Source Analysis of Groundwater Pollution in Pinggu District of Beijing Using PCA-SOM
-
摘要: 为了解北京市平谷区地下水污染物来源,以平谷区2010—2018年监测数据为基础,使用PCA(主成分分析法)识别了地下水水质指标因子,使用自组织映射识别了污染物的空间分布.结果表明:通过监测指标间的Pearson检验发现, 平谷区地下水电导率与ρ(Ca2+)(p=0.936)、总碱度与ρ(HCO32-)(p=0.981)、ρ(Mg2+)与总硬度(p=0.944)指标之间显著相关.地下水化学类型主要以HCO3-Ca型为主,其次为HCO3-Mg型.NH4+、SO42-、Cd、Fe(Ⅱ)、NO2指标空间分布离散性和差异性较大,存在局部富集现象.通过因子分析法筛选出影响平谷区地下水水质的8个公因子,首要影响因子为溶滤-富集作用(贡献率为22.398%),次要影响因子为农业、养殖业和填埋场等人为活动作用(贡献率为16.533%),雨水下渗作用(贡献率为8.035%)、工业源人为活动(贡献率为7.466%)对地下水也有一定影响.通过比较各指标的SOM(Self-Organizing Map,自组织映射)特征图像和监测井映射特征图像,发现NH4+受山前地带林业、种植业和平原地带农业、养殖业的双重影响,Na+、Mn受平原地带人为活动的影响;同时,NH4+、NO3-、NO2三者之间及Fe(Ⅱ)与Fe(Ⅲ)之间来源不同,Cd、Al、氰化物三者具有同一来源.研究显示,PCA-SOM(PCA与SOM相结合)可以对地下水化学组分来源进行定性识别与定量分析.
-
关键词:
- 自组织映射(SOM) /
- 地下水污染溯源 /
- 主成分分析法(PCA)
Abstract: In order to understand the source of groundwater pollutants in Pinggu District of Beijing, based on the monitoring data of Pinggu District from 2010 to 2018, this study used PCA to identify the groundwater quality index factors, and identified the spatial distribution of pollutants using SOM to map the pollution index and the location of the monitoring wells and compare mapping feature by comparison images. The Pearson test between monitoring indicators showed that there was a significant correlation between electroconductibility and ρ(Ca2+)(p=0.936), total alkalinity and ρ(HCO32-) (p=0.981), ρ(Mg2+) and total hardness (p=0.944) in Pinggu District groundwater, and the chemical type was mainly HCO3-Ca, followed by HCO3-Mg type. The spatial distribution of NH4+, SO42-, Cd, Fe(Ⅱ) and NO2 was very discrete and different, and there was local enrichment. Eight common factors affecting groundwater quality in Pinggu District were screened out by factor analysis. The primary impact factor was leaching-beneficiation (contribution rate 22.398%), and the secondary impact factors were human activities such as agriculture, aquaculture, and landfills (contribution rate of 16.533%), rainwater seepage (contribution rate of 8.035%), and industrial source. Human activities (contribution rate of 7.466%) also had a certain effect on its groundwater. By comparing the SOM mapping characteristic images of various indicators, NH4+ was affected by the dual effects of forestry, plantation, and agricultural production in the plain area. The characteristic images of the Na+, Mn response area and the plain area coincide, showing the influence of human activities. At the same time, NH4+-NO3--NO2, Fe(Ⅱ)-Fe(Ⅲ) were not from the same source, and Cd, Al, and cyanide had the same source. The results show that PCA and SOM can be used to identify and analyze the chemical components of groundwater.-
Key words:
- Self-Organizing Map (SOM) /
- source analysis of groundwater pollution /
- PCA
-
表 1 平谷区地下水化学成分统计表
Table 1. Statistical parameters of groundwater chemical component in Pinggu District
指标 最小值/(mg/L) 最大值/(mg/L) 变异系数 GB/T 14848—2017《地下水质量标准》Ⅲ类标准限值/(mg/L) ρ(K+) 0.050 20.600 0.757 — ρ(Na+) 3.710 116.000 0.785 200 ρ(Ca2+) 15.000 430.000 0.469 — ρ(Mg2+) 2.400 329.900 0.623 — ρ(NH4+) 0.019 9.280 3.402 0.50 ρ(HCO3-) 140.000 720.000 0.335 — ρ(CO32-) 0 48.000 1.704 — ρ(Cl-) 0.400 274.000 1.500 250 ρ(SO42-) 0.300 1 415.000 2.967 250 ρ(F-) 0.049 4.600 0.855 1.0 ρ(NO3-) 0.049 373.000 1.484 20.0 ρ(CO2) 0 36.100 1.416 — ρ〔Fe(Ⅱ)〕 0.004 25.400 2.700 0.3 ρ〔Fe(Ⅲ)〕 0 15.200 2.317 0.3 ρ(Cr6+) 0.001 0.021 1.163 0.05 ρ(Cu) 0 0.008 0.751 1.00 ρ(Zn) 0.001 1.500 1.729 1.00 ρ(Cd) 0 0.008 5.021 0.005 ρ(Se) 0 0.001 0.887 0.01 ρ(Mn) 0.001 4.930 1.779 0.10 ρ(Al) 0.001 2.410 1.966 0.20 ρ(As) 0.001 0.147 1.873 0.01 ρ(Hg) 0 0 0.121 0.001 ρ(VP) 0.001 0.010 0.739 0.002 ρ(CN) 0.001 0.004 0.162 0.05 ρ(NO2) 0.001 15.700 5.836 1.00 ρ(DO) 0.080 9.980 1.517 1.00 总硬度 153.000 2 267.000 0.506 450 ρ(TDS) 128.750 3 044.000 0.439 1 000 注:加粗体为变异系数大于2的指标. 表 2 主要因子的特征值和累计方差贡献率
Table 2. Characteristic values and variance contribution rates of main factors
成分 初始特征值 提取载荷平方和 旋转载荷平方和 总计 方差百分比/% 累计方差贡献率/% 总计 方差百分比/% 累计方差贡献率/% 总计 方差百分比/% 累计方差贡献率/% 1 9.312 32.109 32.109 9.312 32.109 32.109 6.495 22.398 22.398 2 3.007 10.369 42.478 3.007 10.369 42.478 4.795 16.533 38.931 3 2.097 7.230 49.708 2.097 7.230 49.708 2.330 8.035 46.967 4 1.668 5.751 55.459 1.668 5.751 55.459 2.165 7.466 54.433 5 1.480 5.104 60.563 1.480 5.104 60.563 1.677 5.784 60.217 6 1.136 3.916 64.479 1.136 3.916 64.479 1.155 3.982 64.198 7 1.029 3.547 68.026 1.029 3.547 68.026 1.093 3.768 67.966 8 1.022 3.524 71.550 1.022 3.524 71.550 1.039 3.584 71.550 表 3 旋转因子荷载矩阵
Table 3. Loading matrix of rotated factors
指标 公因子 F1 F2 F3 F4 F5 F6 F7 F8 ρ(K+) 0.196 0.400 -0.139 -0.286 0.021 -0.091 -0.483 -0.090 ρ(Na+) 0.270 0.708 0.162 0.428 0.095 -0.022 -0.021 -0.055 ρ(Ca2+) 0.865 0.304 0.218 -0.105 -0.018 0.070 -0.045 -0.053 ρ(Mg2+) 0.947 0.178 0.053 0.030 -0.004 0.009 0.040 0.036 ρ(NH4+) 0.082 0.707 0.182 0.036 0.050 -0.013 -0.184 0.041 ρ(HCO3-) 0.352 0.576 0.337 0.562 0.053 0.004 0.049 -0.024 ρ(CO32-) -0.112 -0.023 -0.852 0.031 -0.070 0.116 -0.097 0.023 ρ(Cl-) 0.469 0.694 0.175 -0.218 0.045 0.017 -0.013 -0.035 ρ(SO42-) 0.947 -0.113 -0.010 -0.078 -0.020 -0.028 -0.031 -0.021 ρ(F-) -0.047 -0.166 -0.135 0.620 -0.067 -0.036 -0.081 -0.050 ρ(NO3-) 0.224 -0.254 0.108 -0.674 -0.102 0.195 -0.086 0.102 ρ(CO2) 0.202 0.531 0.610 -0.155 -0.007 0.090 -0.098 -0.010 ρ〔Fe(Ⅱ)〕 0.021 0.176 0.082 0.135 0.842 -0.027 0.019 0.013 ρ〔Fe(Ⅲ)〕 -0.022 -0.019 -0.060 -0.174 0.162 0.599 0.178 -0.477 ρ(Cr6+) -0.109 -0.093 0.087 -0.374 -0.075 -0.446 0.060 -0.049 ρ(Mn) 0.334 0.761 0.204 0.247 0.040 0.015 0.040 -0.017 ρ(Al) 0.015 -0.011 0.010 -0.031 0.145 -0.666 0.102 -0.195 ρ(As) -0.023 -0.006 0.006 0.593 0.031 0.170 0.034 0.036 ρ(Hg) -0.021 0.025 -0.019 -0.096 0.031 0.139 0.056 0.828 ρ(VP) 0.140 0.258 0.074 -0.068 0.032 -0.106 0.749 -0.015 ρ(CN) 0.533 -0.157 -0.125 -0.028 0.234 -0.096 0.288 0.128 ρ(NO2) 0.076 0.717 -0.064 -0.105 -0.043 0.055 0.253 -0.105 ρ(DO) 0.707 0.556 0.033 -0.055 0.014 -0.010 0.111 -0.047 总硬度 0.947 0.250 0.142 -0.040 -0.013 0.043 -0.003 -0.008 pH -0.187 -0.289 -0.860 0.094 -0.015 0.017 -0.056 -0.028 EC 0.850 0.426 0.202 -0.006 0.001 0.044 -0.032 -0.028 色度 0.088 0.583 0.062 -0.006 0.077 0.027 0.096 0.142 浊度 0.005 -0.014 0.005 -0.055 0.900 -0.007 0.011 -0.018 ρ(TDS) 0.887 0.327 0.195 0.092 0.005 0.029 0.001 -0.010 注:加粗体为荷载因子矩阵进行正交旋转后得分较高的指标. -
[1] 马晋, 何鹏, 杨庆, 等.基于回归分析的地下水污染预警模型[J].环境工程, 2019, 37(10):211-215. http://d.old.wanfangdata.com.cn/Periodical/hjgc201910036MA Jin, HE Peng, YANG Qing, et al.Early warning model for groundwater pollution based on regression analysis[J]. Environmental Engineering, 2019, 37(10):211-215. http://d.old.wanfangdata.com.cn/Periodical/hjgc201910036 [2] 张景华, 陈晓梅, 李世君, 等.应急水源地开采以来平谷平原区地下水动态分析[J].北京水务, 2016(6):5-8. http://d.old.wanfangdata.com.cn/Periodical/bjsl201606002ZHANG Jinghua, CHEN Xiaomei, LI Shijun, et al.Analysis of groundwater dynamic in plain area of Pinggu since the emergency water source exploitation[J]. Beijing Water, 2016(6):5-8. http://d.old.wanfangdata.com.cn/Periodical/bjsl201606002 [3] 徐海珍, 李国敏, 张寿全, 等.北京市平谷区地下水三维数值模拟及管理应用[J].水文地质工质, 2011, 38(2):27-34.XU Haizhen, LI Guomin, ZHANG Shouquan, et al, Development of a 3-D numerical groundwater flow model of the Pinggu Basin and groundwater resources management[J]. Hydrogeology and Engineering Geology, 2011, 38(2):27-34. [4] 马静晨, 戴国锋, 姜辉, 等.干旱条件下平谷区地下水资源变化与恢复调控措施[J].城市地质, 2014(2):24-27.MA Jingchen, DAI Guofeng, JIANG hui, et al.Measures under drought on regulating groundwater resources change and recovery in Pinggu Basin[J]. City Geology, 2014(2):24-27. [5] 姜体胜, 曲辞晓, 王明玉, 等.北京平谷平原区浅层地下水化学特征及成因分析[J].干旱区资源与环境, 2017, 31(11):122-127. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201711021JIANG Tisheng, QU Cixiao, WANG Mingyu, et al.Hydrochemical characteristics of shallow groundwater and the origin in the Pinggu Plain, Beijing[J]. Journal of Arid Land Resources and Environment, 2017, 31(11):122-127. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201711021 [6] 侯佳均, 李晓, 胡伟, 等.平谷地下水水质评价与主要污染物筛选[J].甘肃水利水电技术, 2019, 55(12):1-6. http://d.old.wanfangdata.com.cn/Periodical/gsslsdjs201912001HOU Jiayun, LI Xiao, HU Wei, et al.Groundwater quality evaluation and screening of major pollutants in Pinggu[J]. Gansu Water Resources and Hydropower Technology, 2019, 55(12):1-6. http://d.old.wanfangdata.com.cn/Periodical/gsslsdjs201912001 [7] 曹阳, 杨耀栋, 申月芳.地下水污染源解析研究进展[J].中国水运, 2018, 18(9):114-116. http://d.old.wanfangdata.com.cn/Periodical/zgsy-xby201809052CAO Yang, YANG Yaodong, SHEN Yuefang.Research progress on groundwater pollution source analysis[J]. China Water Transport, 2018, 18(9):114-116. http://d.old.wanfangdata.com.cn/Periodical/zgsy-xby201809052 [8] HUANG C H, LI J X, SIN K.An inverse problem in estimating the strength of contaminant source for groundwater systems[J]. Applied Mathematical Modelling, 2008, 32:417-431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=93b53da64bd5e8f722202eca363cb1a4 [9] MIRGHANI B Y, MAHINTHA K G, TRYBY M E, et al.A parallel evolutionary strategy based simulation-optimization approach for solving groundwater source identification problems[J]. Advances in Water Resources, 2009, 32:1373-1385. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6532f3c36b372e3076780d8f910a1bf1 [10] AYVAZ M T.A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems[J]. Journal of Contaminant Hydrology, 2010, 117:46-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d203908a5ca4072600eb489ef5c03d4b [11] 赵庆良, 马慧雅, 任玉芬, 等.利用δ15N-NO3-和δ18O-NO3-示踪北京城区河流硝酸盐来源[J].环境科学, 2016, 37(5):1692-1698. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201605013ZHAO Qingliang, MA Huiya, REN Yufen, et al.δ15N-NO3- and δ18O-NO3- tracing of nitrate sources in Beijing urban rivers[J]. Environmental Science, 2016, 37(5):1692-1698. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201605013 [12] 傅雪梅, 孙源媛, 苏婧, 等.基于水化学和氮氧双同位素的地下水硝酸盐源解析[J].中国环境科学, 2019, 39(9):3951-3958.FU Xuemei, SUN Yuanyuan, SU Jing, et al.Source of nitrate in groundwater based on hydrochemical and dual stable isotopes[J]. China Environmental Science, 2019, 39(9):3951-3958. [13] 周爱国, 李小倩, 刘存富, 等.氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J].地球科学进展, 2008, 23(4):342-349. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200804003ZHOU Aiguo, LI Xiaoqian, LIU Cunfu, et al.Review of analytical methods for chlorine isotopes in chlorinated volatile organic compounds and application in groundwater contamination[J]. Advance in Earth Sciences, 2008, 23(4):342-349. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200804003 [14] ZAPOROZEC A.Graphical Interpretation of water-quality data[J]. Groundwater, 1972, 10(2):32-43. [15] OLESON S G, CARR J R.Correspondence analysis of water quality data:implications for fauna deaths at Stillwater lakes, Nevada[J]. Mathematical Geology, 1990, 22(6):665-698. [16] 刘玥, 薛喜成, 何勇.灰色关联分析在铅锌矿区地表水重金属污染评价中的应用[J].能源环境保护, 2009, 23(2):55-57. http://d.old.wanfangdata.com.cn/Periodical/mkhjbh200902016LIU Yue, XUE Xicheng, HE Yong.Application of gray correlation analysis in the lead-zinc zone of heavy metal contamination of surface water evaluation[J]. Energy Environmental Protection, 2009, 23(2):55-57. http://d.old.wanfangdata.com.cn/Periodical/mkhjbh200902016 [17] 杨海燕, 夏正楷.模糊数学在地下水资源污染评价中的应用[J].水土保持研究, 2005, 12(4):107-109. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200504031YANG Haiyan, XIA Zhengkai.The appliance of fuzzy mathematics to the polluted evaluation of groundwater resources[J]. Research of Soil and Water Conservation, 2005, 12(4):107-109. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200504031 [18] 周淑敏.秦皇岛市地下水污染现状及评价[J].河北建筑科技学院学报, 1998(1):25-31.ZHOU Shumin.Status and evaluation of groundwater pollution in Qinhuangdao[J]. Journal of Hebei Institute of Architectural Science and Technology, 1998(1):25-31. [19] DUFFY C J, BRANDES D.Dimension reduction and source identification for multispecies groundwater contamination[J]. Journal of Contaminant Hydrology, 2001, 48(1):151-165. [20] GOODCHILD M F, STEYAERT L T.Environmental modeling with GIS[M]. New York:Oxford University Press, 1993. [21] KHAN H H, KHAN A, AHMED S, et al.GIS-based impact assessment of land-use changes on groundwater quality:study from a rapidly urbanizing region of South India[J]. Environmental Earth Sciences, 2011, 63(6):1289-1302. [22] DIXON B.A case study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N[J]. Hydrogeology Journal, 2009, 17(6):1507-1520. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf1d80026d51b57a0256fccebab7653a [23] 刘飞, 刘志斌.自组织特征映射网络在水质分类中的应用[J].露天采矿技术, 2007(5):74-76. http://d.old.wanfangdata.com.cn/Periodical/ltcmjs200705026LIU Fei, LIU Zhibin.Application of self-organizing feature map in water quality classification[J]. Opencast Mining Technology, 2007(5):74-76. http://d.old.wanfangdata.com.cn/Periodical/ltcmjs200705026 [24] BELKHIRI L, MOUNI L, TIRI A, et al.Evaluation of groundwater quality and its suitability for drinking and agricultural purposes using Self-Organizing Maps[J]. International Journal of Geological and Environmental Engineering, 2017, 11(8):705-709. [25] 张春乐, 方崇, 黄伟军.基于SOM神经网络的地下水灌溉水质综合评价[J].江苏农业科学, 2010(3):452-454. http://d.old.wanfangdata.com.cn/Periodical/jsnykx201003185ZHANG Chunle, FANG Cong, HUANG Weijun.Study on water quality evaluation of groundwater irrigation based on SOM neural network[J]. Jiangsu Agricultural Sciences, 2010(3):452-454. http://d.old.wanfangdata.com.cn/Periodical/jsnykx201003185 [26] CHOI B Y, YUN S T, KIM K H, et al.Hydrogeochemical interpretation of South Korean groundwater monitoring data using Self-Organizing Maps[J]. Journal of Geochemical Exploration, 2014, 137:73-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2e7ba8b8bfb94dde3dcf9264a33da9a0 [27] 张宽义.河北省土壤水资源分区评价方法研究[D].保定: 河北农业大学, 2007: 40. [28] UNGLERT K, RADIĆ V, JELLINEK A M.Principal component analysis vs self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra[J]. Journal of Volcanology and Geothermal Research, 2016, 320:58-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9da64c9a0e70892a9c3ab1691dc2b056 [29] 寇文杰, 赵微, 杨庆, 等.基于水质评价的北京市地下水资源开发利用分区[J].南水北调与水利科技, 2012(6):100-103. http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201206023KOU Wenjie, ZHAO Wei, YANG Qing, et al.Partition of groundwater resources utilization in Beijing based on water quality assessment[J]. South-to-North Water Transfers and Water Science & Technology, 2012(6):100-103. http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201206023 [30] 卫生部. GB/T 14848-2017地下水质量标准[S].北京: 中国标准出版社, 2017. [31] 崔萌, 孙向阳, 李素艳, 等.北京市桃主产区土壤重金属空间结构特征及来源[J].福建农林大学学报(自然科学版), 2019, 48(2):238-243. http://d.old.wanfangdata.com.cn/Periodical/fjnydxxb201902016CUI Meng, SUN Xiangyang, LI Suyan, et al.Spatial structure characteristics and origins of soil heavy metals in the main producing area for peach in Beijing[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(2):238-243. http://d.old.wanfangdata.com.cn/Periodical/fjnydxxb201902016 -