].城市地质, 2017, 12(2):7-12. http://d.old.wanfangdata.com.cn/Periodical/csdz201702002

    OU Zhiliang.Suggestions on the conditions of building the Chaobai river groundwater reservoir in Beijing[J]. Urban Geology, 2017, 12(2):7-12. http://d.old.wanfangdata.com.cn/Periodical/csdz201702002
    [12] GUANGMING X, PAN B, ANNA L.A study of the groundwater reservoirs and regulation in the alluvial fan of the Hutuo River[J]. Journal of Groundwater Science and Engineering, 2013, 1(2):24-31.
    [13] MAPLES S R, FOGG G E, MAXWELL R M.Modeling managed aquifer recharge processes in a highly heterogeneous, semi-confined aquifer system[J]. Hydrogeology Journal, 2019, 27(8):2869-2888.
    [14] LI X, YE S Y, WEI A H, et al.Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China[J]. Hydrogeology Journal, 2017, 25(6):1733-1744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e141980b68db2e858dc2ea7f636b3d4
    [15] HUMBERTO H A M, RAÚL C C, LORENZO V V, et al.Aquifer recharge with treated municipal wastewater:long-term experience at San Luis Río Colorado, Sonora[J]. Sustainable Water Resources Management, 2017:1-10.
    [16] VALVERDE J P B, STEFAN C, NAVA A P, et al.Inventory of managed aquifer recharge schemes in Latin America and the Caribbean[J]. Sustainable Water Resources Management, 2018, 4(2):163-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=697cda3efe8bfd60f4d44f5d5ed8a07e
    [17] BOISSON A, BAISSET M, ALAZARD M, et al.Comparison of surface and groundwater balance approaches in the evaluation of managed aquifer recharge structures:case of a percolation tank in a crystalline aquifer in India[J]. Journal of Hydrology, 2014, 519:1620-1633.
    [18] WANG W, ZHOU Y, SUN X, et al.Development of managed aquifer recharge in China[J]. Boletín Geológico y Minero, 2014, 125(2):227-233.
    [19] FUENTES I, VERVOORT R W.Site suitability and water availability for a managed aquifer recharge project in the Namoi Basin, Australia[J]. Journal of Hydrology:Regional Studies, 2020.doi: 10.1016/j.ejrh.2019.100657.
    [20] GHAYOUMIAN J, SARAVI M M, FEIZNIA S, et al.Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran[J]. Journal of Asian Earth Sciences, 2007, 30(2):364-374. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f28119132c46b1d41bfde4f187a37e5f
    [21] 张光辉, 费宇红, 申建梅, 等.太行山前平原地下调蓄远景区与类型[J].水文地质工程地质, 2004, 31(6):24-28. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz200406005

    ZHANG Guanghui, FEI Yuhong, SHEN Jianmei, et al.Prospective areas and types of aquifer reserve in the Taihang Piedmont Plain[J]. Hydrogeology & Engineering Geology, 2004, 31(6):24-28. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz200406005
    [22] 张景华, 李世君, 李阳, 等.北京地下水库建库条件及可利用库容初步分析[J].城市地质, 2017, 12(1):70-76. http://d.old.wanfangdata.com.cn/Periodical/csdz201701013

    ZHANG Jinghua, LI Shijun, LI Yang, et al.Analysis of construction conditions and available storage capacity of the underground reservoir in Beijing Basin[J]. Urban Geology, 2017, 12(1):70-76. http://d.old.wanfangdata.com.cn/Periodical/csdz201701013
    [23] HAMOUDA M A A.Vulnerability assessment of water resources systems in the eastern Nile Basin to environmental factors[D]. Cairo, Egypt: Institute of African Research and Studies, Cairo University, 2006: 23-32.
    [24] GARI S R, NEWTON A, ICELY J D.A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems[J]. Ocean & Coastal Management, 2015, 103:63-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f53a8ceb13ba9e3f2c27b741a125cf27
    [25] NIEMI G J, MCDONALD M E.Application of ecological indicators[J]. Annual Review of Ecology, Evolution and Systematics, 2004, 35:89-111. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503030
    [26] MAXIM L, SPANGENBERG J H, O'CONNOR M.An analysis of risks for biodiversity under the DPSIR framework[J]. Ecological Economics, 2009, 69(1):12-23.
    [27] GARI S R, ORTIZ GUERRERO C E, A-URIBE B, et al.A DPSIR-analysis of water uses and related water quality issues in the Colombian Alto and Medio Dagua Community Council[J]. Water Science, 2018, 32(2):318-337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1016/j.wsj.2018.06.001
    [28] EHARA M, HYAKUMURA K, KUROSAWA K, et al.Addressing maladaptive coping strategies of local communities to changes in ecosystem service provisions using the DPSIR framework[J]. Ecological Economics, 2018, 149:226-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=881493d115847f980c8f3a36d1909d27
    [29] 孙晓蓉, 邵超峰.基于DPSIR模型的天津滨海新区环境风险变化趋势分析[J].环境科学研究, 2010, 23(1):68-73. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20100111&flag=1

    SUN Xiaorong, SHAO Chaofeng.Study on the variation trends of regional environmental risk for Tianjin Binhai new area based on DPSIR model[J]. Research of Environmental Sciences, 2010, 23(1):68-73. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20100111&flag=1
    [30] MALEKMOHAMMADI B, JAHANISHAKIB F.Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model[J]. Ecological Indicators, 2017, 82:293-303. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0f340ccf25eb21320e7f320376631def
    [31] WANG S J, MA H, ZHAO Y B.Exploring the relationship between urbanization and the eco-environment:a case study of Beijing-Tianjin-Hebei Region[J]. Ecological Indicators, 2014, 45:171-183.
    [32] GUO K, WANG L Q.Change of resource environmental bearing capacity of Beijing-Tianjin-Hebei Region and its driving factors[J]. Chinese Journal of Applied Ecology, 2015, 26(12):3818-3826. http://d.old.wanfangdata.com.cn/Periodical/yystxb201512034
    [33] WU X, QI Y, SHEN Y, et al.Change of winter wheat planting area and its impacts on groundwater depletion in the North China Plain[J]. Journal of Geographical Sciences, 2019, 29(6):891-908. http://d.old.wanfangdata.com.cn/Periodical/dlxb-e201906003
    [34] MACHIWAL D, JHA M K, SINGH V P, et al.Assessment and mapping of groundwater vulnerability to pollution:current status and challenges[J]. Earth-Science Reviews, 2018, 185:901-927.
    [35] National Research Council.Ground water vulnerability assessment:predicting relative contamination potential under conditions of uncertainty[M]. Washington DC:National Academies Press, 1993.
    [36] 万亮婷, 刘愿英, 史康立, 等.地下水人工回灌经济效益分析浅析[J].中国农学通报, 2006, 22(9):479. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200609117

    WAN Liangting, LIU Yuanying, SHI Kangli, et al.Economic benefit analysis of groundwater artificial recharge[J]. Chinese Agricultural Science Bulletin, 2006, 22(9):479. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200609117
    [37] 李建华.石家庄市滹沱河地下水库效益分析[J].河北水利, 2012(7):22-22. http://d.old.wanfangdata.com.cn/Periodical/hebsl201207018
    [38] 刘博.城镇地下水水源地安全评价方法及应用[D].长春: 吉林大学, 2015.
    [39] 张兆吉, 费宇红, 郭春艳, 等.华北平原区域地下水污染评价[J].吉林大学学报(地球科学版), 2012, 42(5):1456-1461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxdb-kxjy201521150

    ZHANG Zhaoji, FEI Yuhong, GUO Chunyan, et al.Regional groundwater contamination assessment in the North China Plain[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(5):1456-1461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxdb-kxjy201521150
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  703
  • HTML全文浏览量:  35
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20
  • 修回日期:  2020-05-06
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回