留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

京津冀典型区域地下水污染风险评价方法研究

李翔 汪洋 鹿豪杰 洪慧 肖超 李娟 席北斗

李翔, 汪洋, 鹿豪杰, 洪慧, 肖超, 李娟, 席北斗. 京津冀典型区域地下水污染风险评价方法研究[J]. 环境科学研究, 2020, 33(6): 1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29
引用本文: 李翔, 汪洋, 鹿豪杰, 洪慧, 肖超, 李娟, 席北斗. 京津冀典型区域地下水污染风险评价方法研究[J]. 环境科学研究, 2020, 33(6): 1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29
LI Xiang, WANG Yang, LU Haojie, HONG Hui, XIAO Chao, LI Juan, XI Beidou. Groundwater Pollution Risk Assessment Method in a Typical Area of Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2020, 33(6): 1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29
Citation: LI Xiang, WANG Yang, LU Haojie, HONG Hui, XIAO Chao, LI Juan, XI Beidou. Groundwater Pollution Risk Assessment Method in a Typical Area of Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2020, 33(6): 1315-1321. doi: 10.13198/j.issn.1001-6929.2020.05.29
编者按:
“十三五”国家水体污染控制与治理科技重大专项研究取得积极进展与成效,本专题将就水专项的成果案例进行展示,本次是“京津冀地下水污染防治关键技术研究与示范项目”的部分研究成果. 地下水环境安全对于支撑京津冀地区协同发展具有重要意义. 该项目旨在初步建立地下水污染防控与修复技术标准与规范体系,研发、综合示范和集成应用一批地下水污染监测和修复关键技术、材料与成套装备,有效控制典型示范区地下水污染恶化趋势,实现地下水安全回补,为京津冀地区和全国的地下水污染防治提供有力的科技支撑. 现将部分成果集中发表,以期为相关研究提供参考.

京津冀典型区域地下水污染风险评价方法研究

doi: 10.13198/j.issn.1001-6929.2020.05.29
基金项目: 

国家水体污染控制与治理科技重大专项 2018ZX07109-001

详细信息
    作者简介:

    李翔(1970-), 女, 河南洛阳人, 研究员, 博士, 主要从事环境风险评估及管控研究, lixiang@craes.org.cn

    通讯作者:

    李娟(1981-), 女, 陕西岐山人, 副研究员, 博士, 主要从事地下水污染防控与评估技术研究, lijuan@craes.org.cn

    席北斗(1969-), 男, 安徽砀山人, 研究员, 博士, 博导, 主要从事土壤与地下水污染防控与修复、固体废物污染防治与资源化等研究, xibeidou@263.net

  • 中图分类号: X523

Groundwater Pollution Risk Assessment Method in a Typical Area of Beijing-Tianjin-Hebei Region

Funds: 

National Major Science and Technology Program for Water Pollution Control and Treatment, China 2018ZX07109-001

  • 摘要: 地下水污染风险评价是开展京津冀地区地下水污染防控工作的基础,对于保障京津冀地下水环境安全至关重要.为了有针对性地开展京津冀地区地下水污染防控工作,以京津冀地区内某典型区域为研究区,提出了一种基于HYDRUS-2D软件的地下水污染风险评价方法,并以研究区内特征污染物硝酸盐为对象进行地下水污染风险评价.结果表明:①研究区内地下水污染荷载主要受垃圾填埋场分布影响,其次为工业源和农业面源;②包气带结构类型不变的情况下,污染源荷载的变化只会导致进入含水层中的污染物浓度不同,不会改变包气带硝酸盐折减系数;③污染源类型、包气带介质岩性及厚度是造成研究区内地下水硝酸盐污染风险评价存在差异的主要原因.研究显示,采用基于HYDRUS-2D软件的地下水污染风险评价方法,能够有效地降低地下水污染评价过程中的主观性,对于确定京津冀地区地下水污染重点防控区域,提高地下水环境管理水平具有重要的参考价值.

     

  • 图  1  研究区污染源空间分布

    Figure  1.  Spatial distribution of groundwater pollution sources in the study area

    图  2  研究区硝酸盐污染荷载空间分布

    Figure  2.  Spatial distribution of nitrate pollution load in the study area

    图  3  研究区包气带结构概化分区

    Figure  3.  Partition diagram of vadose zone in the study area

    图  4  研究区包气带结构概化结果

    Figure  4.  Lithology generalization diagram of vadose zone structure

    图  5  1区不同硝酸盐污染荷载下垂向迁移的模拟结果

    Figure  5.  The vertical migration simulation results of different pollution loads of nitrate in zone 1

    图  6  不同包气带结构分区的硝酸盐折减系数

    Figure  6.  The reduction coefficient diagram of nitrate in different vadose zone

    图  7  研究区地下水硝酸盐污染风险评价结果

    Figure  7.  Risk assessment chart of groundwater nitrate contamination in the study area

    表  1  工业源缓冲区半径的设定

    Table  1.   Industrial source buffer radius setting

    污染源类型 缓冲区半径推荐值/km
    石油加工、炼焦及核燃料加工业 1.5
    有色金属冶炼及压延加工业 1
    黑色金属冶炼及压延加工业 1
    化学原料及化学制品制造业 2
    纺织业 2
    皮革、毛皮、羽毛(绒)及其制品业 2
    金属制品业 1
    其他行业 1
    下载: 导出CSV

    表  2  居民区硝酸盐污染荷载计算结果

    Table  2.   Calculation result of nitrate pollution load in residential areas

    地区 人口/(104人) 面积/km2 人均产污系数/(g/d) 硝酸盐污染荷载/[g/(m2·a)]
    A区 46.77 2 229.45 6 0.35
    B区 37.29 2 128.70 6 0.30
    C区 87.66 1 019.89 6 1.45
    下载: 导出CSV

    表  3  垃圾填埋场硝酸盐污染荷载计算结果

    Table  3.   Calculation result of nitrate pollution load in landfill

    垃圾填埋场编号 运行状态 占地面积/(104 m2) 渗滤液产生量/(m3/a) 硝酸盐浓度限值/(mg/L) 硝酸盐污染荷载/[g/(m2·a)]
    1 运行中 1.1 3 212.0 40 11.68
    2 封场 2.1 3 679.2 40 7.01
    下载: 导出CSV
  • [1] 王丽.京津冀地区资源开发利用与环境保护研究[J].经济研究参考, 2015(2):47-71. http://d.old.wanfangdata.com.cn/Periodical/jjyjck201502004
    [2] DILLON P, PAVELIC P, TOZE S, et al.Role of aquifer storage in water reuse[J]. Desalination, 2006, 188(1):123-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e441bcd1e6031d68cc3534bf512ab88
    [3] 江剑, 董殿伟, 杨冠宁, 等.北京市海淀区地下水污染风险性评价[J].城市地质, 2010, 5(2):14-18. http://d.old.wanfangdata.com.cn/Periodical/csdz201002004

    JIANG Jian, DONG Dianwei, YANG Guanning, et al.Risk assessment of groundwater pollution of Haidian District of Beijing[J]. Urban Geology, 2010, 5(2):14-18. http://d.old.wanfangdata.com.cn/Periodical/csdz201002004
    [4] 李仙波, 左锐, 滕彦国, 等.基于RRM模型的化工企业对下辽河平原区域地下水环境风险评价[J].北京师范大学学报(自然科学版), 2016, 52(5):580-585. http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb201605008

    LI Xianbo, ZUO Rui, TENG Yanguo, et al.A risk assessment model of regional groundwater risk due to chemical enterprises in the Lower liaohe River Plain[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(5):580-585. http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb201605008
    [5] NATIONAL R C.Ground water vulnerability assessment:contamination potential under conditions of uncertainty[M]. Washington DC:National Academy Press, 1993.
    [6] 孙才志, 奚旭, 董璐.基于ArcGIS的下辽河平原地下水脆弱性评价及空间结构分析[J].生态学报, 2015, 35(20):6635-6646. http://d.old.wanfangdata.com.cn/Periodical/stxb201520007

    SUN Caizhi, XI Xu, DONG Lu.An ArcGIS-based analysis of groundwater spatial structure and groundwater vulnerability in the lower reaches of the Liaohe River Plain[J]. Acta Ecologica Sinica, 2015, 35(20):6635-6646. http://d.old.wanfangdata.com.cn/Periodical/stxb201520007
    [7] BURGESS W, HOQUE M, MICHAEL H, et al.Vulnerability of deep groundwater in the bengal aquifer system to contamination by arsenic[J]. Nature Geoscience, 2010, 3:83-87. doi: 10.1038/ngeo750
    [8] GOGU R C, DASSARGUES A.Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods[J]. Environmental Geology, 2000, 39(6):549-559. doi: 10.1007/s002540050466
    [9] NEUKUM C, HÖTZL H.Standardization of vulnerability maps[J]. Environmental Geology, 2007, 51(5):689-694.
    [10] CIVITA M V.The combined approach when assessing and mapping groundwater vulnerability to contamination[J]. Journal of Water Resource and Protection, 2010, 2(1):14-28. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_fb427aff6dab4600530ac1acfa0643e7
    [11] SHIRAZI S M, IMRAN H M, SHATIRAH A.GIS-based DRASTIC method for groundwater vulnerability assessment:a review[J]. Journal of Risk Research, 2012, 15(8):992-993.
    [12] LATHAMANI R, JANARDHANA M R, MAHALINGAM B, et al.Evaluation of aquifer vulnerability using DRASTIC model and GIS:a case study of Mysore City, Karnataka, India[J]. Aquatic Procedia, 2015, 4:1032-1035.
    [13] GHOSH A, TIWARI A K, DAS S.A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India[J]. Modeling Earth Systems and Environment, 2015, 1(11):2-7.
    [14] AL-ABADI A M, AL-SHAMMA A M, ALJABBARI M H.A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq[J]. Applied Water Science, 2017, 7:89-101.
    [15] THAPINTA A, HUDAK P F.Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand[J]. Environment International, 2003, 29(1):87-88. doi: 10.1016/S0160-4120(02)00149-6
    [16] 杨旭东, 孙建平, 魏玉梅.地下水系统脆弱性评价探讨[J].安全与环境工程, 2006, 13(1):1-5. http://d.old.wanfangdata.com.cn/Periodical/dzktaq200601001

    YANG Xudong, SUN Jianping, WEI Yumei.Discussion on groundwater vulneraility assessment[J]. Safety and Environmental Engineering, 2006, 13(1):1-5. http://d.old.wanfangdata.com.cn/Periodical/dzktaq200601001
    [17] 陈瑾瑶.四川大梁子铅锌矿区地下水重金属污染风险评估[D].成都: 成都理工大学, 2019.
    [18] 吴登定, 谢振华, 林健, 等.地下水污染脆弱性评价方法[J].地质通报, 2005, 24(10):1043-1047. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200510030

    WU Dengding, XIE Zhenhua, LIN Jian, et al.Groundwater contamination vulneraility assessment[J]. Geological Bulletin of China, 2005, 24(10):1043-1047. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200510030
    [19] 徐艳杰, 常利武, 黄会平.FEFLOW在地下水数值模拟中的应用[J].华北水利水电学院学报, 2009, 30(2):86-88. http://d.old.wanfangdata.com.cn/Periodical/hbslsdxyxb200902029

    XU Yanjie, CHANG Liwu, HUANG Huiping.Application of FEFLOW in groundwater numerical simulation[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2009, 30(2):86-88. http://d.old.wanfangdata.com.cn/Periodical/hbslsdxyxb200902029
    [20] HAITJEMA H, KELSON V, DE L W.Selecting MODFLOW cell sizes for accurate flow fields[J]. Ground Water, 2001, 39(6):931-933. doi: 10.1111/j.1745-6584.2001.tb02481.x
    [21] 谭文清, 孙春, 胡婧敏, 等.GMS在地下水污染质运移数值模拟预测中的应用[J].东北水利水电, 2008, 26(5):54-55. http://d.old.wanfangdata.com.cn/Periodical/dbslsd200805023

    TAN Wenqing, SUN Chun, HU Jingmin, et al.Application of GMS in simulation of pollutants migration for groundwater[J]. Water Resources & Hydropower of Northeast China, 2008, 26(5):54-55. http://d.old.wanfangdata.com.cn/Periodical/dbslsd200805023
    [22] 刘增超, 董军, 何连生, 等.基于过程模拟的地下水污染风险评价方法研究[J].中国环境科学, 2013, 33(6):1120-1126. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201306022

    LIU Zengchao, DONG Jun, HE Liansheng, et al.The method study on groundwater pollution risk assessment based on process simulation[J]. China Environmental Science, 2013, 33(6):1120-1126. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201306022
    [23] AL-ADAMAT R A N, FOSTER I D L, BABAN S M J.Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq Basin of Jordan using GIS, remote sensing and DRASTIC[J]. Applied Geography, 2003, 23(4):304-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8994b4ecea2caf7670bdef31c4538826
    [24] BABIKER I S, MOHAMED M A A, HIYAMA T, et al.A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan[J]. Science of the Total Environment, 2005, 345(1/2/3):127-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31df11d4831b3f823de1342945777bc1
    [25] TIRKEY A S, PANDEY A C, NATHAWAT M S.Use of satellite data, GIS and RUSLE for estimation of average annual soil loss in Daltonganj Watershed of Jharkhand (India) of Jharkhand (India)[J]. Journal of Remote Sensing Technology, 2013, 1(1):20-30.
    [26] 熊向阳, 国瑞峰, 蔡辉, 等.生活垃圾填埋场渗滤液积存量计算公式的探讨[J].环境工程, 2016, 34(S1):657-660.

    XIONG Xiangyang, GUO Ruifeng, CAI Hui, et al.Disscuss on accumulation amount formula for landfill leachate in municipal solid waste[J]. Environmental Engineering, 2016, 34(S1):657-660.
    [27] CALDERON R, KARTHIKRAJ R, KIM U J, et al.Sources and fates of perchlorate in soils in Chile:a case study of perchlorate dynamics in soil-crop systems using lettuce (Lactuca sativa) fields[J]. Environmental Pollution, 2020, 264:3-8.
    [28] WANG L, BUTCHER A S, STUART M E, et al.The nitrate time bomb:a numerical way to investigate nitrate storage and lag time in the unsaturated zone[J]. Environmental Geochemistry and Health, 2013, 35(5):667-681. doi: 10.1007/s10653-013-9550-y
    [29] RACZ A J, FISHER A T, SCHMIDT C M, et al.Spatial and temporal infiltration dynamics during managed aquifer recharge[J]. Ground Water, 2012, 50(4):562-566. doi: 10.1111/j.1745-6584.2011.00875.x
    [30] PREETHA P P, AL-HAMDAN A Z.Developing nitrate-nitrogen transport models using remotely-sensed geospatial data of soil moisture profiles and wet depositions[J]. Journal of Environmental Science and Health:Part A, 2020, 55(5):616-619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10934529.2020.1724503
    [31] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al.Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892. doi: 10.1126/science.1136674
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1051
  • HTML全文浏览量:  55
  • PDF下载量:  710
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-22
  • 修回日期:  2020-05-11
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回