Revision and Determination of Wastewater Discharge Permit Limit Based on Technology and Water Quality Target
-
摘要: “十三五”期间,我国排污许可管理制度已基本建立;“十四五”时期,我国排污许可管理将逐步过渡到注重水质达标的管理阶段.为适应我国排污许可新的管理需求,研究了基于技术和水质相结合的排污许可限值核定技术.其中,基于技术的排放限值核定主要根据企业的行业属性和核定产能,结合环境影响评价批复的污染物排放额度,确定其排放浓度限值和排放总量限值;基于水质的排放限值核定需建立污染源与水质之间的响应关系,以地表水水质达标为目标,计算各污染源的最大允许排放量.最终的排污许可限值为基于技术的排污许可限值和基于水质的排污许可限值的最小值.以常州为例,从常州排污许可证核发重点行业选取了两家化工企业A和B,核算其基于技术的排放限值;采用水质模拟和污染物最大允许排放量分配技术,计算了污染物最大允许排放量,并分配到两家化工企业,作为基于水质的排放限值.结果表明:A化工企业CODCr和NH3-N的最终排污许可限值分别为6.53和0.075 t/a,其中,CODCr的最终取值为基于水质的排放限值,NH3-N基于技术和基于水质的排放取值相同;B化工企业CODCr和NH3-N的最终排放限值分别为11.60和0.17 t/a,最终取值均为基于技术的排放限值.研究显示,基于水质的排许可限值受到企业自身和外部水环境容量的双重影响,应从严制定排污许可限值,既能达到企业行业排放标准和环境影响评价批复的要求,又能满足水环境质量达标的目标.Abstract: China's discharge permit system is mainly established in the '13th Five-Year Plan'. In the '14th Five-Year Plan', the management of the discharge permit system should pay more attention to the supervision over the water quality compliance. To adopt to the new management demands for the wastewater discharge permit limit, this work discussed revision and determination of wastewater discharge permit limit based on technology and water quality target. The revision and determination of the technology-based effluent limits (TBELs) was determined based on the industry sector and its approved production capacity, combined with the ratified pollutant discharge quota by the environmental impact assessment. The water quality based effluent limits (WQBELs) was determined based on the response relationship between the pollutant loads and the water quality, and the maximum allowable pollutant loads was calculated for the individual pollution sources, aiming to achieve the water quality compliance of surface waters. The value of the final pollution discharge limit will be the lower one of the TBELs and WQBELs so that both requirements can be met. Taking Changzhou as an example, this study selected two chemical enterprises A and B to assess their TBELs because chemical industry was one of the most important industries for pollutant discharge permit work. The water quality model and the allocation technology for the maximum allowable pollutant loads were used to calculate the allowed maximum load for each pollution source, and the calculated allowed maximum load was allocated to the two chemical enterprises as their discharge limit based on the water quality. The result showed that the final discharge permit limit of CODCr and NH3-N for enterprise A was 6.53 and 0.075 t/a, respectively, in which the final CODCr value was based on the WQBEL, and the TBEL and WQBEL of NH3-N were the same. The final discharge permit limit of CODCr and NH3-N for enterprise B was 11.60 and 0.17 t/a, respectively, with both CODCr and NH3-N limits determined by the TBELs. The study indicates that the water quality-based wastewater pollutant discharge permit limit is affected by both the enterprise itself and the water environmental capacity, and the more strict discharge permit limit, i.e., the lower of TBEL and WQBEL should be selected as the limit value so as either to meet the discharge standards for the enterprises and the requirements ratified by the environment impact assessment, or to meet the target of the water environment quality.
-
表 1 两家化工企业环评批复量与根据排放标准核定的许可量比较
Table 1. Comparison of loads of two chemical enterprises ratified by EIA and loads calculated by standards
t/a 项目 A化工企业 B化工企业 环评批复量 排放限值 环评批复量 排放限值 水量 148 414.8 42 470 — 46 400 CODCr 36.39 10.61 — 11.60 NH3-N 0.075 0.74 — 0.17 表 2 两家化工企业基于技术的排放限值
Table 2. TBELs of the two chemical enterprises based on technology
污染物 A化工企业 B化工企业 年排放限值/
(t/a)日排放限值/
(kg/d)年排放限值/
(t/a)日排放限值/
(kg/d)CODCr 10.61 64.05 11.60 77.30 NH3-N 0.075 0.41 0.17 1.13 注:年排放限值(Da)与日排放限值(Dd)的转换公式为Da=Dd×365/1 000/βMDL,其中,βMDL为转换系数,可根据企业污水排放波动性取值,无资料时可取2.0. 表 3 两家化工企业基于技术和容量排污许可限值的比较
Table 3. Comparison of the discharge permit limits based on technology and water environmental capacity
t/a 化工企业 CODCr排污许可限值 NH3-N排污许可限值 基于技术排放限值 基于水质排放限值 最终排放限值 现状排放量 基于技术排放限值 基于水质排放限值 最终排放限值 现状排放量 A 11.690 6.532 6.532 24.877 0.075 0.075 0.075 0.438 B 11.600 22.983 11.600 87.534 0.170 0.196 0.170 1.151 -
[1] 郭薇, 刘晓星.强化立法整合制度推动排污许可制全覆盖[EB/OL].北京: 生态环境部, 2018-08-24[2020-06-26]. http://www.mee.gov.cn/ywdt/hjywnews/201808/t20180824_452506.shtml. [2] 谢伟.美国国家污染物排放消除系统许可证管理制度及其对我国排污许可证管理的启示[J].科技管理研究, 2019, 39(3):238-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjglyj201903034XIE Wei. USA National Pollutant Discharge Elimination System permit management and enlightenment to China pollutant discharge permits management[J]. Science and Technology Management Research, 2019, 39(3):238-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjglyj201903034 [3] 林业星, 沙克昌, 王静, 等.国外排污许可制度实践经验与启示[J].环境影响评价, 2020, 42(1):14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxhjyst202001006LIN Yexing, SHA Kechang, WANG Jing, et al. Practical experience and enlightenment of foreign permit system[J]. Environmental Impact Assessment, 2020, 42(1):14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxhjyst202001006 [4] 美国环境保护局.美国TMDL计划与典型案例实施[M].王东, 赵越, 王玉秋等, 译.北京: 中国环境科学出版社, 2012: 2-4. [5] U.S. Environmental Protection Agency. TMDL program implementation strategy[EB/OL].Washington DC: U.S. Environmental Protection Agency, 1996-12-20[2020-06-27]. https://www.epa.gov/sites/production/files/2015-10/documents/2004_12_14_tmdl_strathp.pdf. [6] U.S. Environmental Protection Agency. Overview of total maximum daily loads (TMDLs)[EB/OL]. Washington DC: U.S. Environmental Protection Agency, 2017-01-19[2020-06-27]. https://www.epa.gov/tmdl/overview-total-maximum-daily-loads-tmdls. [7] 美国环境保护局.美国TMDL计划管理模型实施实践[M].王东, 赵越, 徐敏等, 译.北京: 中国环境科学出版社, 2012: 3-10. [8] 美国环境保护局.美国NPDES许可证编写者指南[M].叶维丽, 王东, 吴悦颖等, 译.北京: 中国环境科学出版社, 2014: 13-16. [9] 张建宇, 庄羽.美国国家污染物排放削减系统许可程序概述[J].环境影响评价, 2018, 40(1):33-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180802900029ZHANG Jianyu, ZHUANG Yu. Experience from permitting procedure of the U.S. National Pollutant Discharge Elimination System[J]. Environmental Impact Assessment, 2018, 40(1):33-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180802900029 [10] EC (European Commission). Common Implementation Strategy for the Water Framework Directive (2000/60/EC)[EB/OL]. Copenhagen: European Environment Agency (EEA), 2003-01-17[2020-03-27]. http://ec.europa.eu/environment/water/water-framework/objectives/pdf/strategy2.pdf. [11] 马丽娜, 于丹, 李慧, 等.欧盟水框架指令对我国水环境保护与修复的启示[J].城市环境与城市生态, 2016, 29(5):37-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cshjycsst201605009MA Lina, YU Dan, LI Hui, et al. Implications of the EU Water Framework Directive for water environmental protection and restoration[J]. Urban Environment & Urban Ecology, 2016, 29(5):37-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cshjycsst201605009 [12] MARTIN G.欧盟水框架指令手册[M].北京:中国水利水电出版社, 2008:1-30. [13] 林雅静.水污染物排放许可证中基于技术的排放标准研究[D].杭州: 浙江农林大学, 2019: 9-13. [14] ZHANG Jie, NI Shaoqiang, WU Wenjun, et al. Evaluating the effectiveness of the pollutant discharge permit program in China:a case study of the Nenjiang River Basin[J]. Journal of Environmental Management, 2019, 251(1):1-8. http://www.sciencedirect.com/science/article/pii/S0301479719312198 [15] NING Shukuang, CHANG Nibin.Watershed-based point sources permitting strategy and dynamic permit-trading analysis[J].Journal of Environmental Management, 2007, 84(4):427-446. http://www.sciencedirect.com/science/article/pii/S0301479706001745 [16] 王淑一.基于技术的排污许可限值确定方法研究[D].北京: 中国环境科学研究院, 2016: 45-51. [17] 王淑一, 雷坤, 邓义祥, 等.企业水污染源基于技术的排污许可限值确定方法及其案例研究[J].环境科学学报, 2016, 36(12):4563-4569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201612031WANG Shuyi, LEI Kun, DENG Yixiang, et al. The determining of technology-based effluent limitations of enterprise water pollutants and case study[J].Acta Scientiae Circumstantiae, 2016, 36(12):4563-4569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201612031 [18] YUAN Qiang, NEIL M, WU Yipeng, et al.Towards greater socio-economic equality in allocation of wastewater discharge permits in China based on the weighted Gini coefficient[J].Resources, Conservation and Recycling, 2017, 127:196-205. doi: 10.1016/j.resconrec.2017.08.023 [19] RAO Congjun, ZHAO Yong, LI Chuanfeng. Incentive mechanism for allocating total permitted pollution discharge capacity and evaluating the validity of free allocation[J].Computers & Mathematics with Applications, 2011, 62(8):3037-3047. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e958b8294b7dbc6e098931ea814fb712 [20] SUN Tao, ZHANG Hongwei, WANG Yuan, et al. The application of environmental Gini coefficient (EGC) in allocating wastewater discharge permit:the case study of watershed total mass control in Tianjin, China[J].Resources, Conservation and Recycling, 2010, 54(9):601-608. doi: 10.1016/j.resconrec.2009.10.017 [21] 薛野.河网一维水动力水质模型研究及系统实现[D].武汉: 华中科技大学, 2018: 25-50. [22] 朱德军, 陈永灿, 刘昭伟.大型复杂河网一维动态水流-水质数值模型[J].水力发电学报, 2012, 31(3):83-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slfdxb201203015ZHU Dejun, CHEN Yongcan, LIU Zhaowei.One-dimensional hydrodynamic-water quality model for large complex river networks[J].Journal of Hydroelectric Engineering, 2012, 31(3):83-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slfdxb201203015 [23] DENG Y, LEI K, CRITTO A, et al.Improving optimization efficiency for the total pollutant load allocation in large two-dimensional water areas:Bohai Sea (China) case study[J].Marine Pollution Bulletin 2017, 114:269-276. doi: 10.1016/j.marpolbul.2016.09.029 [24] 邓义祥, 雷坤, 富国, 等.基于分配指数的渤海TN总量分配研究[J].环境科学研究, 2015, 28(12):1862-1869. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20151207&flag=1DENG Yixiang, LEI Kun, FU Guo, et al.Load allocation of total nitrogen around Bohai sea based on allocation index[J].Research of Environmental Sciences, 2015, 28(12):1862-1869. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20151207&flag=1 [25] 吕丽, 邓义祥, 李艳, 等.决策偏好对水环境污染物总量分配的影响[J].环境科学学报, 2014, 34(2):466-472. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201402027LÜ Li, DENG Yixiang, LI Yan, et al.Impact of decision-making preference on total pollutant load allocation in water environment[J].Acta Scientiae Circumstantiae, 2014, 34(2):466-472. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201402027 [26] 吴文俊, 蒋洪强, 段扬, 等.基于环境基尼系数的控制单元水污染负荷分配优化研究[J].中国人口·资源与环境, 2017, 27(5):8-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201705002WU Wenjun, JIANG Hongqiang, DUAN Yang, et al.Application of total water pollutant load distribution in control-unit based on the environmental Gini coefficient[J].China Population, Resources and Environment, 2017, 27(5):8-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201705002 [27] 国家环境保护局. GB 8978-1996污水综合排放标准[S/OL].北京: 中国环境出版社, 1996-10-04[2020-06-28].http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/199801/W020061027521858212955.pdf. -