Contamination Probability of Groundwater Risk Sources by Bayesian
-
摘要: 我国地下水环境风险源点多面广,但风险源周边地下水监测水平较低,尤其是在单个监测点指标异常时,监测数据异常值的来源及风险源造成污染概率的判定方面存在较大不足.为了解决此类问题,提出了基于贝叶斯模型的地下水风险源污染概率估计方法,并以石家庄市某工业集聚区下游一个农灌井中Cr6+含量和CHCl3含量异常事件为研究案例,计算了指标异常来源于工业集聚区内8个风险源的污染概率.结果表明:①通过结合风险源的建成时间、废水排放量等软数据及对流弥散方程,优化先验概率、似然度以及后验概率求解方法,提出了基于贝叶斯模型的地下水风险源污染概率估计方法.②该工业集聚区下游农灌井中Cr6+含量和CHCl3含量异常事件的案例应用结果显示,Cr6+含量异常来源于S6风险源的后验概率为76.2%,即Cr6+含量异常最有可能由某无机盐制造业污染源造成;CHCl3含量异常来源于S1和S3风险源的后验概率分别为32.7%和23.6%,监测点CHCl3含量异常最有可能由一个或两个化学农药制造业污染源造成.研究显示,建立的地下水风险源污染概率估计方法初步解决了监测数据不足时指标异常的来源识别问题,可用于未开展详细调查前地下水污染来源的快速锁定,也可使后期的地下水污染调查更具有针对性,对地下水污染风险防控具有重要科学意义.Abstract: Groundwater risk sources are widely distributed in China. However, the groundwater monitoring level around the risk sources was low. Especially when the index of a single monitoring point was abnormal, there were major deficiencies in the determination the source of the abnormal monitoring data and the probability of pollution caused by the risk source. In order to solve this problem, a method for identifying the probability of groundwater risk source based on the Bayesian formula was proposed. Taking the abnormal events of Cr6+ and CHCl3 in an agricultural irrigation well downstream of an industrial agglomeration area in Shijiazhuang as the research object, the probability of contamination for 8 risk sources was calculated. The results showed that: (1) Through the combination of the groundwater risk source soft data and the convection dispersion equation, the posterior probability of the abnormal observation point caused by the risk source was obtained, and the identification of contamination sources with insufficient observation data in multiple groundwater risk sources was solved. (2) Based on inversion calculations of the probability of 8 different industry categories of groundwater risk sources which could be caused Cr6+ and CHCl3 observation anomalous. The probability of the S6 was 76.2%, indicating that the anomaly of observation data was mostly caused by the salt manufacturing industry. For the abnormal values of CHCl3, the probability of the S1 and S3 points was 32.7% and 23.6% respectively, which was mostly caused by the chemical pesticide industry. The research shows that this method can solve the problem of source identification of indicator outliers when the observation data is insufficient. It can be used to quickly identify the sources of groundwater contamination before conducting a detailed investigation. It can also make the following groundwater contamination investigation more targeted. This method has important scientific significance for the prevention and control of groundwater pollution.
-
表 1 研究区域内风险源相关信息及先验概率值
Table 1. Information of the risk sources and calculation result of priori probability in the study area
风险源 行业类别 p0(Si) Ti/a 废水排放量/(m3/a) 防渗措施 渗水面积/m2 Li Qi p(Si) Cr6+ CHCl3 Cr6+ CHCl3 S1 化学农药制造 0.5 0.5 22 56 000 — — 0.8 0.4 0.16 0.16 S2 有机化学原料制造 0.5 0.5 12 68 400 — — 0.5 0.4 0.10 0.10 S3 化学农药制造 0.5 1.0 8 17 800 — — 0.2 0.4 0.04 0.08 S4 其他基础化学原料制造 0.5 0.5 7 18 000 — — 0.2 0.4 0.04 0.04 S5 其他合成材料制造 0.5 0.5 19 4 000 — — 0.5 0.2 0.05 0.05 S6 无机盐制造 1.0 0.0 41 0 有防渗措施,时间>5 a 21 000 0.8 0.8 0.64 0.00 S7 其他基础化学原料制造 0.5 0.5 13 99 000 — — 0.5 0.4 0.10 0.10 S8 有机化学原料制造 0.5 0.5 17 5 500 — — 0.5 0.2 0.05 0.05 表 2 似然度计算结果
Table 2. Calculation result of the likelihood
风险源 α/(°) Δhi/m Li/km p(Si, m)/W S1 14 7.3 2.82 0.890 7 S2 51 6.2 2.90 0.463 9 S3 18 5.3 1.98 1.285 7 S4 25 4.9 1.96 1.156 0 S5 37 4.4 1.92 0.953 2 S6 10 4.1 1.45 1.920 4 S7 64 5.4 2.85 0.291 4 S8 58 4.5 2.41 0.410 6 表 3 后验概率计算结果
Table 3. Calculation result of posterior probability
风险源 p(Si) p(Si, m)/W p(m, Si)/% Cr6+ CHCl3 Cr6+ CHCl3 S1 0.16 0.16 0.891 8.84 32.74 S2 0.10 0.10 0.464 2.88 10.66 S3 0.04 0.08 1.286 3.19 23.63 S4 0.04 0.04 1.156 2.87 10.62 S5 0.05 0.05 0.953 2.95 10.95 S6 0.64 0.00 1.920 76.20 0.00 S7 0.10 0.10 0.291 1.81 6.69 S8 0.05 0.05 0.411 1.27 4.72 -
[1] 王景瑞, 胡立堂.地下水污染源识别的数学方法研究进展[J].水科学进展, 2017, 28(6):943-952. http://d.old.wanfangdata.com.cn/Periodical/skxjz201706015WANG Jingrui, HU Litang.Advances in mathematical methods of groundwater pollution source identification[J]. Advances in Water Science, 2017, 28(6):943-952. http://d.old.wanfangdata.com.cn/Periodical/skxjz201706015 [2] BUTERA I, TANDA M G, ZANINI A.Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(5):1269-1280. doi: 10.1007/s00477-012-0662-1 [3] ARISTODEMOU E, THOMAS A.DC resistivity and induced polarisation investigations at a waste disposal site and its environments[J]. Journal of Applied Geophysies, 2000, 44(2/3):275-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b3cc02260564c113c92f420af7522f7 [4] MONTES R V, MARTÍNEZ-GRAÑA A M, MARTÍNEZ C J R, et al.Integration of GIS, electromagnetic and electrical methods in the delimitation of groundwater polluted by effluent discharge (Salamanca, Spain):a case study[J]. International Journal of Environmental Research and Public Health, 2017, 14(11):1369-1382. doi: 10.3390/ijerph14111369 [5] WIJEWARDANA Y N S, SHILPADI A T, MOWJOOD M I M, et al.Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste:modeling and controlled lysimeter studies[J]. Environmental Monitoring and Assessment, 2017, 189(2):57-71. [6] ANGELA N, GIUSEPPE S, MAURIZIO B.Strontium isotope as tracers of groundwater contamination[J]. Procedia Earth and Planetary Science, 2017, 17:352-355. doi: 10.1016/j.proeps.2016.12.089 [7] MARTIN N, VLADISLAV C, ONDREJ S, et al.Chromium isotope fractionations resulting from electroplating, chromating and anodizing:implications for groundwater pollution studies[J]. Applied Geochemistry, 2017, 80:134-142. doi: 10.1016/j.apgeochem.2017.03.009 [8] 曹阳, 杨耀栋, 申月芳.地下水污染源解析研究进展[J].中国水运(下半月), 2018, 18(9):114-116. http://d.old.wanfangdata.com.cn/Periodical/zgsy-xby201809052 [9] BITHIN D, DIBAKAR C, ANIRBAN D.Optimal dynamic monitoring network design and identification of unknown groundwater pollution sources[J]. Water Resources Management, 2009, 23(10):2031-2049. doi: 10.1007/s11269-008-9368-z [10] HUANG Linxian, WANG Lichun, ZHANG Yongyong, et al.Identification of groundwater pollution sources by a SCE-UA algorithm-based simulation/optimization model[J]. Water, 2018, 10:193-211. doi: 10.3390/w10020193 [11] PRAKASH O, DATTA B.Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations[J]. Environmental Monitoring and Assessment, 2013, 185(7):5611-5626. doi: 10.1007/s10661-012-2971-8 [12] BAGTZOGLOU A C, DOUGHERTY D E, TOMPSON A F B.Application of particle methods to reliable identification of groundwater pollution sources[J]. Water Resources Management, 1992, 6(1):15-23. doi: 10.1007/BF00872184 [13] WOODBURY A D, ULRYCH T J.Minimum relative entropy and probabilistic inversion in groundwater hydrology[J]. Stochastic Hydrology and Hydraulics, 1998, 12(5):317-358. doi: 10.1007/s004770050024 [14] 曹彤彤, 曾献奎, 吴吉春, 等.基于伴随状态方法的地下水污染源识别研究[J].高校地质学报, 2016, 22(3):563-571. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201603018CAO Tongtong, ZENG Xiankui, WU Jichun, et al.Identification of groundwater contaminant source based on adjoint-state method[J]. Geological Journal of China Universities, 2016, 22(3):563-571. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201603018 [15] ZHANG Jiangjiang, LI Weixuan, ZENG Lingzao, et al.An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems[J]. Water Resources Research, 2016, 52(8):5971-5984. doi: 10.1002/2016WR018598 [16] ZHANG Jiangjiang, ZENG Lingzao, CHEN Cheng, et al.Efficient Bayesian experimental design for contaminant source identification[J]. Water Resources Research, 2015, 51(1):576-598. doi: 10.1002/2014WR015740 [17] WANG Hui, JIN Xin.Characterization of 1groundwater contaminant source using Bayesian method[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(4):867-876. doi: 10.1007/s00477-012-0622-9 [18] 高凤杰, 吴啸, 师华定, 等.基于贝叶斯最大熵的黑土区小流域土壤有机质空间分布预测[J].环境科学研究, 2019, 32(8):1365-1373. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190813&flag=1GAO Fengjie, WU Xiao, SHI Huading, et al.Prediction of spatial distribution of soil organic matter in a mollisol watershed of China based on BME method[J]. Research of Environmental Sciences, 2019, 32(8):1365-1373. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190813&flag=1 [19] 张妍, 张秋英, 李发东, 等.基于稳定同位素和贝叶斯模型的引黄灌区地下水硝酸盐污染源解析[J].中国生态农业学报, 2019, 27(3):484-493. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201903015ZHANG Yan, ZHANG Qiuying, LI Fadong, et al.Source identification of nitrate contamination of groundwater in Yellow River Irrigation Districts using stable isotopes and Bayesian model[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3):484-493. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201903015 [20] 董海彪.基于克里格替代模型和改进的Bayesian-MCMC方法的地下水污染源反演识别研究[D].长春: 吉林大学, 2016. [21] 张双圣.基于不确定理论的地下水污染源识别及抽出-处理优化方法研究[D].徐州: 中国矿业大学, 2019. [22] 张双圣, 强静, 刘汉湖, 等.基于贝叶斯公式的地下水污染源识别[J].中国环境科学, 2019, 39(4):1568-1578. doi: 10.3969/j.issn.1000-6923.2019.04.027ZHANG Shuangsheng, QIANG Jing, LIU Hanhu, et al.Identification of groundwater pollution sources based on Bayes' theorem[J]. China Environmental Science, 2019, 39(4):1568-1578. doi: 10.3969/j.issn.1000-6923.2019.04.027 [23] 生态环境部.环办土壤函[2019]770号地下水污染防治分区划分工作指南[S].北京: 生态环境部, 2019. [24] 席北斗.地下水污染源强评价、分类与防控技术研究[M].北京:中国环境出版社, 2016. [25] 齐培培.基于贝叶斯网络的水质污染评价及预测[D].武汉: 武汉理工大学, 2009: 21-23. [26] 张江江.地下水污染源解析的贝叶斯监测设计与参数反演方法[D].杭州: 浙江大学, 2017: 25-31. [27] 顾文龙, 卢文喜, 张宇, 等.基于贝叶斯推理与改进的MCMC方法反演地下水污染源释放历史[J].水利学报, 2016, 47(6):772-779. http://d.old.wanfangdata.com.cn/Periodical/slxb201606007GU Wenlong, LU Wenxi, ZHANG Yu, et al.Reconstructing the release history of groundwater contamination sources based on the Bayesian inference and improved MCMC method[J]. Journal of Hydraulic Engineering, 2016, 47(6):772-779. http://d.old.wanfangdata.com.cn/Periodical/slxb201606007 [28] 董海彪.基于克里格替代模型和改进的Bayesian-MCMC方法的地下水污染源反演识别研究[D].长春: 吉林大学, 2016. -