In Situ Bioassay-Based Aquatic Ecological Risk Assessment
-
摘要: 我国流域水环境呈现典型的复合污染特征,亟需发展基于生物效应的生态风险评估方法,以实现环境管理和生态修复的精准化.在野外原位暴露下受试生物受到多种污染物的共同胁迫,可以准确表征研究位点复合污染所产生的生态风险.原位生物测试较传统实验室生物测试具有更高的环境真实性和生态相关性,较野外生物监测对生物体承受的外源污染压力更清晰、可控.综述了基于原位生物测试的水生态风险评估技术,旨在促进该技术在我国水环境监测中的应用,提高生态风险评估的准确度.总结了国内外近年来原位生物测试的研究特色,详细阐述了实施过程中受试生物选择、暴露装置设计和研究位点选择的原则,以及原位生物测试方法在水环境生态风险评估中的应用案例.结果表明:①对原位生物测试实施要素进行规范化形成标准,将有利于该方法在环境管理中的推广应用.②利用原位生物效应、原位生物体内浓度以及二者与环境浓度相结合进行风险评估,是原位生物测试在生态风险评估中的三类应用类型.③原位生物暴露与被动采样的联合应用可同步获取原位生物效应和污染物生物可利用浓度,有利于实现全面准确的风险评估,应用潜力较大.研究表明,选用本土模式生物,采用多层次的毒性终点,设计简单有效的暴露装置,并同时考虑原位生物效应和环境浓度将有利于原位生物测试方法在我国的发展.Abstract: Water pollution in China is characterized as combined pollution with multiple stressors, calling for developments of ecological risk assessment approaches based on biological effects to improve accuracy in environmental management and remediation. Test animals expose to multiple stressors in the field and characterizing their effects is regarded as a good indicator for the site-specific ecological risk of combined pollution. In situ bioassays present high environmental realism and ecological relevance compared to traditional laboratory bioassays, and also provide better control over stressor exposure to test animals than field-based monitoring approaches. In this paper, in situ bioassay-based aquatic ecological risk assessment methods are reviewed to promote the application of in situ bioassays in national aquatic environmental monitoring and to achieve accurate ecological risk assessment. By summarizing the features of in situ bioassay research at home and abroad in recent years, the principles of choosing test animals, designing exposure devices, and selecting study sites in the implementation process are discussed in details, and the application cases of in situ bioassays in aquatic ecological risk assessment are illustrated. The results show that: (1) Standardizing the implementation of in situ bioassays is beneficial to promoting the applications of this method in environmental management. (2) The application cases are categorized into three classes, including in situ-based effects, in situ-based body residues, and joint usage of environmental concentrations. (3) It is of great interest to achieve a comprehensive and accurate risk assessment by combining in situ bioassays and passive sampling techniques, which could simultaneously provide in situ effects and bioavailable concentrations of contaminants. The research shows that it would benefit the development of in situ bioassay methods in China by choosing native model organisms, determining multi-biomarkers, designing easy and effective exposure devices, as well as integrating in situ-based effects and environmental concentrations for risk assessment.
-
Key words:
- in situ bioassay /
- combined pollution /
- ecological risk assessment
-
表 1 鱼类原位生物测试的应用
Table 1. Applications of in situ bioassays using fish
受试生物 暴露时间/d 效应终点 暴露装置 胁迫物 研究位点 数据来源 黑头软口鲦(Pimephales promelas) 2、4、8 性激素水平、卵巢转录组 乙烯基塑料涂层镀锌钢丝网框 内分泌干扰物 美国St Louis河 文献[16] 黑头软口(Pimephales promelas) 14、28 体重、体长、肥满度、内分泌相关的基因表达 在线微宇宙 农药 美国农田径流 文献[17] 黑头软口(Pimephales promelas) 4 肝脏代谢组 移动检测单元 美国明尼苏达州河流 文献[18] 黑头软口(Pimephales promelas) 42 存活率、生长、繁殖 镀锌钢捕鱼笼 加拿大Hamilton海湾 文献[19] 黑头软口(Pimephales promelas) 26 形态、营养成分、压力反应(全鱼皮质醇、葡萄糖、乳酸浓度) 镀锌钢捕鱼笼 药物和个人护理品 加拿大Bow河 文献[20] 海鲈鱼幼鱼(Dicentrarchus labrax) 3 存活率 装有容器的网框 强声波 比利时North Sea海洋 文献[21] 鲫鱼(Carassius auratus) 21 肝体指数、EROD1)活性、GST2)活性、体内各个组织器官浓度 聚乙烯圆柱网框 药物 中国南京新秦淮河 文献[22] 鲫鱼 32 体内浓度、EROD活性 立方体不锈钢丝笼 PAHs3) 中国太湖 文献[23] 罗非鱼(Oreochromis niloticus) 60 体内浓度、肝脏和鳃组织病理、生物标志物(SOD4)活性、CAT5)活性、GST活性、GSH6)、LPO7)、PCO8))、细胞核异常 网框 重金属、PAHs、PCBs9)、OCPs10) 巴西IguaÇu河 文献[24] 罗非鱼(Oreochromis niloticus)鲶鱼(Clarias gariepinus) 28 体内浓度、生物标志物(葡萄糖、蛋白质、天冬氨酸转氨酶活性、CYP1A11)活性) 复合纤维网 OCPs、PCBs 孟加拉KARNAPHULY河 文献[25] 虹鳟鱼(Oncorhynchyus mykiss)鳟鱼(Oncorhynchyus clarkiixmykiss)鲑鱼(Salmo salar) 2 CPY1A、金属硫蛋白和卵黄蛋白原的基因表达 硬质尼龙网框 美国、加拿大河流 文献[26] 新热带鱼(Prochilodus lineatus) 120 生物标志物(EROD活性、GST活性、SOD活性、CAT活性、GPX12)活性、GR13)活性,GSH、LPO)、DNA损伤、微核、红细胞核异常、肝脏组织病理 聚乙烯网框 农药、重金属 巴西湖泊 文献[27] 鲤鱼(Cyprinus carpio) 49 游泳速度、耗氧量、肝体指数、体质量、金属硫蛋白 塑料网框 重金属 比利时河流 文献[28] 注:1) EROD表示7-乙氧基异吩唑酮-O-脱乙基酶;2) GST表示谷胱甘肽硫转移酶;3) PAHs表示多环芳烃;4) SOD表示超氧化物歧化酶;5) CAT表示羧酸酯酶;6) GSH表示还原型谷胱甘肽;7) LPO表示脂质过氧化;8) PCO表示蛋白质羰基含量;9) PCBs表示多氯联苯;10) OCPs表示有机氯农药;11) CYP1A表示细胞色素P450;12) GPX表示谷胱甘肽过氧化物酶;13) GR表示谷胱甘肽还原酶. 表 2 无脊椎动物原位生物测试的应用
Table 2. Applications of in situ bioassays using invertebrates
受试生物 暴露时间/d 效应终点 暴露装置 胁迫物 研究位点 数据来源 菲律宾蛤仔(Ruditapes philippinarum) 14 生物标志物(LMS1)、DNA损伤、LPO、EROD活性、DBF2)、GST活性、GPX活性、GR活性、AChE3)活性、TLP4)、MET5)) 聚氯乙烯管和塑料网做成的箱型网框 重金属、PAHs、药物、表面活性剂 西班牙Cádiz海湾 文献[29] 菲律宾蛤仔(Ruditapes philippinarum) 14 生物标志物(LMS、DNA损伤、EROD活性、DBF、GST活性、GPX活性、GR活性、AChE活性、LPO) 网袋 西班牙Cádiz海湾 文献[30] 河蚬(Corbicula fluminea) 21 生物标志物(LMS、DNA损伤、EROD活性、DBF、GST活性、GPX活性、GR活性、AChE活性、LPO) 网袋 西班牙Guadalete河 文献[30] 河蚬(Corbicula fluminea) 28 生物标志物(GPX活性、GST活性)、DNA损伤、病理损伤 塑料网框 重金属 西班牙Guadalquivir河 文献[31] 紫贻贝(Mytilus galloprovincialis)
厚壳贻贝(Mytilus coruscus)
翡翠贻贝(Perna viridis)30 体内浓度 尼龙网袋 内分泌干扰物 中国海岸 文献[32] 贻贝(Mytilus edulis) 42 体内微塑料丰度和特征 不锈钢笼 微塑料 法国Le Havre海湾 文献[33] 贻贝(Mytilus galloprovincialis) 84 体内浓度、健康状况指标 聚乙烯网袋 重金属、PAHs、PCBs、OCPs 地中海Adriatic海岸 文献[34] 贻贝(Villosa iris) 221、344 存活率、生长、消化腺、鳃、肾脏、性腺病理 聚乙烯网框 水质参数 美国Clinch河流 文献[35] 铜锈环棱螺(Bellamya aeruginosa) 7、14、21 生物标志物(EROD活性、SOD活性、CAT活性、ROS6)、LPO、PCO) 尼龙网包裹的聚丙烯圆筒 重金属、有机污染物(OCPs、PCBs、PBDEs7)) 中国太湖 文献[36] 泥螺(Potamopyrgus antipodarum) 56 存活率、繁殖 尼龙网封口的不锈钢圆管 重金属、极性农药、药物、烷基酚、PAHs、PCBs、OCPs、PBDEs、PFCs8) 捷克河流 文献[37] 钩虾(Gammarus fossarum) 7 摄食率、雄性卵黄蛋白原 两端网封的圆筒 防腐剂、生物农药、食品添加剂、麻醉剂、农药、药物 瑞士Chrebsbach河 文献[38] 钩虾(Gammarus fossarum) 7 体内浓度 两端网封的聚丙烯圆筒 重金属、持久性有机污染物 法国218条河流 文献[14] 钩虾(Hyalella azteca)
大型溞(Daphnia magna)
摇蚊幼虫(Chironomus dilutus)4 存活率 透明醋酸丁酸纤维素中空管,两端聚乙烯盖封口,侧边开窗覆尼龙网 锌 美国矿坑湖泊 文献[39] 摇蚊(Chironomus sancticaroli) 4 存活率 两端和侧边尼龙网封的聚氯乙烯管 水质参数、重金属、农药 巴西Monjolinho河 文献[40] 摇蚊幼虫(Chironomus riparius) 20 存活率、生长、羽化 水下塑料网孔暴露室和水上羽化室 法国Brévenne河 文献[41] 摇蚊幼虫(Chironomus riparius) 2、4 生长、体内浓度 装配喂食系统和活塞取样器的圆管 重金属 瑞士Geneva湖 文献[42] 等足类(Cyathura carinata) 2 暴露后的摄食率 透明亚克力管,侧边开窗覆尼龙网 葡萄牙河口 文献[43] 小长臂虾(Palaemonetes argentinus) 4 体内浓度、生物标志物(CAT活性、GST活性、ChEs9)活性)、金属硫蛋白 塑料网框 金属 阿根廷Ctalamochita河 文献[44] 片脚类(Eohaustorius estuarius) 2、10 存活率 集成多暴露室、水质监测和被动采样的沉积物生态毒性评估环 重金属、OCPs、PAHs、PCBs 美国San Diego海湾和Bayou Grande河口 文献[5, 10] 糠虾(Americamysis bahia) 2 存活率 沙蚕(Neanthes arenaceodentata) 2 存活率、暴露后摄食率、体内浓度 紫贻贝(M. galloprovincialis) 2 发育 东亚壳菜蛤(Musculista senhousia) 21 体内浓度 硬壳蛤(Mercenaria mercenaria) 2、4 体内浓度 黑头软口鲦(Pimephales promelas)
大型溞(Daphnia magna)
模糊网纹溞(Ceriodaphnia dubia)
钩虾(Hyalella azteca)
摇蚊幼虫(Chironomus tentans)
夹杂带丝蚓(Lumbriculus variegatus)
水螅(Hydra attenuatta)
蜉蝣幼虫(Baetis tibialis)2~14 存活率、生长、摄食率、体内浓度 透明醋酸丁酸纤维素中空管,两端聚乙烯盖封口,侧边开窗覆尼龙网 PCBs 美国河流、小溪 文献[1] 注:1) LMS表示溶酶体膜稳定性;2) DBF表示二苄基荧光素脱烷基酶;3) AChE表示乙酰胆碱酯酶;4) TLP表示总脂肪;5) MET表示线粒体电子转移;6) ROS表示活性氧;7) PBDEs表示多溴联苯醚;8) PFCs表示全氟化合物;9) ChEs表示胆碱酯酶. -
[1] BURTON G A, GREENBERG M S, ROWLAND C D, et al.In situ exposures using caged organisms:a multi-compartment approach to detect aquatic toxicity and bioaccumulation[J].Environmental Pollution, 2005, 134(1):133-144. doi: 10.1016/j.envpol.2004.07.008 [2] LEVINE S L, BORGERT C J.Review and recommendations on criteria to evaluate the relevance of pesticide interaction data for ecological risk assessments[J].Chemosphere, 2018, 209:124-136. doi: 10.1016/j.chemosphere.2018.06.081 [3] SASSONBRICKSON G, BURTON G A.In situ and laboratory sediment toxicity testing with Ceriodaphnia dubia[J].Environmental Toxicology and Chemistry, 1991, 10(2):201-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/etc.5620100208 [4] KAHL M D, VILLENEUVE D L, STEVENS K, et al.An inexpensive, temporally integrated system for monitoring occurrence and biological effects of aquatic contaminants in the field[J].Environmental Toxicology and Chemistry, 2014, 33(7):1584-1595. doi: 10.1002/etc.2591 [5] ROSEN G, BART C D, ALLEN B G, et al.A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity.Part 2:integrated application to a shallow estuary[J].Environmental Pollution, 2012, 162:457-565. doi: 10.1016/j.envpol.2011.11.013 [6] HOKE R, HUGGETT D, BRASFIELD S, et al.Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals:current status and future possibilities[J].Integrated Environmental Assessment and Management, 2016, 12(1):109-122. doi: 10.1002/ieam.1692 [7] PEREIRA A M M, SOARES A, GONCALVES F, et al.Water-column, sediment, and in situ chronic bioassays with cladocerans[J].Ecotoxicology and Environmental Safety, 2000, 47(1):27-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=224e0db38e1a4cf4a4b2f57fed180ab5 [8] BAIRD D J, BROWN S S, LAGADIC L, et al.In situ-based effects measures:determining the ecological relevance of measured responses[J].Integrated Environmental Assessment and Management, 2007, 3(2):259-267. doi: 10.1897/IEAM_2006-031.1 [9] WHARFE J, ADAMS W, APITZ S E, et al.In situ methods of measurement:an important line of evidence in the environmental risk framework[J].Integrated Environmental Assessment and Management, 2007, 3(2):268-274. doi: 10.1897/IEAM_2006-024.1 [10] BURTON G A, ROSEN G, CHADWICK D B, et al.A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity.Part 1:system description and proof of concept[J].Environmental Pollution, 2012, 162:449-456. doi: 10.1016/j.envpol.2011.11.018 [11] BAIRD D J, BURTON G A, CULP J M, et al.Summary and recommendations from a SETAC pellston workshop on in situ measures of ecological effects[J].Integrated Environmental Assessment and Management, 2007, 3(2):275-278. doi: 10.1897/IEAM_2006-030.1 [12] American Society for Testing and Materials (ASTM).E2122-02 standard guide for conducting in-situ field bioassays with caged bivalves[S].West Conshohocken, PA: ASTM International, 2013. [13] LIBER K, GOODFELLOW W, DEN B P, et al.In situ-based effects measures:considerations for improving methods and approaches[J].Integrated Environmental Assessment and Management, 2007, 3(2):246-258. doi: 10.1897/2006-029FIN.1 [14] ALRIC B, GEFFARD O, CHANDESRIS A, et al.multisubstance indicators based on caged gammarus bioaccumulation reveal the influence of chemical contamination on stream macroinvertebrate abundances across france[J].Environmental Science & Technology, 2019, 53(10):5906-5915. doi: 10.1021/acs.est.9b01271 [15] BAUDRIMONT M, ANDRES S, DURRIEU G, et al.The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after in situ exposure to Cd and Zn[J].Aquatic Toxicology, 2003, 63(2):89-102. doi: 10.1016/S0166-445X(02)00134-0 [16] PERKINS E J, HABIB T, ESCALON B L, et al.Prioritization of contaminants of emerging concern in wastewater treatment plant discharges using chemical:gene interactions in caged fish[J].Environmental Science & Technology, 2017, 51(15):8701-8712. http://forest.ckcest.cn/d/hxwx/AV_i2CsdlpOm1__k1q6r.html [17] ALI J M, SANGSTER J L, SNOW D D, et al.Compensatory response of fathead minnow larvae following a pulsed in-situ exposure to a seasonal agricultural runoff event[J].Science of the Total Environment, 2017, 603:817-826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56edb124a00ae85eaef4ff7a205b5fd3 [18] SKELTON D M, EKMAN D R, MARTINOVIC-WEIGELT D, et al.Metabolomics for in situ environmental monitoring of surface waters impacted by contaminants from both point and nonpoint sources[J].Environmental Science & Technology, 2014, 48(4):2395-2403. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=17e269c974f993df11867ccc2d3e4d46 [19] MILLER J L, SHERRY J, PARROTT J, et al.A subchronic in situ exposure method for evaluating effects in small-bodied fish at contaminated sites[J].Environmental Toxicology, 2014, 29(1):54-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=966b1a5e646f81e24beffd393b996f55 [20] LAZARO-COTE A, SADOUL B, JACKSON L J, et al.Acute stress response of fathead minnows caged downstream of municipal wastewater treatment plants in the Bow River, Calgary[J].Plos One, 2018, 13(6):e0198177. doi: 10.1371/journal.pone.0198177 [21] DEBUSSCHERE E, DE-COENSEL B, BAJEK A, et al.In situ mortality experiments with juvenile sea bass (Dicentrarchus labrax) in relation to impulsive sound levels caused by pile driving of windmill foundations[J].Plos One, 2014, 9(10):e109280. doi: 10.1371/journal.pone.0109280 [22] LIU J, LU G, ZHANG Z, et al.Biological effects and bioaccumulation of pharmaceutically active compounds in crucian carp caged near the outfall of a sewage treatment plant[J].Environmental Science:Processes & Impacts, 2015, 17(1):54-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5050185920e8e59afc1f41ea67db6f43 [23] 柯润辉, 李剑, 许宜平, 等.被动式采样器与原位鱼体暴露用于监测水体Ah受体效应的比较研究[J].环境科学, 2006, 27(11):2309-2313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200611031KE Runhui, LI Jian, XU Yiping, et al.Comparison of the methods for assessing Ah effects in aquatic system by semipermeable membrane device and caged fish[J].Environmental Science, 2006, 27(11):2309-2313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200611031 [24] SANTANA M S, YAMAMOTO F Y, SANDRINI-NETO L, et al.Diffuse sources of contamination in freshwater fish:detecting effects through active biomonitoring and multi-biomarker approaches[J].Ecotoxicology and Environmental Safety, 2018, 149:173-181. doi: 10.1016/j.ecoenv.2017.11.036 [25] AL-ARABI S A M, ADOLFSSON-ERICI M, WAAGBØ R, et al.Contaminant accumulation and biomarker responses in caged fish exposed to effluents from anthropogenic sources in the Karnaphuly river, Bangladesh[J].Environmental Toxicology and Chemistry, 2005, 24(8):1968-1978. doi: 10.1897/04-383R.1 [26] ROBERTS A P, ORIS J T, BURTON G A, et al.Gene expression in caged fish as a first-tier indicator of contaminant exposure in streams[J].Environmental Toxicology and Chemistry, 2005, 24(12):3092-3098. doi: 10.1897/05-137R.1 [27] DELFINO V C E, COSTA P G, CALDAS S S, et al.An integrated approach in subtropical agro-ecosystems:active biomonitoring, environmental contaminants, bioaccumulation, and multiple biomarkers in fish[J].Science of the Total Environment, 2019, 666:508-524. doi: 10.1016/j.scitotenv.2019.02.209 [28] DELAHAUT V, DAELEMANS O, SINHA A K, et al.A multibiomarker approach for evaluating environmental contamination:common carp (Cyprinus carpio) transplanted along a gradient of metal pollution[J].Science of the Total Environment, 2019, 669:481-492. doi: 10.1016/j.scitotenv.2019.03.028 [29] MARANHO L A, ANDRE C, DELVALLS T A, et al.In situ evaluation of wastewater discharges and the bioavailability of contaminants to marine biota[J].Science of the Total Environment, 2015, 538:876-887. doi: 10.1016/j.scitotenv.2015.08.135 [30] AGUIRRE-MARTÍNEZ G V, MARTÍN-DÍAZ M L.A multibiomarker approach to assess toxic effects of wastewater treatment plant effluents and activated defence mechanisms in marine (Ruditapes philippinarum) and fresh water (Corbicula fluminea) bivalve species[J].Ecotoxicology, 2020, 29:941-958. doi: 10.1007/s10646-020-02216-1 [31] ROGERS J J, HENLEY W F, WEBERG A G, et al.Assessment of growth, survival, and organ tissues of caged mussels (Bivalvia:Unionidae) in a river-scape influenced by coal mining in the southeastern USA[J].Science of the Total Environment, 2018, 645:1273-1286. doi: 10.1016/j.scitotenv.2018.07.142 [32] CHIU J M Y, PO B H K, DEGGER N, et al.Contamination and risk implications of endocrine disrupting chemicals along the coastline of China:a systematic study using mussels and semipermeable membrane devices[J].Science of the Total Environment, 2018, 624:1298-1307. doi: 10.1016/j.scitotenv.2017.12.214 [33] KAZOUR M, AMARA R.Is blue mussel caging an efficient method for monitoring environmental microplastics pollution?[J].Science of the Total Environment, 2020, 710:135649. doi: 10.1016/j.scitotenv.2019.135649 [34] BONNAIL E, RIBA I, DE-SEABRA A A, et al.Sediment quality assessment in the Guadalquivir River (SW, Spain) using caged Asian clams:a biomarker field approach[J].Science of the Total Environment, 2019, 650:1996-2003. doi: 10.1016/j.scitotenv.2018.09.346 [35] BAJT O, RAMSAK A, MILUN V, et al.Assessing chemical contamination in the coastal waters of the Adriatic Sea using active mussel biomonitoring with Mytilus galloprovincialis[J].Marine Pollution Bulletin, 2019, 141:283-298. doi: 10.1016/j.marpolbul.2019.02.007 [36] LI Q, WANG M, DUAN L, et al.Multiple biomarker responses in caged benthic gastropods Bellamya aeruginosa after in situ exposure to Taihu Lake in China[J].Environmental Sciences Europe, 2018, 30:34-46. doi: 10.1186/s12302-018-0164-y [37] ZOUNKOVA R, JALOVA V, JANISOVA M, et al.In situ effects of urban river pollution on the mudsnail Potamopyrgus antipodarum as part of an integrated assessment[J].Aquatic Toxicology, 2014, 150:83-92. doi: 10.1016/j.aquatox.2014.02.021 [38] GANSER B, BUNDSCHUH M, WERNER I, et al.Wastewater alters feeding rate but not vitellogenin level of Gammarus fossarum (Amphipoda)[J].Science of the Total Environment, 2019, 657:1246-1252. doi: 10.1016/j.scitotenv.2018.12.035 [39] CERVI E C, THIAMKEELAKUL K, HUDSON M, et al.Laboratory and field-based assessment of the effects of sediment capping materials on zinc flux, bioavailability, and toxicity[J].Environmental Toxicology and Chemistry, 2020, 39(1):240-249. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113708874.html [40] DORNFELD C B, RODGHER S, NEGRI R G, et al.Chironomus sancticaroli (Diptera, Chironomidae) as a sensitive tropical test species in laboratory bioassays evaluating metals (Copper and Cadmium) and field testing[J].Archives of Environmental Contamination and Toxicology, 2019, 76(1):42-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=adb9097303faf8fcb07ba81f9fd0f8e9 [41] FERRARI B J D, FABURÉ J.Field assessment of reproduction-related traits of chironomids using a newly developed emergence platform (E-Board)[J].Ecotoxicology and Environmental Safety, 2017, 137:186-193. doi: 10.1016/j.ecoenv.2016.12.004 [42] FERRARI B J D, VIGNATI D A L, DOMINIK J.Bioaccumulation kinetics and effects of sediment-bound contaminants on chironomids in deep waters:new insights using a low-disturbance in situ system[J].Environmental Technology, 2014, 35(4):456-469. doi: 10.1080/09593330.2013.831462 [43] MARTINEZ-HARO M, MOREIRA-SANTOS M, MARQUES J C, et al.A short-term laboratory and in situ sediment assay based on the postexposure feeding of the estuarine isopod Cyathura carinata[J].Environmental Research, 2014, 134:242-250. doi: 10.1016/j.envres.2014.07.013 [44] BERTRAND L, VICTORIA M M, MOUNEYRAC C, et al.Native crustacean species as a bioindicator of freshwater ecosystem pollution:a multivariate and integrative study of multi-biomarker response in active river monitoring[J].Chemosphere, 2018, 206:265-277. doi: 10.1016/j.chemosphere.2018.05.002 [45] CHAPPIE D J, BURTON G A.Optimization of in situ bioassays with Hyalella azteca and Chironomus tentans[J].Environmental Toxicology and Chemistry, 1997, 16(3):559-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/etc.5620160323 [46] PHILLIPS B M, ANDERSON B S, HUNT J W, et al.In situ water and sediment toxicity in an agricultural watershed[J].Environmental Toxicology and Chemistry, 2004, 23(2):435-442. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1897/03-93 [47] CILIBERTI A, CHAUMOT A, RECOURAMASSAQUANT R, et al.Caged Gammarus as biomonitors identifying thresholds of toxic metal bioavailability that affect gammarid densities at the French national scale[J].Water Research, 2017, 118:131-140. doi: 10.1016/j.watres.2017.04.031 [48] BESSE J, COQUERY M, LOPES C, et al.Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters:towards the determination of threshold values[J].Water Research, 2013, 47(2):650-660. doi: 10.1016/j.watres.2012.10.024 [49] STEIGMEYER A J, ZHANG J, DALEY J M, et al.An in situ toxicity identification and evaluation water analysis system:laboratory validation[J].Environmental Toxicology and Chemistry, 2017, 36(6):1636-1643. doi: 10.1002/etc.3696 [50] BURTON G A, CERVI E C, MEYER K, et al.A novel in-situ toxicity identification evaluation (iTIE) system for determining which chemicals drive impairments at contaminated sites[J].Environmental Toxicology and Chemistry, 2020, 39:1746-1754. doi: 10.1002/etc.4799 -