留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预处理方式对氧化-还原联合技术修复硝基苯污染地下水的影响

夏甫 杨昱 万朔阳 郜普闯 韩旭 姜永海 徐祥健

夏甫, 杨昱, 万朔阳, 郜普闯, 韩旭, 姜永海, 徐祥健. 预处理方式对氧化-还原联合技术修复硝基苯污染地下水的影响[J]. 环境科学研究, 2020, 33(9): 2001-2010. doi: 10.13198/j.issn.1001-6929.2020.07.09
引用本文: 夏甫, 杨昱, 万朔阳, 郜普闯, 韩旭, 姜永海, 徐祥健. 预处理方式对氧化-还原联合技术修复硝基苯污染地下水的影响[J]. 环境科学研究, 2020, 33(9): 2001-2010. doi: 10.13198/j.issn.1001-6929.2020.07.09
XIA Fu, YANG Yu, WAN Shuoyang, GAO Puchuang, HAN Xu, JIANG Yonghai, XU Xiangjian. Influence of Pre-Treatment on Remediation of Nitrobenzene Contaminated Groundwater by Combined Oxidation-Reduction Techniques[J]. Research of Environmental Sciences, 2020, 33(9): 2001-2010. doi: 10.13198/j.issn.1001-6929.2020.07.09
Citation: XIA Fu, YANG Yu, WAN Shuoyang, GAO Puchuang, HAN Xu, JIANG Yonghai, XU Xiangjian. Influence of Pre-Treatment on Remediation of Nitrobenzene Contaminated Groundwater by Combined Oxidation-Reduction Techniques[J]. Research of Environmental Sciences, 2020, 33(9): 2001-2010. doi: 10.13198/j.issn.1001-6929.2020.07.09

预处理方式对氧化-还原联合技术修复硝基苯污染地下水的影响

doi: 10.13198/j.issn.1001-6929.2020.07.09
基金项目: 

国家水体污染控制与治理科技重大专项 2018ZX07109-003

中国环境科学研究院中央级公益性科研院所基本科研业务专项 JY-41373129

详细信息
    作者简介:

    夏甫(1988-), 男, 山东烟台人, 工程师, 硕士, 主要从事地下水修复技术研究, 239014113@qq.com

    通讯作者:

    徐祥健(1988-), 男, 山东临沂人, 助理研究员, 博士, 主要从事高级氧化技术研究, xuxjian406@126.com

  • 中图分类号: X523

Influence of Pre-Treatment on Remediation of Nitrobenzene Contaminated Groundwater by Combined Oxidation-Reduction Techniques

Funds: 

National Major Science and Technology Program for Water Pollution Control and Treatment, China 2018ZX07109-003

Special Project of Basic Scientific Research Business of Central Public Welfare Scientific Research Institutes of Chinese Academy of Environmental Sciences JY-41373129

  • 摘要: 为了探究氧化与还原预处理对氧化-还原联合技术修复硝基苯污染地下水的影响,选取2,4-DNT(2,4-二硝基甲苯)为研究对象,构建过硫酸盐/铁炭修复技术体系,分别设置2个试验槽,一个试验槽以过硫酸盐作为氧化预处理联合以铁炭作为还原后处理,另一个试验槽以铁炭作为还原预处理联合以过硫酸盐作为氧化后处理,对比研究构建的氧化-还原联合系统中不同氧化与还原预处理方式对2,4-DNT去除机制的影响.结果表明:①过硫酸盐氧化材料填充位置显著影响试验槽pH和ORP(氧化还原电位)的变化,在运行周期5 PV(PV为孔隙体积,1 PV时间约为4 h)内,pH可显著增至11左右,ORP值达到最高.②在运行周期5 PV内,氧化填充层S2O82-浓度和还原填充层Fe2+浓度均显著降低.③在运行周期5 PV内,随运行周期的增加,以过硫酸盐作为氧化预处理联合以铁炭作为还原后处理的协同技术体系对2,4-DNT的去除效果显著降低,以铁炭作为还原预处理联合以过硫酸盐作为氧化后处理的协同技术体系对2,4-DNT的去除率维持在100%.④通过液相-质谱联用技术,识别构建的氧化-还原联合技术体系内2,4-DNT降解的主要中间产物,同时结合铁炭微电解还原机制和过硫酸盐氧化机制提出了2,4-DNT协同处理机制及其可能的降解路径.研究显示,还原预处理更有利于氧化-还原联合技术对地下水中2,4-DNT的去除,可为有效处理硝基苯化合物污染地下水提供理论支撑.

     

  • 图  1  试验槽示意图

    注:1、2、3、4、5、6、7为试验槽取样点编号.箭头为水流方向.

    Figure  1.  Schematic diagram of experimental tanks

    图  2  运行周期1 PV、2 PV、3 PV和5 PV时试验槽1#和试验槽2#中不同取样点处pH的变化

    Figure  2.  Changes of pH at each sampling point in 1# and 2# tanks during 1 PV, 2 PV, 3 PV and 5 PV

    图  3  运行周期1 PV、2 PV、3 PV和5 PV时试验槽1#和试验槽2#不同取样点处ORP的变化

    Figure  3.  Changes of ORP at each sampling point in 1# and 2# tanks during 1 PV, 2 PV, 3 PV and 5 PV

    图  4  运行周期1 PV、2 PV、3 PV和5 PV时试验槽1#和试验槽2#不同取样点处Fe2+浓度的变化

    Figure  4.  Changes of the Fe2+ concentration at each sampling point in 1# and 2# tanks during 1 PV, 2 PV, 3 PV and 5 PV

    图  5  运行周期1 PV、2 PV、3 PV和5 PV时试验槽1#和试验槽2#不同取样点处S2O82-浓度的变化

    Figure  5.  Changes of the S2O82- concentration at each sampling point in 1# and 2# tanks during 1 PV, 2 PV, 3 PV and 5 PV

    图  6  运行周期1 PV、2 PV、3 PV和5 PV时试验槽1#和试验槽2#不同取样点处2, 4-DNT去除率的变化

    Figure  6.  Changes of the 2, 4-DNT concentration at each sampling point in 1# and 2# tanks during 1 PV, 2 PV, 3 PV and 5 PV

    图  7  试验槽1#在PRMs填充层和ZVI/GAC填充层的质谱图

    Figure  7.  Mass spectrometry in the PRMs layer and ZVI/GAC layer in 1# tank

    图  8  试验槽2#在ZVI/GAC填充层和PRMs填充层的质谱图

    Figure  8.  Mass spectrometry in the ZVI/GAC layer and the PRMs layer in 2# tank

    图  9  2, 4-DNT在试验槽1#和试验槽2#预处理中可能的降解路径

    Figure  9.  2, 4-DNT possible degradation paths in the different pre-treatment processes in 1# and 2# tanks

    表  1  试验槽相关参数

    Table  1.   List of related parameters of test tanks

    试验槽 PRMs/kg ZVI/kg GAC/kg 孔隙度 孔隙体积/m3 流速/(m3/h)
    1# 250.1 251.3 123.6 0.43 2.58 0.5
    2# 252.2 252.6 122.5 0.45 2.60 0.5
    下载: 导出CSV
  • [1] ZHANG W, CHEN L, CHENG H, et al.The effect of Fe0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge[J].Journal of Hazardous Materials, 2007, 143(1/2):57-64. http://www.ncbi.nlm.nih.gov/pubmed/17034938/
    [2] YIN W, WU J, LI P, et al.Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater:the effects of pH, iron dosage, oxygen and common dissolved anions[J].Chemical Engineering Journal, 2012, 184:198-204. doi: 10.1016/j.cej.2012.01.030
    [3] CHEN W S, JUAN C N, WEI K M, et al.Mineralization of dinitrotoluenes and trinitrotoluene of spent acid in toluene nitration process by Fenton oxidation[J].Chemosphere, 200, 560:1072-1079. http://www.sciencedirect.com/science/article/pii/S0045653505001219
    [4] DOPPALAPUDI R B, SORIAL G A, MALONEY S W, et al.Electrochemical reduction of 2, 4-dinitrotoluene in a continuous flow laboratory scale reactor[J].Journal of Environmental Engineering, 2003, 129:192-201. doi: 10.1061/(ASCE)0733-9372(2003)129:3(192)
    [5] KEUM Y S, LI Q X.Reduction of nitroaromatic pesticides with zero-valent iron[J].Chemosphere, 2004, 54:255-263. doi: 10.1016/j.chemosphere.2003.08.003
    [6] MANTHA R, TAYLOR K E, BISWAS N, et al.A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater[J].Environmental Science & Technology, 2001, 35:3231-3236. doi: 10.1021/es0014943
    [7] GHEJU M, BALCU I.Removal of chromium from Cr(Ⅵ) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations[J].Journal of Hazardous Materials, 2011, 196:131-138. doi: 10.1016/j.jhazmat.2011.09.002
    [8] NOUBACTEP C.A critical review on the process of contaminant removal in Fe0-H2O systems[J].Environmental Technology, 2008, 29:909-920. doi: 10.1080/09593330802131602
    [9] ZHOU H M, LV P, SHEN Y Y, et al.Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism[J].Water Research, 2013, 47:3514-3522. doi: 10.1016/j.watres.2013.03.057
    [10] HU R, GWENZI W, SIPOWO-TALA V R, et al.Water treatment using metallic iron:a tutorial review[J].Processes, 2019, 7:622-641. doi: 10.3390/pr7090622
    [11] QIN Y, YU L, LUO S, et al.Degradation of nitrobenzene wastewater via iron/carbon micro-electrolysis enhanced by ultrasound coupled with hydrogen peroxide[J].China Petroleum Processing and Petrochemical Technology, 2017, 19:72-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsyjgysyhgjs201704014
    [12] HAN Y, QI M, ZHANG L, et al.Degradation of nitrobenzene by synchronistic oxidation and reduction in an internal circulation microelectrolysis reactor[J].Journal of Hazardous Materials, 2019, 365:448-456. doi: 10.1016/j.jhazmat.2018.11.036
    [13] LI B, ZHU J.Removal of p-chloronitrobenzene from groundwater:effectiveness and degradation mechanism of a heterogeneous nanoparticulate zero-valent iron (NZVI)-induced Fenton process[J].Chemical Engineering Journal, 2014, 255:225-232. doi: 10.1016/j.cej.2014.06.013
    [14] WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al.Oxidation of chlorinated ethenes by heat-activated persulfate:kinetics and products[J].Environmental Science & Technology, 2007, 41:1010-1015. http://www.tandfonline.com/servlet/linkout?suffix=CIT0016&dbid=16&doi=10.1080%2F09593330.2017.1323960&key=10.1021%2Fes062237m
    [15] GAO Y Q, GAO N Y, DENG Y, et al.Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water[J].Chemical Engineering Journal, 2012, 195:248-253. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1db369fbc4237fe6d3fb09fcc7c444d
    [16] KERMANI M, MOHAMMADI F, KAKAVANDI B, et al.Simultaneous catalytic degradation of 2, 4-D and MCPA herbicides using sulfate radical-based heterogeneous oxidation over persulfate activated by natural hematite (α-Fe2O3/PS)[J].Journal of Physics and Chemistry of Solids, 2018, 117:49-59. doi: 10.1016/j.jpcs.2018.02.009
    [17] LI P, LIU Z, WANG X, et al.Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate[J].Chemosphere, 2017, 180:100-107. doi: 10.1016/j.chemosphere.2017.04.019
    [18] ZHANG W, LI X, YANG Q, et al.Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system[J].Chemosphere, 2019, 216:749-756. doi: 10.1016/j.chemosphere.2018.10.168
    [19] LI X, ZHOU M, PAN Y.Enhanced degradation of 2, 4-dichlorophenoxyacetic acid by pre-magnetization Fe-C activated persulfate:influential factors, mechanism and degradation pathway[J].Journal of Hazardous Materials, 2018, 353:454-465. doi: 10.1016/j.jhazmat.2018.04.035
    [20] 陈方义, 杨昱, 常明, 等.过硫酸盐缓释材料释放性能及机理[J].环境科学研究, 2013, 26(9):995-1000. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20130911&flag=1

    CHEN Fangyi, YANG Yu, CHANG Ming, et al.Release performance and mechanism of persulfate sustained release materials[J].Research of Environmental Sciences, 2013, 26(9):995-1000. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20130911&flag=1
    [21] XU X J, YANG Y, JIA Y F, et al.Heterogeneous catalytic degradation of 2, 4-dinitrotoluene by the combined persulfate and hydrogen peroxide activated by the as-synthesized Fe-Mn binary oxides[J].Chemical Engineering Journal, 2019, 374:776-786. doi: 10.1016/j.cej.2019.05.138
    [22] LIANG C, HUANG C F, MOHANTY N, et al.A rapid spectrophotometric determination of persulfate anion in ISCO[J].Chemosphere, 2008, 73(9):1540-1543. doi: 10.1016/j.chemosphere.2008.08.043
    [23] 刘小青, 谢峻林, 何峰, 等.玻璃片-分光光度法测定玻璃中铁和亚铁[J].分析仪器, 2013(4):27-31. http://d.wanfangdata.com.cn/Periodical/fxyq201304006

    LIU Xiaoqing, XIE Junlin, HE Feng, et al.Determination of ferrous and ferrous in glass by glass slice spectrophotometry[J].Analytical Instruments, 2013(4):27-31. http://d.wanfangdata.com.cn/Periodical/fxyq201304006
    [24] CHENG H, XU W, LIU J, et al.Pretreatment of wastewater from triazine manufacturing by coagulation electrolysis and internal microelectrolysis[J].Journal of Hazardous Materials, 2007, 146(1/2):385-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b70504145ba643e2f963cad7232c3ac
    [25] HUNG H M, LING F H, HOFFMANN M R, et al.Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound[J].Environmental Science & Technology, 2000, 34(9):1758-1763. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=484ccdbd68eaa3fb24dfdc4f2950ba40
    [26] HE Y, ZHANG Y, LI X, et al.Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors[J].Electrochimica Acta, 2018, 282:618-625. doi: 10.1016/j.electacta.2018.06.103
    [27] ZHANG L, YUE Q, YANG K, et al.Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis:investigation on pollutants removal and degradation mechanisms[J].Journal of Hazardous Materials, 2018, 342:705-714. doi: 10.1016/j.jhazmat.2017.09.010
    [28] GHEJU M, BALCU I.Removal of chromium from Cr(Ⅵ) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations[J].Journal of Hazardous Materials, 2011, 196:131-138. doi: 10.1016/j.jhazmat.2011.09.002
    [29] 姜永海, 张进保, 席北斗, 等.Fe0~0还原地下水中2, 4-DNT影响因素及产物[J].环境科学研究, 2010, 23(12):1541-1545. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20101217&flag=1

    JIANG Yonghai, ZHANG Jinbao, XI Beidou, et al.Products and influencing factors of reductive degradation of 2, 4-DNT in groundwater by zero-valent iron[J].Research of Environmental Sciences, 2010, 23(12):1541-1545. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20101217&flag=1
    [30] 闫琨, 姜永海, 马志飞, 等.Fe0-C微电解去除地下水中2, 4-DNT的影响因素[J].环境工程学报, 2017, 11(6):3381-3385. http://www.cqvip.com/QK/90325C/201706/672430212.html

    YAN Kun, JIANG Yonghai, MA Zhifei, et al.Influencing factors of degradation of 2, 4-DNT in groundwater by Fe0-C[J].Chinese Journal of Environmental Engineering, 2017, 11(6):3381-3385. http://www.cqvip.com/QK/90325C/201706/672430212.html
    [31] OH S Y, KANG S G, CHIU P C, et al.Degradation of 2, 4-dinitrotoluene by persulfate activated with zero-valent iron[J].Science of the Total Environment, 2010, 408(16):3464-3468. doi: 10.1016/j.scitotenv.2010.04.032
    [32] OH S Y, KANG S G, KIM D W, et al.Degradation of 2, 4-dinitrotoluene by persulfate activated with iron sulfides[J].Chemical Engineering Journal, 2011, 172(2/3):641-646. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7e61f902738dc1e2619e0bd092bab05b
    [33] XU X J, XI B D, ZHANG Y, et al.A comparative study on the treatment of 2, 4-dinitrotoluene contaminated groundwater in the combined system:efficiencies, intermediates and mechanisms[J].Science of the Total Environment, 2020, 735:139161. doi: 10.1016/j.scitotenv.2020.139161
    [34] ZHAO L, MA J, SUN Z, et al.Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution[J].Applied Catalysis B:Environmental, 2008, 79:244-253. doi: 10.1016/j.apcatb.2007.10.026
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  23
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-15
  • 修回日期:  2020-07-09
  • 刊出日期:  2020-09-25

目录

    /

    返回文章
    返回