留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

京津冀化工场地地下水污染修复治理对策研究

宋易南 侯德义 赵勇胜 朱瑾 张琪 秦传玉 王文峰

宋易南, 侯德义, 赵勇胜, 朱瑾, 张琪, 秦传玉, 王文峰. 京津冀化工场地地下水污染修复治理对策研究[J]. 环境科学研究, 2020, 33(6): 1345-1356. doi: 10.13198/j.issn.1001-6929.2020.05.23
引用本文: 宋易南, 侯德义, 赵勇胜, 朱瑾, 张琪, 秦传玉, 王文峰. 京津冀化工场地地下水污染修复治理对策研究[J]. 环境科学研究, 2020, 33(6): 1345-1356. doi: 10.13198/j.issn.1001-6929.2020.05.23
SONG Yinan, HOU Deyi, ZHAO Yongsheng, ZHU Jin, ZHANG Qi, QIN Chuanyu, WANG Wenfeng. Remediation Strategies for Contaminated Groundwater at Chemical Industrial Sites in the Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2020, 33(6): 1345-1356. doi: 10.13198/j.issn.1001-6929.2020.05.23
Citation: SONG Yinan, HOU Deyi, ZHAO Yongsheng, ZHU Jin, ZHANG Qi, QIN Chuanyu, WANG Wenfeng. Remediation Strategies for Contaminated Groundwater at Chemical Industrial Sites in the Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2020, 33(6): 1345-1356. doi: 10.13198/j.issn.1001-6929.2020.05.23

京津冀化工场地地下水污染修复治理对策研究

doi: 10.13198/j.issn.1001-6929.2020.05.23
基金项目: 

国家水体污染控制与治理科技重大专项 2018ZX07109-003

详细信息
    作者简介:

    宋易南(1991-), 男, 湖北武汉人, syn626@126.com

    通讯作者:

    侯德义(1980-), 男, 湖南湘潭人, 副教授, 博士, 博导, 主要从事土壤与地下水污染修复研究, houdeyi@mail.tsinghua.edu.cn

  • 中图分类号: X523

Remediation Strategies for Contaminated Groundwater at Chemical Industrial Sites in the Beijing-Tianjin-Hebei Region

Funds: 

National Major Science and Technology Program for Water Pollution Control and Treatment, China 2018ZX07109-003

  • 摘要: 京津冀化工场地地下水污染问题突出,严重威胁当地饮水安全和可持续发展,亟待开展修复治理.针对京津冀化工场地地下水污染现状,分析了化工场地地下水污染修复面临的挑战,提出了分区分级的修复治理对策.结果表明:①针对可能存在NAPL(非水相液体污染物)的高风险污染源区,采取高强度修复措施,以实现污染物总量的快速削减;②针对中度污染区,采取单位能耗强度更低的长效修复措施,降低修复成本和二次污染风险;③针对低风险的轻度污染区,采取风险管控措施.结合对典型化工场地地下水污染修复技术的分析,提出的分区分级修复治理对策具有以下特点:①多技术耦合,形成互补效应,可提高修复效率;②节约修复成本,降低二次环境影响;③体现基于风险的原则,避免过度修复.

     

  • 图  1  京津冀化工场地地下水污染概况

    Figure  1.  General situation of groundwater contamination at chemical industrial sites in the Beijing-Tianjin-Hebei Region

    图  2  反向扩散、拖尾及反弹现象[25]

    Figure  2.  Back diffusion tailing and rebound faced by groundwater remediation[25]

    图  3  分区分级的化工场地地下水污染治理对策

    Figure  3.  Groundwater remediation strategies for chemical industrial sites

    图  4  SDS-正丁醇复配体系增溶增流效果

    Figure  4.  Nitrobenzene removal promotion by SDS-n-butanol system

    表  1  化工场地典型污染物及其特性[13-17]

    Table  1.   Types and features of characteristic contaminants in chemical industrial sites[13-17]

    种类 典型污染物 特征
    苯系物 苯、甲苯、二甲苯等 迁移性强、挥发性强、易降解
    氯代烃 四氯化碳、三氯乙烯、二氯乙烷、氯乙烯 易迁移、挥发性强、难降解、高毒性
    石油烃 汽油、柴油、机油等 生态毒性大
    持久性有机物 氯酚、多氯联苯、多环芳烃、滴滴涕、六六六、氯丹、林丹 挥发性弱、难降解、高毒性
    重金属 六价铬、镉、砷、铅 迁移性差(除六价铬外)、难去除
    下载: 导出CSV

    表  2  MPE适用性分析[50-51]

    Table  2.   Favorable parameters for MPE application[50-51]

    项目 参数 适宜范围
    污染物性质 污染物类型 VOCs和石油烃
    亨利系数(20 ℃) >0.01
    蒸气压(20 ℃) >1.00 mmHg
    场地条件 抽水量 可使液位下降(双泵系统); <5 gpm (单泵系统)
    最大污染深度 无限制(双泵系统);6~15 m (双泵系统)
    含水层介质 砂土至黏土
    LNAPL厚度 >15 cm
    下载: 导出CSV

    表  3  化工污染场地ISTD修复案例[49]

    Table  3.   Cases of ISTD applications at chemical sites[49]

    污染物 NAPL区域土壤性质 修复周期/d 加热方式 加热温度/℃ 修复前平均浓度/(mg/kg) 修复后平均浓度/(mg/kg) 去除率/%
    四氯乙烯 致密黏土 120 传导加热 100 2 700.00 0.01 >99.85
    三氯乙烯 裂隙黏土 150~180 传导加热 99 99.70 0.07
    三氯乙酸 裂隙黏土 150~180 传导加热 99 31.90 0.04
    四氯乙烯 黏土、粉砂、砂土 330 传导加热 100 2 864.00 4.20
    四氯乙烯 黏土、砂土、砾石 169 传导加热 100 78.00 0.01
    四氯乙烯 黏土、砂土、砾石 107 传导加热 100 337.00 0.05
    四氯乙烯 煤渣、砂土、淤泥 192 传导加热 150 125.00 0.04
    下载: 导出CSV

    表  4  ISCO适用性分析[73]

    Table  4.   Favorable parameters for ISCO application[73]

    项目 参数 适宜范围
    污染物 污染物种类 苯系物、MTBE、石油烃、氯代烃、部分PAHs
    渗透系数 >10-6 cm/s
    场地条件 土壤有机质含量 <0.1%(以干质量计)
    地下水水位深度 >1.5 m
    LNAPL厚度 <15 cm
    下载: 导出CSV

    表  5  缓释材料在实际场地的应用案例

    Table  5.   Field applications of slow-release materials for groundwater remediation

    缓释材料构成 目标污染物 技术应用方式 研究时间 研究结果 数据来源
    KMnO4-石蜡 三氯乙烯 PRB-ISCO 1.5 a 投加于修复井,污染去除率在67%~85%之间 文献[90]
    KMnO4-石蜡 三氯乙烯 PRB-ISCO 5 a 氧化剂仍可持续释放数年 文献[91]
    植物油-蔗糖蜜-表面活性剂 三氯乙烯 EISB 230 d 50 d后三氯乙烯浓度降低了99%(初始浓度为1.87 mg/kg) 文献[92]
    过硫酸盐-ZVI-石蜡 ISCO 120 d 污染羽苯浓度出现了不同程度的降低,仍在持续监测中 该研究
    下载: 导出CSV

    表  6  空气注入技术修复案例[100]

    Table  6.   Cases of AS applications at chemical industrial sites[100]

    目标污染物 土壤类型 注气井间距/m 注气方式 修复周期/月 削减率/%
    修复结束 后期监测
    四氯乙烯、三氯乙烯、二氯乙烷 12 连续 7.5 98.3 97.2
    三氯乙酸、三氯乙烯、二氯乙烷 8 脉冲为6 h/循环 8 98.2 95.3
    三氯乙烯 砂土 24 脉冲为4 h/循环 15 98.5 99.4
    苯系物 砂土 12~18 连续 4 >99.9 >99.9
    苯系物 砂土、粉土 12 脉冲为16 h/循环 6 -20.5 99.7
    砂土、黏土 24 脉冲 10 98.4 99.8
    石油烃 砂土 10~14 脉冲为12 h/循环 16 90 93.1
    苯系物 砂土、粉土 4~6 脉冲为12 h/循环 7 96.4 46.9
    苯系物 砾石、粉土、黏土 9 脉冲为28 d/循环 20 99.9 91.5
    下载: 导出CSV

    表  7  不同生物修复技术的目标污染物类型[101]

    Table  7.   Target contaminants for different bioremediation techniques[101]

    生物修复技术 目标污染物 降解途径
    好氧生物修复 非卤代有机化合物 氧作为电子受体,直接代谢
    厌氧氧化生物修复 部分类石油污染物 硝酸盐和硫酸盐作为电子受体,直接代谢
    厌氧还原生物修复 氯化溶剂(四氯乙烯、三氯乙烯和三氯乙酸等)、六价铬 生物可利用有机碳作为电子供体,直接代谢
    下载: 导出CSV

    表  8  典型生物修复与其他技术耦合修复地下水方式[47]

    Table  8.   Typical groundwater remediation combining bioremediation and other remedies[47]

    耦合技术组合 目标污染物 修复策略
    ISCO+好氧/厌氧生物修复 苯、MTBE 以过硫酸盐/过氧化钙作为氧化剂修复高浓度污染羽,过氧化钙的释氧作用和硫酸盐作为电子受体可分别促进好氧和厌氧生物降解作用
    ISTD+好氧生物修复 苯并[a]芘、五氯苯酚和四氯二苯并对二英 前期采用蒸汽热脱附,当修复效率开始下降时,结合生物通风或生物曝气技术促进好氧生物降解作用
    ISCR+厌氧生物修复 含氯挥发性有机物 前期采用ISCR将高浓度污染物修复至较低浓度后,利用厌氧生物修复去除污染物至修复目标值
    ISTD+生物修复 苯、甲苯和萘 前期采用蒸汽热脱附,当污染物降至一定浓度时ISTD修复效率开始降低,利用生物修复去除污染物
    下载: 导出CSV
  • [1] Oxford Economics.The global chemical industry: catalyzing growth and addressing our world's sustainability challenges[R]. Washington DC: International Council of Chemical Associations, 2019.
    [2] 陈梦舫.我国工业污染场地土壤与地下水重金属修复技术综述[J].中国科学院院刊, 2014, 29(3):327-335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201403010

    CHEN Mengfang.Review on heavy metal remediation technology of soil and groundwater at industrially contaminated site in China[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3):327-335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201403010
    [3] 国务院.水污染防治行动计划[R].北京: 国务院, 2015.
    [4] 国务院.土壤污染防治行动计划[R].北京: 国务院, 2016.
    [5] 国务院.中华人民共和国土壤污染防治法[R].北京: 国务院, 2019.
    [6] 席北斗, 李娟, 汪洋, 等.京津冀地区地下水污染防治现状、问题及科技发展对策[J].环境科学研究, 2019, 32(1):1-9. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190101&flag=1

    XI Beidou, LI Juan, WANG Yang, et al.Strengthening the innovation capability of groundwater science and technology to support the coordinated development of Beijing-Tianjin-Hebei Region:status, problems and goals[J]. Research of Environmental Sciences, 2019, 32(1):1-9. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190101&flag=1
    [7] 张兆吉.以土壤和地下水治理推动京津冀一体化发展[N].北京: 中国环境报, 2014-09-30[2020-05-11]. http://49.5.6.212/html/2014-09/30/content_18578.htm.
    [8] 国务院.全国地下水污染防治规划(2011-2020年)[R].北京: 国务院, 2011.
    [9] 环境保护部, 国土资源部, 住房和城乡建设部.华北平原地下水污染防治工作方案[R].北京: 环境保护部, 2013.
    [10] 生态环境部, 自然资源部, 住房和城乡建设部, 等.地下水污染防治实施方案[R].北京: 生态环境部, 2019.
    [11] 李仪灵, 朱婧.一图看懂京津冀超级城市群[J].中国公路, 2017, 488(4):32-34. http://d.old.wanfangdata.com.cn/Periodical/zggl201704010
    [12] 陈佳璇, 郭丽婷, 蔺文亭, 等.京津冀区域环境风险特征与演变态势研判[J].环境影响评价, 2018, 40(5):15-20. http://d.old.wanfangdata.com.cn/Periodical/sxhjyst201805003
    [13] US Environmental Protection Agency.Petroleum hydrocarbons and chlorinated solvents differ in their potential for vapor intrusion[R]. Washington DC: Office of Underground Storage Tanks, 2012: 1-5.
    [14] GROSS S A, AVENS H J, BANDUCCI A M, et al.Analysis of btex groundwater concentrations from surface spills associated with hydraulic fracturing operations[J]. Journal of the Air and Waste Management Association, 2013, 63(4):424-432.
    [15] SHAWAI S A.A review on heavy metals contamination in water and soil:effects, sources and phytoremediation techniques[J]. International Journal of Mineral Processing and Extractive Metallurgy, 2017, 2(2):21-27.
    [16] YANG C F, LIU S H, SU Y M, et al.Bioremediation capability evaluation of benzene and sulfolane contaminated groundwater:determination of bioremediation parameters[J]. Science of the Total Environment, 2019, 648:811-818.
    [17] SZÉKÁCS A, MÖRTL M, DARVAS B.Monitoring pesticide residues in surface and ground water in hungary:surveys in 1990-2015[J]. Journal of Chemistry, 2015, 2015:1-15.
    [18] ZHENG H, CAO S.The challenge to sustainable development in china revealed by death villages[J]. Environmental Science & Technology, 2011, 45:9833-9834.
    [19] 杨婧婧.兰州水苯含量严重超标凸显风险管理非常必要热度:极高[J].中国信息安全, 2014, 5:15. http://d.old.wanfangdata.com.cn/Periodical/zgxxaq201405007
    [20] 宋云, 李培中, 郭逸飞.关于兰州石化泄漏导致自来水苯超标事件的解析[J].环境保护, 2015, 43(19):54-57. http://d.old.wanfangdata.com.cn/Periodical/hjbh201519013
    [21] 北京市生态环境局.北京市建设用地土壤污染风险管控和修复名录[R].北京: 北京市生态环境局, 2019: 1-2.
    [22] 河北省生态环境厅.河北省建设用地土壤污染风险管控和修复名录[R].石家庄: 河北省生态环境厅, 2019: 1-2.
    [23] 天津市生态环境局.天津市建设用地土壤污染风险管控和修复名录[R].天津: 天津市生态环境局, 2019: 3-7.
    [24] ITRC (Interstate Technology & Regulatory Council).Remediation management of complex sites[R]. Washington DC: Interstate Technology & Regulatory Council, Remediation Management of Complex Sites, 2017.
    [25] O'CONNOR D, HOU D Y, OK Y S, et al.Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials:a review[J]. Journal of Controlled Release, 2018, 283:200-213.
    [26] PAC T J, BALDOCK J, BRODIE B, et al.In situ chemical oxidation:lessons learned at multiple sites[J]. Remediation Journal, 2019, 29(2):75-91.
    [27] LIU C, BALL W P.Back diffusion of chlorinated solvent contaminants from a natural aquitard to a remediated aquifer under well-controlled field conditions:predictions and measurements[J]. Groundwater, 2005, 40(2):175-184.
    [28] BOGAN B W, TRBOVIC V.Effect of sequestration on PAH degradability with Fenton's reagent: roles of total organic carbon, humin, and soil porosity[J]. Journal of Hazardous Materials, 100(1/2/3): 285-300.
    [29] DONG W H, ZHANG Y, LIN X Y, et al.Prediction of 1, 2, 4-trichlorobenzene natural attenuation in groundwater at a landfill in Kaifeng, China[J]. Environmental Earth Sciences, 2014, 72(3):941-948.
    [30] MAGHREBI M, JANKOVIC I, ALLEN-KING R M, et al.Impacts of transport mechanisms and plume history on tailing of sorbing plumes in heterogeneous porous formations[J]. Advances in Water Resources, 2014, 73:123-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b9736556036f7ba563964fa228ef1638
    [31] BRUSSEAU M L, NELSON N T, ZHANG Z, et al.Source-zone characterization of a chlorinated-solvent contaminated superfund site in Tucson, AZ[J]. Journal of Contaminant Hydrology, 90(1/2): 21-40.
    [32] DE-BARROS F, FERNÀNDEZ-GARCIA D, BOLSTER D, et al.A risk-based probabilistic framework to estimate the endpoint of remediation:concentration rebound by rate-limited mass transfer[J]. Water Resources Research, 2013, 49(4):1929-1942.
    [33] SIEGRIST R L, URYNOWICZ M A, CRIMI M L, et al.Genesis and effects of particles produced during in situ chemical oxidation using permanganate[J]. Journal of Environmental Engineering, 2002, 128(11):1068-1079. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/030913339001400302
    [34] US Environmental Protection Agency.Estimating potential for occurrence of DNAPL at superfund sites[R]. Washington DC: Office of Solid Waste and Emergency Response, 1992: 1-9.
    [35] ITRC (Interstate Technology & Regulatory Council).Integrated DNAPL site strategy[R]. Washington DC: Interstate Technology & Regulatory Council, Integrated DNAPL Site Strategy Team, 2011: 17-18.
    [36] LIU H, BRUTON T A, LI W, et al.Oxidation of benzene by persulfate in the presence of Fe(Ⅲ)- and Mn(Ⅳ)-containing oxides:stoichiometric efficiency and transformation products[J]. Environmental Science & Technology, 2015, 50(2):890-898.
    [37] STUART M, LAPWORTH D.Emerging organic contaminants in groundwater[M]. Berlin:Springer-Verlag Berlin Heidelberg, 2013:259-284.
    [38] LAPWORTH D J, BARAN N, STUART M E, et al.Emerging organic contaminants in groundwater:a review of sources, fate and occurrence[J]. Environmental Pollution, 2012, 163:287-303.
    [39] ITRC (Interstate Technology & Regulatory Council).Key information needed to develop strategies to address environmental releases of per- and polyfluoroalkyl substances (PFASS)[R]. Washington DC: Interstate Technology & Regulatory Council, 2017: 1-2.
    [40] US Environmental Protection Agency.Emerging contaminants: perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)[R]. Washington DC: Office of Solid Waste and Emergency Response, 2014.
    [41] HENDERSON A D, DEMOND A H.Permeability of iron sulfide (FeS)-based materials for groundwater remediation[J]. Water Research, 2013, 47(3):1267-1276.
    [42] LEMMING G, HAUSCHILD M Z, CHAMBON J, et al.Environmental impacts of remediation of a trichloroethene-contaminated site:life cycle assessment of remediation alternatives[J]. Environmental Science & Technology, 2010, 44(23):9163-9169.
    [43] HOU D, AL-TABBAA A.Sustainability:a new imperative in contaminated land remediation[J]. Environmental Science & Policy, 2014, 39(5):25-34. http://d.old.wanfangdata.com.cn/Periodical/zhonggtl201009019
    [44] SONG Y, HOU D, ZHANG J, et al.Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies:a case study at a mega-site in China[J]. Science of the Total Environment, 2018, 610/611:391-401.
    [45] HIGGINS M R, OLSON T M.Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation[J]. Environmental Science & Technology, 2009, 43(24):9432-9438.
    [46] HOU D, AL-TABBAA A, LUO J.Assessing effects of site characteristics on remediation secondary life cycle impact with a generalised framework[J]. Journal of Environmental Planning and Management, 2014, 57(7):1083-1100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/09640568.2013.863754
    [47] US Environmental Protection Agency.Superfund remedy report 15th edition[R]. Washington DC: Office of Land and Emergency Department, 2017: 33-37.
    [48] US Environmental Protection Agency.Multi-phase extraction: state-of-the-practice[R]. Washington DC: Office of Solid Waste and Emergency Response, 1999: 7-9.
    [49] BAKER R, GROHER D, BECKER D.Minimal desaturation found during multi-phase extraction of low permeability soils[J]. Ground Water Currents, 1999, 33:1-2.
    [50] 王磊, 龙涛, 张峰, 等.用于土壤及地下水修复的多相抽提技术研究进展[J].生态与农村环境学报, 2014, 30(2):137-145. http://d.old.wanfangdata.com.cn/Periodical/ncsthj201402001
    [51] US Environmental Protection Agency.Presumptive remedy: supplemental bulletin multiphase extraction (MPE) technology for VOCs in soil and groundwater[R]. Washington DC: Office of Solid Waste and Emergency Response, 1997: 2.
    [52] BORTONI S F, SCHLOSSER R T, BARBOSA M C.Numerical modeling of multiphase extraction (MPE) aiming at LNAPL recovery in tropical soils[J]. Water, 2019, 11(11):2248.
    [53] KACEM M, BENADDA B.Mathematical model for multiphase extraction simulation[J]. Journal of Environmental Engineering, 2018, 144(6):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4b7f330e90fc8c2cee95f661a54cbff2
    [54] QI S, LUO J, O'CONNOR D, et al.A numerical model to optimize LNAPL remediation by multi-phase extraction[J]. Science of the Total Environment, 2020, 718:137309.
    [55] EDWARDS D, LITTLE J, LANIK W, et al.Calibration of a model for volatile organic compound mass removal by multiphase extraction[J]. Journal of Environmental Engineering, 2002, 128(5):472-475.
    [56] USACE (United States Army Corps of Engineers).Engineering and design: multi-phase extraction[R]. Washington DC: United States Army Corps of Engineers, 1999: 157.
    [57] BAKER R S, NIELSEN S G, HERON G, et al.How effective is thermal remediation of dnapl source zones in reducing groundwater concentrations?[J]. Groundwater Monitoring & Remediation, 2016, 36(1):38-53.
    [58] SALE T C, MCWHORTER D B.Steady state mass transfer from single-component dense nonaqueous phase liquids in uniform flow fields[J]. Water Resources Research, 2001, 37(2):393-404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e32b2f7e920bc76fdde51fb101aab653
    [59] HICKNELL B N, MUMFORD K G, KUEPER B H.Laboratory study of creosote removal from sand at elevated temperatures[J]. Journal of Contaminant Hydrology, 2018, 219:40-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1bf213aef99b39afbaf477c6b9c32bd0
    [60] DADRASNIA A, EMENIKE C.Remediation of contaminated sites[M]. London:Intech Open, 2013:65-82.
    [61] JOUSSE E, ATTEIA O, HOHENER P, et al.Removal of NAPL from columns by oxidation, sparging, surfactant and thermal treatment[J]. Chemosphere, 2017, 188:182-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d1ee40c3204d3ecb0483f69b7d615c87
    [62] KINGSTON J L T, DAHLEN P R, JOHNSON P C.State-of-the-practice review of in situ thermal technologies[J]. Groundwater Monitoring & Remediation, 2010, 30(4):64-72.
    [63] KINGSTON J L T, DAHLEN P R, JOHNSON P C.Assessment of groundwater quality improvements and mass discharge reductions at five in situ electrical resistance heating remediation sites[J]. Ground Water Monitoring and Remediation, 2012, 32(3):41-51.
    [64] PARKER J C, KIM U, FORTUNE A, et al.Data analysis and modeling to optimize thermal treatment cost and performance[J]. Ground Water Monitoring and Remediation, 2017, 37(1):51-66.
    [65] BRETON-DEVAL L, RIOS-LEAL E, POGGI-VARALDO H M, et al.Biodegradability of nonionic surfactant used in the remediation of groundwaters polluted with PCE[J]. Water Environment Research, 2016, 88(11):2159-2168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2175/106143016X14733681695564
    [66] CHEN S S, HUANG Y C, KUO T Y.The remediation of perchloroethylene contaminated groundwater by nanoscale iron reactive barrier integrated with surfactant and electrokinetics[J]. Ground Water Monitoring and Remediation, 2010, 30(4):90-98.
    [67] SABA T, ILLANGASEKARE T H, EWING J.Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field[J]. Journal of Contaminant Hydrology, 2001, 51(1/2):63-82. doi: 10.1016-S0169-7722(01)00122-X/
    [68] CHOI J K, KIM H, KWON H, et al.Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging[J]. Journal of Contaminant Hydrology, 2018, 210:42-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16a7b0f7d04f5340519799acd1c1bc72
    [69] DAHAL G, HOLCOMB J, SOCCI D.Surfactant-oxidant co-application for soil and groundwater remediation[J]. Remediation:the Journal of Environmental Cleanup Costs Technologies & Techniques, 2016, 26(2):101-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e8cca7113828672514a017e54876d29a
    [70] TSAI T T, KAO C M, YEH T Y, et al.Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater[J]. Journal of Hazardous Materials, 2009, 161(1):111-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2cf67d57ca6bab8d797ca7e18340bbb9
    [71] TSAI T T, KAO C M, HONG A.Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/bof slag oxidation-a laboratory feasibility study[J]. Journal of Hazardous Materials, 2009, 171(1/2/3):571-576.
    [72] US Environmental Protection Agency.Engineering issue paper: in situ chemical oxidation[R]. Cincinnati, OH: EPA Risk Management Research Laboratory and the Engineering Forum, 2006: 19-24.
    [73] KEIJZER T, WAN-GOOL M.ISCO in-situ chemical oxidation[M]. The Netherlands: Netherlands Centre for Soil Quality Management and Knowledge Transfer, 2007: 16-19.
    [74] SIEGRIST R L, CRIMI M, SIMPKIN T J.In situ chemical oxidation for groundwater remediation[M]. London:Springer Science & Business Media, 2011:678.
    [75] SUTTON N B, GROTENHUIS J T C, LANGENHOFF A A M, et al.Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies[J]. Journal of Soils & Sediments, 11(1): 129-140.
    [76] 杨乐巍, 张晓斌, 李书鹏, 等.土壤及地下水原位注入-高压旋喷注射修复技术工程应用案例分析[J].环境工程, 2018, 36(12):53-58. http://d.old.wanfangdata.com.cn/Periodical/hjgc201812011
    [77] TSITONAKI A, BJERG P L.In situ chemical oxidation-state of the art[M]. Kings Lyngby:ATV Jord og Grundvand, 2008:39-48.
    [78] LIANG C, LIANG C P, CHEN C C.Ph dependence of persulfate activation by EDTA/Fe (Ⅲ) for degradation of trichloroethylene[J]. Journal of Contaminant Hydrology, 2009, 106(3/4):173-182.
    [79] BURBANO A A, DIONYSIOU D D, SUIDAN M T, et al.Oxidation kinetics and effect of ph on the degradation of mtbe with fenton reagent[J]. Water Research, 2005, 39(1):107-118. doi: 10.1016-j.watres.2004.09.008/
    [80] YING Z, MINGHUA Z.A critical review of the application of chelating agents to enable fenton and fenton-like reactions at high pH values[J]. Journal of Hazardous Materials, 2019, 362:436-450. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d1c673b3e33c486b59113ad008e76ae
    [81] FEDRIZZI F, RAMOS D T, LAZZARIN H S C, et al.A modified approach for in situ chemical oxidation coupled to biodegradation enhances light nonaqueous phase liquid source-zone remediation[J]. Environmental Science & Technology, 2017, 51(1):463-472.
    [82] GRIEGER K D, FJORDBOGE A, HARTMANN N B, et al.Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation:risk mitigation or trade-off?[J]. Journal of Contaminant Hydrology, 2010, 118(3/4):165-183. http://d.old.wanfangdata.com.cn/Periodical/rjxb201705014
    [83] YANG X, CAI J, WANG X, et al.A bimetallic fe-mn oxide-activated oxone for in situ chemical oxidation (ISCO) of trichloroethylene in groundwater:efficiency, sustained activity, and mechanism investigation[J]. Environmental Science & Technology, 2020, 54(6):3714-3724.
    [84] ZHONG H, BRUSSEAU M L, WANG Y, et al.In-situ activation of persulfate by iron filings and degradation of 1, 4-dioxane[J]. Water Research, 2015, 83:104-111.
    [85] LIANG C, WANG Z-S, MOHANTY N.Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees[J]. Science of the Total Environment, 2006, 370(2/3):271-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73f3dc09939a3c90b4ae31c1c12ed6a4
    [86] KREMBS F J, SIEGRIST R L, CRIMI M L, et al.ISCO for groundwater remediation:analysis of field applications and performance[J]. Groundwater Monitoring & Remediation, 2010, 30(4):42-53.
    [87] MERRILL J P, SUCHOMEL E J, VARADHAN S, et al.Development and validation of technologies for remediation of 1, 2, 3-trichloropropane in groundwater[J]. Current Pollution Reports, 2019, 5(4):228-237.
    [88] US Environmental Protection Agency.A citizen's guide to in situ chemical reduction[R]. Washington DC: Office of Solid Waste and Emergency Response, 2012: 1-2.
    [89] ANSAF K V K, AMBIKA S, NAMBI I M.Performance enhancement of zero valent iron based systems using depassivators:optimization and kinetic mechanisms[J]. Water Research, 2016, 102:436-444.
    [90] CHRISTENSON M, KAMBHU A, REECE J, et al.A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements[J]. Chemosphere, 2016, 150:239-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=072e88cccdf0d3669870777c1eebac0a
    [91] TSAI T, LIU J, CHANG Y, et al.Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater:a pilot-scale study[J]. Journal of Hazardous Materials, 2014, 268:92-101.
    [92] CHRISTENSON M D, KAMBHU A, COMFORT S D.Using slow-release permanganate candles to remove tce from a low permeable aquifer at a former landfill[J]. Chemosphere, 2012, 89(6):680-687. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d7f235ecc47dd834c3f9dcf9aefc5577
    [93] JOHNSON R L, JOHNSON P C, MCWHORTER D B, et al.An overview of in situ air sparging[J]. Groundwater Monitoring & Remediation, 1993, 13(4):127-135.
    [94] CHAO H P, HSIEH L H C, TRAN H N.Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system[J]. Journal of Hazardous Materials, 2018, 344:942-949. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3ce7c7461334d92231b37497774d5bc
    [95] BENNER M L, MOHTAR R H, LEE L S.Factors affecting air sparging remediation systems using field data and numerical simulations[J]. Journal of Hazardous Materials, 2002, 95(3):305-329. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026138333/
    [96] QIN C Y, ZHAO Y S, SU Y, et al.Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction[J]. Water Environment Research, 2013, 85(2):133-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0ec0337619e17820651ecdcc9d3a140
    [97] NERIAH A B, PASTER A.Effect of temporal changes in air injection rate on air sparging performance groundwater remediation[J]. Groundwater, 2016, 54(6):851-860. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/gwat.12428
    [98] NERIAH A B, PASTER A.Enhancing groundwater remediation in air sparging by changing the pulse duration[J]. Ground Water Monitoring and Remediation, 2019, 39(1):43-53.
    [99] YANG X M, BECKMANN D, FIORENZA S, et al.Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater[J]. Environmental Science & Technology, 2005, 39(18):7279-7286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c58e95d1a930c2426d25ce31ed873e5
    [100] BASS D H, HASTINGS N A, BROWN R A.Performance of air sparging systems:a review of case studies[J]. Journal of Hazardous Materials, 2000, 72(2):101-119.
    [101] US Environmental Protection Agency.Introduction to in situ bioremediation of groundwater[R]. Washington DC: Office of Solid Waste and Emergency Response, 2013: 2-3.
    [102] MANI T S, CHAURASIA S.Bioremediation of groundwater:an overview[J]. International Journal of Applied Engineering Research, 2018, 13(24):16825-16832. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_0ebb3517e21bee959054dca8ee1c38bf
    [103] HE Y X, GONG Y F, SU Y M, et al.Bioremediation of Cr(Ⅵ) contaminated groundwater by geobacter sulfurreducens:environmental factors and electron transfer flow studies[J]. Chemosphere, 2019, 221:793-801.
    [104] LEE M K, SAUNDERS J A, WILSON T, et al.Field-scale bioremediation of arsenic-contaminated groundwater using sulfate-reducing bacteria and biogenic pyrite[J]. Bioremediation Journal, 2019, 23(1):1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10889868.2018.1516617
    [105] BURNS M, CARSTENS D, GHOSH E, et al.Thinking outside the boxcar:effective and sustainable combined remedies using single application of multifunctional amendments[J]. Groundwater Monitoring & Remediation, 2017, 37(1):42-50.
    [106] MUNAKATA-MARR J, SORENSON K S, PETRI B G, et al.Principles of combining ISCO with other in situ remedial approaches[M]. New York:Springer, 2010.
    [107] MARCET T F, CAPIRO N L, YANG Y, et al.Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions[J]. Water Research, 2018, 145:21-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7fd7c0820a7276aedbfa905c49e0596b
  • 加载中
图(4) / 表(8)
计量
  • 文章访问数:  1689
  • HTML全文浏览量:  318
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-22
  • 修回日期:  2020-05-06
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回