Screening Method of Preferred Groundwater Recharge Source Fields in the Beijing-Tianjin-Hebei Region Based on Improved DPSIR Model
-
摘要: 京津冀地区地下水水源地超采问题严重,引发了地下水水位持续下降等一系列问题,南水北调中线输水贯通为该地区地下水水源地的回补涵养提供了契机;然而,京津冀地区众多地下水水源地在回补条件和回补需求等方面各异,在有限回补水源条件下,亟需建立该地区地下水水源地回补优先性评价和分级方法,从而筛选出可优先回补的水源地.借助DPSIR(驱动力—压力—状态—影响—响应)评价模型理念,在综合分析地下水水源地产生资源环境问题的根本原因、存在压力、不利状态、对人类社会的影响以及地下水回补工程产生的响应基础上,解析影响地下水回补的关键因素,并以此为依据进行专家咨询和评分,建立了涵盖5个准则和21个指标的综合评价指标集.在阈值确定和数据标准化基础上,依据评分数据确定各准则和指标权重,最后通过综合指数法构建基于DPSIR模型的地下水水源地回补优先性评价体系,并对京津冀地区具有代表性的76个浅层地下水水源地进行了评价和分级.结果表明:以南水北调中线工程为轴,分布在山前冲洪积扇的32个浅层地下水水源地为优先和较优先回补等级,从山前至中部平原地下水水源地回补优先性逐渐变差;回补水源类型、浅层含水层储水空间、区域浅层地下水质量、浅层含水层防污性能是影响评价结果的最重要指标.研究显示,位于京津冀山前的冲洪积扇地区的地下水水源地应最优先考虑回补,中部平原地下水水源地大多为一般或暂不考虑,东部平原区地下水水源地普遍不适宜回补.该评价方法指标选取和权重计算科学客观,可为京津冀地下水水源地的涵养提供标靶和决策的理论支撑.Abstract: The over-exploitation of groundwater sources in the Beijing-Tianjin-Hebei Region has caused the serious problems, including continuous decline in groundwater levels. The completion of the mid-route South-to-North Water Transfer Project provides opportunities for the recharge and protection of groundwater sources in the region. However, the groundwater sources in the Beijing-Tianjin-Hebei Region vary in recharge conditions and needs. A comprehensive method for priority evaluation and classification of groundwater sources should be established to screen groundwater with high priority under limited conditions of water recharged. This study developed a comprehensive evaluation method based on the improved DPSIR (Drive-Pressure-State-Impact-Response) evaluation model. After analyzing causes of environmental and resource problems, existing pressures, adverse conditions, impact on human society, and the responses to groundwater recharge projects, this study explained the key factors of groundwater recharge, and sought opinions and collected scores from experts based on the explanations. An assemblage of evaluation indexes consisting of 21 indicators in 5 criteria layers was thus formed. The experts' scores-based weights of criteria and indicators were determined based on the determined threshold and data standardization. The priority evaluation system of groundwater recharge based on DPSIR through synthetical index method was formed, and 76 shallow groundwater sources in the Beijing-Tianjin-Hebei Region were evaluated and graded. The results show that 32 shallow groundwater sources distributed in the alluvial-pluvial fan regions on the axis of middle route of the South-to-North Water Transfer Project are ranked as 'high priority' and 'less priority' levels and the priority gradually decreases from the alluvial-pluvial fan to the central and coastal plain. The type and space of water recharge, regional groundwater quality and vulnerability are the most important indicators of the evaluation system. This study indicates that the water source of the alluvial-pluvial fan regions in the Beijing-Tianjin-Hebei Region is the top priority, the water source in the mid of the plain is of middle or low priorities, and ones in the eastern plain are not suitable for recharge. The selection of the system indicators and weight calculation are scientific and objective, providing an example and theoretical support for the recharge of groundwater source in the Beijing-Tianjin-Hebei Region.
-
表 1 DPSIR准则层专家打分及检验结果
Table 1. Results of experts′ evaluation and global tests of DPSIR criteria
准则层 专家打分人数 集中程度(EC) 离散程度(δ) 协调程度(V) 极重要 很重要 重要 一般 不重要 驱动 7 6 5 2 0 3.90 1.02 0.26 压力 9 9 2 0 0 4.35 0.67 0.15 状态 11 6 3 0 0 4.40 0.75 0.17 影响 7 8 3 2 0 4.00 0.97 0.24 响应 10 9 1 0 0 4.45 0.60 0.14 表 2 地水源地回补优先性指标专家打分及检验结果
Table 2. Results of experts marking and global test of DPSIR indicators
准则层 指标层 专家打分人数 集中程度(EC) 离散程度(δ) 协调程度(V) 极重要 很重要 重要 一般 不重要 驱动 人口数量 3 5 6 5 1 3.20 1.15 0.35 地区GDP增速 4 9 5 1 1 3.70 1.03 0.27 压力 浅层地下水开采强度 7 4 5 3 1 3.65 1.27 0.35 单位面积农药(化肥)施用量 6 6 5 2 1 3.70 1.17 0.32 生活污水排放强度 7 7 3 2 1 3.85 1.18 0.31 工业废水排放强度 7 7 5 0 1 3.95 1.05 0.27 状态 区域浅层地下水水位降幅 7 7 4 1 1 3.90 1.12 0.29 区域地下水位下降速率 7 8 3 2 0 4.00 0.97 0.24 区域浅层地下水质量 9 7 3 1 0 4.20 0.89 0.21 区域地下水质量变化 7 8 3 1 1 3.95 1.10 0.28 浅层含水层防污性能 8 7 5 0 0 4.15 0.81 0.20 影响 浅层含水层疏干程度 8 4 5 2 1 3.80 1.24 0.33 地面沉降面积占比 6 5 5 3 1 3.60 1.23 0.34 生活用水单价 6 5 5 4 0 3.65 1.14 0.31 响应 回补水源类型 13 4 3 0 0 4.50 0.76 0.16 回补场地距最近水源距离 2 6 9 3 0 3.35 0.87 0.26 回补方式 6 10 3 1 0 4.05 0.82 0.20 单位供水量减少水价 0 7 7 6 0 3.05 0.82 0.27 可供回补水量 4 6 7 2 1 3.50 1.10 0.31 入渗能力 5 5 7 2 1 3.55 1.14 0.32 浅层含水层储水空间 10 8 2 0 0 4.40 0.68 0.15 表 3 准则层及指标层权重
Table 3. Weights of criteria and indicators
准则层 准则权重 指标 属性 指标权重(W) 驱动 0.184 8 人口数量 正 0.463 8 地区GDP增速 正 0.536 2 压力 0.206 2 浅层地下水开采强度 正 0.240 9 单位面积农药(化肥)施用量 负 0.244 2 生活污水排放强度 负 0.254 1 工业废水排放强度 负 0.260 7 状态 0.208 5 浅层地下水水位降幅 正 0.193 1 区域地下水位下降速率 正 0.198 0 区域浅层地下水质量 负 0.207 9 区域地下水质量变化 负 0.195 5 浅层含水层防污性能 正 0.205 4 影响 0.189 6 浅层含水层疏干程度 正 0.343 9 地面沉降面积占比 正 0.325 8 生活用水单价 正 0.330 3 响应 0.210 9 回补水源类型 正 0.170 5 回补场地距最近水源距离 负 0.126 9 回补方式 正 0.153 4 单位供水量减少水价 正 0.115 5 可供回补水量 正 0.132 6 入渗能力 正 0.134 5 浅层含水层储水空间 正 0.166 7 -
[1] 席北斗, 李娟, 汪洋, 等.京津冀地区地下水污染防治现状, 问题及科技发展对策[J].环境科学研究, 2019, 32(1):1-9. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190101&flag=1XI Beidou, LI Juan, WANG Yang, et al.Strengthening the innovation capability of groundwater science and technology to support the coordinated development of Beijing-Tianjin-Hebei Region:status quo, problems and goals[J]. Research of Environmental Sciences, 2019, 32(1):1-9. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190101&flag=1 [2] CHEN Z, JIANG W, WANG W, et al.The impact of precipitation deficit and urbanization on variations in water storage in the Beijing-Tianjin-Hebei urban agglomeration[J]. Remote Sensing, 2018.doi: 10.3390/rs10010004. [3] ZHOU C, GONG H, CHEN B, et al.Land subsidence response to different land use types and water resource utilization in Beijing-Tianjin-Hebei, China[J]. Remote Sensing, 2020.doi: 10.3390/rs12030457. [4] DILLON P, STUYFZAND P, GRISCHEK T, et al.Sixty years of global progress in managed aquifer recharge[J]. Hydrogeology Journal, 2019, 27(1):1-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=148f0b0ee488a2d14ac6c83b7cd14f65 [5] BOUWER H.Artificial recharge of groundwater:hydrogeology and engineering[J]. Hydrogeology Journal, 2002, 10(1):121-142. http://d.old.wanfangdata.com.cn/Periodical/jes-e201505018 [6] DILLON P.Future management of aquifer recharge[J]. Hydrogeology Journal, 2005, 13(1):313-316. [7] DILLON P, GALE I, CONTRERAS S, et al.Managing aquifer recharge and discharge to sustain irrigation livelihoods under water scarcity and climate change[C]//BLÖSCHL G.Improving integrated surface and groundwater resources management in a vulnerable and changing world.Hyderabad, India: IAHS & IAH, 2009: 1-12. [8] CHANGMING L, JINGJIE Y, KENDY E.Groundwater exploitation and its impact on the environment in the North China Plain[J]. Water International, 2001, 26(2):265-272. doi: 10.1080-02508060108686913/ [9] 李雪, 张元, 周鹏鹏, 等.长时间尺度的京津冀平原区地下水动态模拟及演变特征[J].干旱区资源与环境, 2017, 31(3):164-170. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201703027LI Xue, ZHANG Yuan, ZHOU Pengpeng, et al.Dynamics and evolution of the groundwater in Beijing-Tianjin-Hebei Plain in a long time scale[J]. Journal of Arid Land Resources and Environment, 2017, 31(3):164-170. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201703027 [10] JIA X, O'CONNOR D, HOU D, et al.Groundwater depletion and contamination:spatial distribution of groundwater resources sustainability in China[J]. Science of the Total Environment, 2019, 672:551-562. [11] 欧志亮.北京市潮白河地下水库建库条件与方案建议[J].城市地质, 2017, 12(2):7-12. http://d.old.wanfangdata.com.cn/Periodical/csdz201702002OU Zhiliang.Suggestions on the conditions of building the Chaobai river groundwater reservoir in Beijing[J]. Urban Geology, 2017, 12(2):7-12. http://d.old.wanfangdata.com.cn/Periodical/csdz201702002 [12] GUANGMING X, PAN B, ANNA L.A study of the groundwater reservoirs and regulation in the alluvial fan of the Hutuo River[J]. Journal of Groundwater Science and Engineering, 2013, 1(2):24-31. [13] MAPLES S R, FOGG G E, MAXWELL R M.Modeling managed aquifer recharge processes in a highly heterogeneous, semi-confined aquifer system[J]. Hydrogeology Journal, 2019, 27(8):2869-2888. [14] LI X, YE S Y, WEI A H, et al.Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China[J]. Hydrogeology Journal, 2017, 25(6):1733-1744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e141980b68db2e858dc2ea7f636b3d4 [15] HUMBERTO H A M, RAÚL C C, LORENZO V V, et al.Aquifer recharge with treated municipal wastewater:long-term experience at San Luis Río Colorado, Sonora[J]. Sustainable Water Resources Management, 2017:1-10. [16] VALVERDE J P B, STEFAN C, NAVA A P, et al.Inventory of managed aquifer recharge schemes in Latin America and the Caribbean[J]. Sustainable Water Resources Management, 2018, 4(2):163-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=697cda3efe8bfd60f4d44f5d5ed8a07e [17] BOISSON A, BAISSET M, ALAZARD M, et al.Comparison of surface and groundwater balance approaches in the evaluation of managed aquifer recharge structures:case of a percolation tank in a crystalline aquifer in India[J]. Journal of Hydrology, 2014, 519:1620-1633. [18] WANG W, ZHOU Y, SUN X, et al.Development of managed aquifer recharge in China[J]. Boletín Geológico y Minero, 2014, 125(2):227-233. [19] FUENTES I, VERVOORT R W.Site suitability and water availability for a managed aquifer recharge project in the Namoi Basin, Australia[J]. Journal of Hydrology:Regional Studies, 2020.doi: 10.1016/j.ejrh.2019.100657. [20] GHAYOUMIAN J, SARAVI M M, FEIZNIA S, et al.Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran[J]. Journal of Asian Earth Sciences, 2007, 30(2):364-374. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f28119132c46b1d41bfde4f187a37e5f [21] 张光辉, 费宇红, 申建梅, 等.太行山前平原地下调蓄远景区与类型[J].水文地质工程地质, 2004, 31(6):24-28. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz200406005ZHANG Guanghui, FEI Yuhong, SHEN Jianmei, et al.Prospective areas and types of aquifer reserve in the Taihang Piedmont Plain[J]. Hydrogeology & Engineering Geology, 2004, 31(6):24-28. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz200406005 [22] 张景华, 李世君, 李阳, 等.北京地下水库建库条件及可利用库容初步分析[J].城市地质, 2017, 12(1):70-76. http://d.old.wanfangdata.com.cn/Periodical/csdz201701013ZHANG Jinghua, LI Shijun, LI Yang, et al.Analysis of construction conditions and available storage capacity of the underground reservoir in Beijing Basin[J]. Urban Geology, 2017, 12(1):70-76. http://d.old.wanfangdata.com.cn/Periodical/csdz201701013 [23] HAMOUDA M A A.Vulnerability assessment of water resources systems in the eastern Nile Basin to environmental factors[D]. Cairo, Egypt: Institute of African Research and Studies, Cairo University, 2006: 23-32. [24] GARI S R, NEWTON A, ICELY J D.A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems[J]. Ocean & Coastal Management, 2015, 103:63-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f53a8ceb13ba9e3f2c27b741a125cf27 [25] NIEMI G J, MCDONALD M E.Application of ecological indicators[J]. Annual Review of Ecology, Evolution and Systematics, 2004, 35:89-111. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503030 [26] MAXIM L, SPANGENBERG J H, O'CONNOR M.An analysis of risks for biodiversity under the DPSIR framework[J]. Ecological Economics, 2009, 69(1):12-23. [27] GARI S R, ORTIZ GUERRERO C E, A-URIBE B, et al.A DPSIR-analysis of water uses and related water quality issues in the Colombian Alto and Medio Dagua Community Council[J]. Water Science, 2018, 32(2):318-337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1016/j.wsj.2018.06.001 [28] EHARA M, HYAKUMURA K, KUROSAWA K, et al.Addressing maladaptive coping strategies of local communities to changes in ecosystem service provisions using the DPSIR framework[J]. Ecological Economics, 2018, 149:226-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=881493d115847f980c8f3a36d1909d27 [29] 孙晓蓉, 邵超峰.基于DPSIR模型的天津滨海新区环境风险变化趋势分析[J].环境科学研究, 2010, 23(1):68-73. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20100111&flag=1SUN Xiaorong, SHAO Chaofeng.Study on the variation trends of regional environmental risk for Tianjin Binhai new area based on DPSIR model[J]. Research of Environmental Sciences, 2010, 23(1):68-73. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20100111&flag=1 [30] MALEKMOHAMMADI B, JAHANISHAKIB F.Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model[J]. Ecological Indicators, 2017, 82:293-303. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0f340ccf25eb21320e7f320376631def [31] WANG S J, MA H, ZHAO Y B.Exploring the relationship between urbanization and the eco-environment:a case study of Beijing-Tianjin-Hebei Region[J]. Ecological Indicators, 2014, 45:171-183. [32] GUO K, WANG L Q.Change of resource environmental bearing capacity of Beijing-Tianjin-Hebei Region and its driving factors[J]. Chinese Journal of Applied Ecology, 2015, 26(12):3818-3826. http://d.old.wanfangdata.com.cn/Periodical/yystxb201512034 [33] WU X, QI Y, SHEN Y, et al.Change of winter wheat planting area and its impacts on groundwater depletion in the North China Plain[J]. Journal of Geographical Sciences, 2019, 29(6):891-908. http://d.old.wanfangdata.com.cn/Periodical/dlxb-e201906003 [34] MACHIWAL D, JHA M K, SINGH V P, et al.Assessment and mapping of groundwater vulnerability to pollution:current status and challenges[J]. Earth-Science Reviews, 2018, 185:901-927. [35] National Research Council.Ground water vulnerability assessment:predicting relative contamination potential under conditions of uncertainty[M]. Washington DC:National Academies Press, 1993. [36] 万亮婷, 刘愿英, 史康立, 等.地下水人工回灌经济效益分析浅析[J].中国农学通报, 2006, 22(9):479. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200609117WAN Liangting, LIU Yuanying, SHI Kangli, et al.Economic benefit analysis of groundwater artificial recharge[J]. Chinese Agricultural Science Bulletin, 2006, 22(9):479. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200609117 [37] 李建华.石家庄市滹沱河地下水库效益分析[J].河北水利, 2012(7):22-22. http://d.old.wanfangdata.com.cn/Periodical/hebsl201207018 [38] 刘博.城镇地下水水源地安全评价方法及应用[D].长春: 吉林大学, 2015. [39] 张兆吉, 费宇红, 郭春艳, 等.华北平原区域地下水污染评价[J].吉林大学学报(地球科学版), 2012, 42(5):1456-1461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxdb-kxjy201521150ZHANG Zhaoji, FEI Yuhong, GUO Chunyan, et al.Regional groundwater contamination assessment in the North China Plain[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(5):1456-1461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxdb-kxjy201521150 -