留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于源汇过程模拟的鄱阳湖流域总磷污染源解析

杨中文 张萌 郝彩莲 后希康 王璐 夏瑞 尹京晨 马驰 王强 张远

杨中文, 张萌, 郝彩莲, 后希康, 王璐, 夏瑞, 尹京晨, 马驰, 王强, 张远. 基于源汇过程模拟的鄱阳湖流域总磷污染源解析[J]. 环境科学研究, 2020, 33(11): 2493-2506. doi: 10.13198/j.issn.1001-6929.2020.09.11
引用本文: 杨中文, 张萌, 郝彩莲, 后希康, 王璐, 夏瑞, 尹京晨, 马驰, 王强, 张远. 基于源汇过程模拟的鄱阳湖流域总磷污染源解析[J]. 环境科学研究, 2020, 33(11): 2493-2506. doi: 10.13198/j.issn.1001-6929.2020.09.11
YANG Zhongwen, ZHANG Meng, HAO Cailian, HOU Xikang, WANG Lu, XIA Rui, YIN Jingchen, MA Chi, WANG Qiang, ZHANG Yuan. Source Apportionment of Total Phosphorus Pollution in Poyang Lake Basin Based on Source-Sink Process Modeling[J]. Research of Environmental Sciences, 2020, 33(11): 2493-2506. doi: 10.13198/j.issn.1001-6929.2020.09.11
Citation: YANG Zhongwen, ZHANG Meng, HAO Cailian, HOU Xikang, WANG Lu, XIA Rui, YIN Jingchen, MA Chi, WANG Qiang, ZHANG Yuan. Source Apportionment of Total Phosphorus Pollution in Poyang Lake Basin Based on Source-Sink Process Modeling[J]. Research of Environmental Sciences, 2020, 33(11): 2493-2506. doi: 10.13198/j.issn.1001-6929.2020.09.11

基于源汇过程模拟的鄱阳湖流域总磷污染源解析

doi: 10.13198/j.issn.1001-6929.2020.09.11
基金项目: 

国家水体污染控制与治理科技重大专项 2017ZX07301-001

中央级公益性科研院所基本科研业务专项 2020YSKY-017

详细信息
    作者简介:

    杨中文(1990-), 男, 四川内江人, 助理研究员, 博士, 主要从事流域水生态环境模拟与管控技术研究, yangzw@craes.org.cn

    通讯作者:

    张远(1970-), 男, 辽宁沈阳人, 研究员, 博士, 博导, 主要从事水生态保护修复技术、流域水环境模拟优化研究, zhangyuan@craes.org.cn

  • 中图分类号: X52

Source Apportionment of Total Phosphorus Pollution in Poyang Lake Basin Based on Source-Sink Process Modeling

Funds: 

National Major Science and Technology Program for Water Pollution Control and Treatment, China 2017ZX07301-001

Central Public-Interest Scientific Institution Basal Research Fund of Chinese Research Academy of Environmental Sciences 2020YSKY-017

  • 摘要: 近年来鄱阳湖磷污染问题突出,总磷超标且浓度逐年增加,成为制约鄱阳湖流域(江西)经济社会可持续发展的重要因素.为科学解析鄱阳湖总磷污染来源,耦合多污染源污染负荷估算方法和SPARROW模型,建立基于源汇过程模拟的流域污染源解析技术方法,针对鄱阳湖流域13种总磷污染源开展负荷估算、模拟校核和入湖时空贡献定量解析.结果表明:①鄱阳湖总磷负荷以陆域输入为主(占90.8%),主要污染来源为农业和城镇生活源,贡献率分别为56.4%和30.6%;污染来源按贡献率的大小排序依次为种植业(29.3%)>城镇生活(24.6%)>畜禽养殖(17.2%)>水产养殖(9.9%)>内源释放(6.9%)>城市径流(6.0%)>农村生活(2.2%)>工业企业(1.6%)>其他源(0.46%).②在空间贡献方面,总磷入湖负荷主要来自于滨湖区和赣江集水区,贡献率分别为33.5%和31.8%,其他集水区总磷贡献率较小(合计为25.5%),湖体贡献率为9.2%;同时,不同子流域污染源贡献结构也存在空间差异性.③在时间贡献方面,总磷入湖负荷量呈季节性波动特征,贡献峰值多出现在6月,雨季(3—8月)陆源输入负荷占全年的70%.④所构建的基于源汇过程模拟的污染源解析模型可用于流域水污染来源成因精细化解析.研究显示,鄱阳湖总磷污染来源具有明显时空差异性,建议围绕滨湖区和赣江集水区等高贡献区域设立优先管控区,重点针对种植业、城镇生活、畜禽养殖和水产养殖源,制定磷污染源汇过程减排政策措施,以改善鄱阳湖水环境质量.

     

  • 图  1  鄱阳湖流域地理概况

    Figure  1.  Location of Poyang Lake Basin

    图  2  基于源汇过程模拟的流域污染源解析技术框架

    Figure  2.  The framework of watershed pollution source apportionment based on source-sink processes modeling

    图  3  基于SPARROW模型的污染物源汇过程耦合模拟/校核模型结构

    Figure  3.  Model structure of the SPARROW model based pollutant source-sink processes coupled simulation/validation

    图  4  鄱阳湖流域集水区和子流域划分结果

    Figure  4.  Watersheds and subbasins divided in Poyang Lake Basin

    图  5  鄱阳湖流域总磷负荷合理性模拟校核结果

    Figure  5.  Validation results of TP load estimations in Poyang Lake Basin using source-sink processes simulation

    图  6  鄱阳湖流域总磷污染源年均入湖总磷负荷情况

    Figure  6.  Annually mean TP loading to Poyang Lake Basin from different sources

    图  7  鄱阳湖流域各集水区总磷入湖负荷总量空间分布

    Figure  7.  The amounts of TP loading to Poyang Lake Basin from watersheds

    图  8  鄱阳湖流域内各子流域陆源总磷入湖负荷量和单位面积总磷入湖负荷强度空间分布

    Figure  8.  The amounts and intensities of TP loading to Poyang Lake Basin from subbasins for land area pollution sources

    图  9  高贡献子流域(入湖负荷贡献率大于2%)陆域污染源贡献结构

    Figure  9.  Contribution structures of different TP pollution sources over high impact subbasins for land area pollution sources (contribution rate >2%)

    图  10  鄱阳湖流域各类陆域污染源入湖负荷过程

    Figure  10.  Monthly TP loading processes to Poyang Lake Basin for land area pollution sources during 2016-2017

    图  11  鄱阳湖流域各类陆域污染源总磷月入湖负荷贡献占比

    Figure  11.  Monthly TP loading structures to Poyang Lake Basin for land area pollution sources

    表  1  流域水污染源分类、核算范围及核算方法

    Table  1.   Categories of water pollution sources and corresponding estimation scopes and methods

    类型 核算范围 核算方法
    工业企业 全流域涉水工业企业 依据实地调查、污染普查数据核定[16]
    城镇生活 全流域城镇人口生活污水(散排和集中处理) 污染物产生总量按污染普查数据核定,其中经管网收集并集中处理后的排放量按照污水处理厂尾水水质监测数据核算,剩余计为散排负荷量
    畜禽养殖 全流域畜禽养殖过程产排污(规模化和散养) 污染负荷量按排污系数法测算[15],其中规模化养殖排污负荷量包括处理后直排量和还田后流失量;排污系数参考《第一次全国污染源普查畜禽养殖源产排污系数手册》,还田后负荷流失系数参考文献[34]
    水产养殖 全流域水产养殖污染尾水排放 按产量乘以排污系数的方法测算,其中各类水产品单产排污系数参考《第一次全国污染源普查水产养殖业污染源产排污系数手册》
    农村生活 全流域农村人口生活污水(面源) 按农村人口乘以人均日排污系数的方法测算,排污系数参考第一次污染普查中江西省所在大区五类城镇居民生活污水排放系数折算得到,取0.22 g/(d·人)
    城市径流 全流域城市区域降雨径流负荷(面源) 针对城镇的屋面、绿地、街道和小区路面范围,采用SCS径流曲线法计算降雨径流量,乘以地表径流平均污染物浓度测算,相关计算方法及污染物浓度值参考文献[35-36]
    种植业 全流域水田、旱地种植业的排污负荷 针对施肥和秸秆(按草谷比测算)还田,采用排放系数法测算.参考地区田间监测数据[34],分别取水田和旱地肥料排放系数为0.031和0.062;秸秆还田率采用实地调查获得,农作物草谷比和秸秆磷含量参考文献[37]
    船舶码头 湖体船舶航运和码头运行的直接入湖负荷 依据相关技术资料及港口吞吐量测算环鄱阳湖港口码头排污量,船舶生活污水中总磷浓度按5 mg/L计算
    干湿沉降 湖体大气干湿沉降的直接入湖负荷 依据实测数据计算污染负荷通量,鄱阳湖湖面面积按2 692 km2
    内源释放 湖体底泥内源释放的直接入湖负荷 根据磷吸附/解吸平衡方程,鄱阳湖沉积物总磷释放量约为11 mg/kg,据多年统计的鄱阳湖底泥总磷向水界面扩散和面积关系,利用多年平均面积(2 100 km2)测算
    候鸟粪便 湖体候鸟粪便排泄导致的直接入湖负荷 以候鸟数量×候鸟粪污产生系数×每年停留天数测算,其中候鸟平均每天粪便中磷排放量取0.49 g/羽,停留时间按182 d估算
    采砂活动 湖区采砂活动导致的直接入湖负荷,湖体 依据2018年7月17—18日鄱阳湖可采区采砂作业废水排放量和前后污染物浓度调查数据估算
    旅游业 湖体湖区旅游导致的直接入湖负荷 根据《鄱阳湖生态旅游示范区规划纲要》和《鄱阳湖生态旅游专项规划》中的发展现状数据,采用旅游人数×游客用水系数(25 L/人)×污水排放系数(0.8)×污水中污染物浓度(总磷浓度为5 mg/L)估算
    下载: 导出CSV

    表  2  研究区主要基础数据信息

    Table  2.   Main data sources used over the study area

    数据类型 尺度 属性 数据来源
    GIS 数字高程(DEM) 90 m×90 m网格 高程、坡度、坡长 中国科学院资源环境科学数据中心(http://www.resdc.cn)
    土地利用 30 m×30 m网格 土地利用分类
    土壤类型 1 000 m×1 000 m网格 土壤类型及其理化特征
    气象 雨量站 86个(2009—2018年) 逐日降水量 中华人民共和国水文局
    气象站 26个(2009—2018年) 日最高、最低气温 国家气象科学数据中心(http://data.cma.cn)
    水文 水文站 7个(2009—2018年) 日径流量 中华人民共和国水文局
    水质 水质站 58个(2016—2017年) 逐月总磷浓度 江西省生态环境厅
    产排污 点源 排污口(2016—2017年) 逐月污水厂运行数据、排污负荷量 江西省生态环境厅
    面源 系数定值 产污系数、排污系数 《污染源普查产排污系数手册》、文献调研
    社会经济 行政区 100个区县(2016—2017年) 人口、施肥、养殖、作物产量等 江西省11个地级市统计年鉴(2017—2018年)
    其他 相关区域 2016—2017年 粪便秸秆还田率、内源释放量、候鸟数量等 实地调研、文献资料调查
    下载: 导出CSV

    表  3  模型主要参数率定及模拟精度结果

    Table  3.   Model parameters calibrated and simulation accuracy

    项目 参数率定值 模拟精度
    点源系数 面源系数 河网密度系数 降雨系数 一级河流衰减系数 二级河流衰减系数 R2 NSE
    2016年 年度 0.618 5 1.204 6 9.643 7 -0.000 49 0.588 6 0.241 1 0.88 0.86
    丰水期 0.789 4 0.873 3 9.699 8 0.001 32 0.253 6 0.237 2 0.84 0.82
    枯水期 0.521 1 1.517 4 10.280 2 -0.003 34 0.256 6 0.188 4 0.89 0.89
    2017年 年度 0.969 5 1.243 0 8.167 3 0.000 40 0.599 0 0.257 5 0.86 0.86
    丰水期 1.040 7 1.107 0 8.763 1 -0.000 12 0.353 9 0.123 0 0.81 0.81
    枯水期 0.922 9 1.232 9 9.354 8 -0.002 86 0.241 7 0.263 8 0.88 0.87
    下载: 导出CSV

    表  4  模型主要参数显著性和标准差分析结果

    Table  4.   Statistical significance and standard deviation of model parameters

    项目 点源系数 面源系数 河网密度系数 降雨系数 一级河流衰减系数 二级河流衰减系数
    P 2016年 0.056 6 0.002 8 <0.001 0.326 9 0.038 6 0.167 8
    2017年 0.019 5 0.004 8 <0.001 0.355 8 0.041 1 0.177 9
    标准差 2016年 0.317 2 0.384 6 1.417 2 0.000 5 0.277 4 0.172 4
    2017年 0.402 1 0.421 8 1.777 6 0.000 4 0.285 9 0.188 6
    下载: 导出CSV
  • [1] 刘凯, 倪兆奎, 王圣瑞, 等.鄱阳湖沉积物有机磷累积特征及其与流域发展间的响应关系[J].环境科学学报, 2015, 35(5):1292-1301. http://www.cqvip.com/QK/91840X/20155/72748888504849534853484853.html

    LIU Kai, NI Zhaokui, WANG Shengrui, et al.Accumulation characteristics of organic phosphorus in sediments of Poyang Lake and its relationship with watershed development[J].Acta Scientiae Circumstantiae, 2015, 35(5):1292-1301. http://www.cqvip.com/QK/91840X/20155/72748888504849534853484853.html
    [2] 高伟, 高波, 严长安, 等.鄱阳湖流域人为氮磷输入演变及湖泊水环境响应[J].环境科学学报, 2016, 36(9):3137-3145. http://qikan.cqvip.com/Qikan/Article/Detail?id=670037044

    GAO Wei, GAO Bo, YAN Chang'an, et al.Evolution of anthropogenic nitrogen and phosphorus inputs to Lake Poyang Basin and its' effect on water quality of lake[J].Acta Scientiae Circumstantiae, 2016, 36(9):3137-3145. http://qikan.cqvip.com/Qikan/Article/Detail?id=670037044
    [3] 赵爽, 倪兆奎, 黄冬凌, 等.基于WQI法的鄱阳湖水质演变趋势及驱动因素研究[J].环境科学学报, 2020, 40(1):179-187. http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?file_no=20190606001

    ZHAO Shuang, NI Zhaokui, HUANG Dongling, et al.Evolution of water quality of Poyang Lake using WQI method and driving factors identification[J].Acta Scientiae Circumstantiae, 2020, 40(1):179-187. http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?file_no=20190606001
    [4] WU Z S, ZHANG D W, CAI Y J, et al.Water quality assessment based on the water quality index method in Lake Poyang:the largest freshwater lake in China[J].Scientific Reports, 2017, 7:17999. doi: 10.1038/s41598-017-18285-y
    [5] 贾娟娟, 王安琪.鄱阳湖湖区总磷总氮污染变化趋势分析[J].江西科学, 2017, 35(6):875-877. http://d.wanfangdata.com.cn/Periodical/jxkx201706011

    JIA Juanjuan, WANG Anqi.Variation trend of total phosphorus and total nitrogen pollution in lake district of Poyang Lake[J].Jiangxi Science, 2017, 35(6):875-877. http://d.wanfangdata.com.cn/Periodical/jxkx201706011
    [6] 万志勇, 罗勇, 刘辉, 等.2016-2018年江西省地表水水质变化趋势分析[J].江西科学, 2020, 38(1):28-30. http://www.cqvip.com/main/zcps.aspx?c=1&id=7100956271

    WANG Zhiyong, LUO Yong, LIU Hui, et al.Analysis on the change trend of surface water quality in Jiangxi Province from 2016 to 2018[J].Jiangxi Science, 2020, 38(1):28-30. http://www.cqvip.com/main/zcps.aspx?c=1&id=7100956271
    [7] HAN Y, GUO X, JIANG Y F, et al.Environmental factors influencing spatial variability of soil total phosphorus content in a small watershed in Poyang Lake plain under different levels of soil erosion[J].Catena, 2020, 187:104357. doi: 10.1016/j.catena.2019.104357
    [8] ZOU W, TOLONEN K T, ZHU G W, et al.Catastrophic effects of sand mining on macroinvertebrates in a large shallow lake with implications for management[J].Science of the Total Environment, 2019, 695:133706. doi: 10.1016/j.scitotenv.2019.133706
    [9] LI B, YANG G S, WAN R R, et al.Dynamic water quality evaluation based on fuzzy matter-element model and functional data analysis:a case study in Poyang Lake[J].Environmental Science and Pollution Research, 2017, 24(23):19138-19148. doi: 10.1007/s11356-017-9371-0
    [10] 周慧平, 高燕, 尹爱经.水污染源解析技术与应用研究进展[J].环境保护科学, 2014, 40(6):19-24. http://www.cnki.com.cn/Article/CJFDTotal-HJBH201406005.htm

    ZHOU Huiping, GAO Yan, YI Aijing.Methods of source apportionment of water pollution and application progress[J].Environmental Protection Science, 2014, 40(6):19-24. http://www.cnki.com.cn/Article/CJFDTotal-HJBH201406005.htm
    [11] 苏丹, 唐大元, 刘兰岚, 等.水环境污染源解析研究进展[J].生态环境学报, 2009, 18(2):749-755. http://d.wanfangdata.com.cn/Periodical/tryhj200902063

    SU Dan, TANG Dayuan, LIU Lanlan, et al.Reviews on source apportionment of pollutions in water environment[J].Ecology and Environmental Sciences, 2009, 18(2):749-755. http://d.wanfangdata.com.cn/Periodical/tryhj200902063
    [12] 陈锋, 孟凡生, 王业耀, 等.地表水环境污染物受体模型源解析研究与应用进展[J].南水北调与水利科技, 2016, 14(2):32-37.

    CHEN Feng, MENG Fansheng, WANG Yeyao, et al.Research and application progress of source apportionment in receptor model for surface water pollution[J].South-to-North Water Transfers and Water Science & Technology, 2016, 14(2):32-37.
    [13] 柏珊珊, 韩超, 韩帮军, 等.呼兰河哈尔滨段水环境质量现状及污染源解析[J].环境科学与管理, 2018, 43(4):107-110. http://d.old.wanfangdata.com.cn/Periodical/bfhj201804028

    BAI Shanshan, HAN Chao, HAN Bangjun, et al.Current situation of water environmental quality and pollutant source solution in Harbin Section of Hulan River[J].Environmental Science and Management, 2018, 43(4):107-110. http://d.old.wanfangdata.com.cn/Periodical/bfhj201804028
    [14] 姜滢, 王子博, 尤悦文, 等.苏州市农业面源污染源强解析与评价[J].农业资源与环境学报, 2015, 32(4):363-369. http://d.wanfangdata.com.cn/Periodical/nyhjyfz201504007

    JIANG Ying, WANG Zibo, YOU Yuewen, et al.Estimation and source apportionment of agricultural non-point source pollution in Suzhou City, China[J].Journal of Agricultural Resources and Environment, 2015, 32(4):363-369. http://d.wanfangdata.com.cn/Periodical/nyhjyfz201504007
    [15] 高凤杰, 侯大伟, 姜晗, 等.阿什河流域农业非点源污染源解析及空间异质性[J].东北农业大学学报, 2014, 45(9):67-72. http://www.cqvip.com/QK/90164A/201409/662463305.html

    GAO Fengjie, HOU Dawei, JIANG Han, et al.Source apportionment and spatial heterogeneity of agricultural nonpoint source pollution in Ash River Basin[J].Journal of Northeast Agricultural University, 2014, 45(9):67-72. http://www.cqvip.com/QK/90164A/201409/662463305.html
    [16] 张文艺, 韩有法, 陆丽巧, 等.太滆运河流域水环境污染解析[J].中国农村水利水电, 2012(9):47-50. http://d.wanfangdata.com.cn/Periodical_zgncslsd201209014.aspx

    ZHANG Wenyi, HAN Youfa, LU Liqiao, et al.An analysis of water enironmental pollution in hte Taige Canal watershed[J].China Rural Water and Hydropower, 2012(9):47-50. http://d.wanfangdata.com.cn/Periodical_zgncslsd201209014.aspx
    [17] 陈玉成, 杨志敏, 陈庆华, 等.基于"压力-响应"态势的重庆市农业面源污染的源解析[J].中国农业科学, 2008, 41(8):2362-2369. http://www.cnki.com.cn/Article/CJFDTotal-ZNYK200808022.htm

    CHEN Yucheng, YANG Zhimin, CHEN Qinghua, et al.Source apportionment of agricultural non-point source pollution in Chongqing Based on pressure-response system[J].Scientia Agricultura Sinica, 2008, 41(8):2362-2369. http://www.cnki.com.cn/Article/CJFDTotal-ZNYK200808022.htm
    [18] 王子为, 钱昶, 张成波, 等.伊逊河流域总磷污染来源解析[J].环境科学研究, 2020, 33(10):2290-2297. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201007&flag=1

    WANG Ziwei, QIAN Chang, ZHANG Chengbo, et al.Source apportionment of total phosphorus pollution in Yixun River Basin[J].Research of Environmental Sciences, 2020, 33(10):2290-2297. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201007&flag=1
    [19] 秦延文, 马迎群, 王丽婧, 等.长江流域总磷污染:分布特征·来源解析·控制对策[J].环境科学研究, 2018, 31(1):9-14. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180102&flag=1

    QIN Yanwen, MA Yingqun, WANG Lijing, et al.Pollution of the total phosphorus in the Yangtze River Basin:distribution characteristics, source and control strategy[J].Research of Environmental Sciences, 2018, 31(1):9-14. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180102&flag=1
    [20] 秦柳, 朱江龙, 龚汇泉, 等.南湖污染源解析与污染负荷核算[J].湖北大学学报(自然科学版), 2020, 42(3):298-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdxxb202003011

    QIN Liu, ZHU Jianglong, GONG Huiquan, et al.Analysis of pollution source and calculation of pollution load of the South Lake[J].Journal of Hubei University(Natural Science), 2020, 42(3):298-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdxxb202003011
    [21] 谢经朝, 赵秀兰, 何丙辉, 等.汉丰湖流域农业面源污染氮磷排放特征分析[J].环境科学, 2019, 40(4):1760-1769. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ2018111500P.htm

    XIE Jingzhao, ZHAO Xiulan, HE Binghui, et al.Analysis of the characteristics of nitrogen and phosphorus emissions from agricultural non-point sources on Hanfeng Lake Basin[J].Environmental Science, 2019, 40(4):1760-1769. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ2018111500P.htm
    [22] 吴菲, 李健, 吴俊锋, 等.近年来阳澄湖污染源分析研究[J].污染防治技术, 2017, 30(6):38-45.

    WU Fei, LI Jian, WU Junfeng, et al.Analysis on pollution sources of Yangcheng Lake in recent years[J].Pollution Control Technology, 2017, 30(6):38-45.
    [23] XIONG J F, LIN C, MA R H, et al.Remote sensing estimation of lake total phosphorus concentration based on MODIS:a case study of Lake Hongze[J].Remote Sensing, 2019, 11(17):2068. doi: 10.3390/rs11172068
    [24] LI B, YANG G S, WAN R R, et al.Using fuzzy theory and variable weights for water quality evaluation in Poyang Lake, China[J].Chinese Geographical Science, 2017, 27(1):39-51. doi: 10.1007/s11769-017-0845-2
    [25] TONG Y L, LIANG T, WANG L Q, et al.Simulation on phosphorus release characteristics of Poyang Lake sediments under variable water levels and velocities[J].Journal of Geographical Sciences, 2017, 27(6):697-710. doi: 10.1007/s11442-017-1401-9
    [26] 白秀玲, 辛星, 李文丽, 等.植物分解及含水量对鄱阳湖湿地土壤磷形态影响模拟研究[J].生态与农村环境学报, 2018, 34(7):592-598. http://www.cnki.com.cn/Article/CJFDTotal-NCST201807004.htm

    BAI Xiuling, XIN Xing, LI Wenli, et al.Effects of plant decomposition and water content on phosphorus in soils of Poyang Lake Wetland[J].Journal of Ecology and Rural Environment, 2018, 34(7):592-598. http://www.cnki.com.cn/Article/CJFDTotal-NCST201807004.htm
    [27] 向速林, 陶术平, 吴代赦.鄱阳湖沉积物和水界面磷的交换通量[J].湖泊科学, 2017, 29(2):326-333. http://www.cnki.com.cn/Article/CJFDTotal-FLKX201702008.htm

    XIANG Sulin, TAO Shuping, WU Daihe.Exchange fluxes of phosphorus at the sediment-water interface in Lake Poyang[J].Journal of Lake Sciences, 2017, 29(2):326-333. http://www.cnki.com.cn/Article/CJFDTotal-FLKX201702008.htm
    [28] ZHENG L, WANG H P, HUANG M S, et al.Relationships between temporal and spatial variations of water quality and water level changes in Poyang Lake based on 5 consecutive years' monitoring[J].Applied Ecology and Environmental Research, 2019, 17(5):11687-11699.
    [29] 唐国华, 林玉茹, 胡振鹏, 等.鄱阳湖区氮磷污染物分布、转移和削减特征[J].长江流域资源与环境, 2017(9):1436-1445.

    TANG Guohua, LIN Yuru, HU Zhenpeng, et al.Characteristics of distribution, transfer and subtraction of nitrogen and phosphorus contanmination in Poyang Lake[J].Resources and Environment in the Yangtze Basin, 2017(9):1436-1445.
    [30] 涂安国, 李英, 莫明浩, 等.基于水文分割法的鄱阳湖入湖非点源污染研究[J].人民长江, 2012, 43(1):63-66. http://www.cnki.com.cn/Article/CJFDTotal-RIVE201201020.htm

    TU Anguo, LI Ying, MO Minghao, et al.Study on non-point source pollution from rivers into Poyang Lake based on hydrological baseflow segmentation method[J].Yangtze River, 2012, 43(1):63-66. http://www.cnki.com.cn/Article/CJFDTotal-RIVE201201020.htm
    [31] 刘发根, 王仕刚, 郭玉银, 等.鄱阳湖入湖、出湖污染物通量时空变化及预测[C]//中国水利学会.中国水利学会2013学术年会论文集.北京: 中国水利学会, 2013: 236-242.
    [32] 马广文, 王圣瑞, 王业耀, 等.鄱阳湖流域面源污染负荷模拟与氮和磷时空分布特征[J].环境科学学报, 2015, 35(5):1285-1291.

    MA Guangwen, WANG Shengrui, WANG Yeyao, et al.Temporal and spatial distribution characteristics of nitrogen and phosphorus and diffuse source pollution load simulation of Poyang Lake Basin[J].Acta Scientiae Circumstantiae, 2015, 35(5):1285-1291.
    [33] 万志勇, 罗勇, 刘辉, 等.2016-2018年江西省地表水水质变化趋势分析[J].江西科学, 2020, 38(1):28-30. http://www.cqvip.com/main/zcps.aspx?c=1&id=7100956271

    WAN Zhiyong, LUO Yong, LIU Hui, et al.Analysis on the change trend of surface water quality in Jiangxi Province from 2016 to 2018[J].Jiangxi Science, 2020, 38(1):28-30. http://www.cqvip.com/main/zcps.aspx?c=1&id=7100956271
    [34] 余进祥, 赵小敏, 吕琲, 等.鄱阳湖流域不同农业利用方式下的氮磷输出特征[J].江西农业大学学报, 2010, 32(2):394-402. http://www.cnki.com.cn/Article/CJFDTotal-JXND201002039.htm

    YU Jinxiang, ZHAO Xiaomin, LV Fei, et al.Transportation characteristics of nitrogen and phosphorus in various land-uses in the Poyan Lake watershed[J].Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(2):394-402. http://www.cnki.com.cn/Article/CJFDTotal-JXND201002039.htm
    [35] 廖日红, 丁跃元, 胡秀琳, 等.北京城区降雨径流水质分析与评价[J].北京水务, 2007(1):14-16. http://qikan.cqvip.com/Qikan/Article/Detail?id=24133086

    LIAO Rihong, DING Yueyuan, HU Xiulin, et al.Analysis and evaluation of water quality of rainfall and runoff in urban area in Beijing[J].Beijing Water, 2007(1):14-16. http://qikan.cqvip.com/Qikan/Article/Detail?id=24133086
    [36] 张媛, 袁九毅.兰州市区降雨径流污染负荷估算[J].甘肃科学学报, 2005, 17(3):49-52. http://d.wanfangdata.com.cn/Periodical/gskxxb200503015

    ZHANG Yuan, YUAN Jiuyi.Estimation of the amount of pollutants in the runoff of rainfalls in Lanzhou[J].Journal of Gansu Sciences, 2005, 17(3):49-52. http://d.wanfangdata.com.cn/Periodical/gskxxb200503015
    [37] 徐鹏, 林永红, 杨顺顺, 等.珠江流域氮、磷营养盐入河量估算及预测[J].湖泊科学, 2017, 29(6):1359-1371. http://d.wanfangdata.com.cn/periodical/hpkx201706008

    XU Peng, LIN Yonghong, YANG Shunshun, et al.Input load to river and future projection for nitrogen and phosphorous nutrient controlling of Pearl River Basin[J].Journal of Lake Sciences, 2017, 29(6):1359-1371. http://d.wanfangdata.com.cn/periodical/hpkx201706008
    [38] 李云翊.基于SWAT模型的抚河上游流域土地利用变化情景下的水文响应研究[D].南昌: 南昌大学, 2018.
    [39] CHEN X, STROKAL M, VAN-VLIET M T H, et al.Multi-scale modeling of nutrient pollution in the rivers of China[J].Environmental Science & Technology, 2019, 53(16):9614-9625.
    [40] 赵广举, 田鹏, 穆兴民, 等.基于PCRaster的流域非点源氮磷负荷估算[J].水科学进展, 2012, 23(1):80-86. http://www.cqvip.com/QK/97113X/20121/40919766.html

    ZHAO Guangju, TIAN Peng, MU Xingmin, et al.Estimation of nitrogen and phosphorus loads in the Xitiaoxi catchment using PCRaster software[J].Advances in Water Science, 2012, 23(1):80-86. http://www.cqvip.com/QK/97113X/20121/40919766.html
    [41] XIA J, WANG G, TAN G, et al.Development of distributed time-variant gain model for nonlinear hydrological systems[J].Science in China Series D:Earth Sciences, 2005, 48(6):713-723. doi: 10.1360/03yd0183
    [42] 夏军, 王纲胜, 吕爱锋, 等.分布式时变增益流域水循环模拟[J].地理学报, 2003, 58(5):789-796. http://www.cnki.com.cn/Article/CJFDTotal-DLXB200305018.htm

    XIA Jun, WANG Gangsheng, LV Aifeng, et al.A research on distributed time variant gain modeling[J].Acta Geographica Sinica, 2003, 58(5):789-796. http://www.cnki.com.cn/Article/CJFDTotal-DLXB200305018.htm
    [43] SCHWARZ G E, HOOS A, ALEXANDER R, et al.The sparrow surface water-quality model:theory, application, and user documentation[R].Washington DC:US Department of the Interior, 2006. http://www.researchgate.net/publication/265398274_The_SPARROW_Surface_Water-Quality_Model_Theory_Application_and_User_Documentation
    [44] 解莹, 李叙勇, 王慧亮, 等.SPARROW模型研究及应用进展[J].水文, 2012, 32(1):50-54. http://www.cnki.com.cn/Article/CJFDTotal-SWZZ201201010.htm

    XIE Ying, LI Xuyong, WANG Huiliang, et al.A review of SPARROW model and its application[J].Hydrology, 2012, 32(1):50-54. http://www.cnki.com.cn/Article/CJFDTotal-SWZZ201201010.htm
    [45] 卢诚, 李国光, 齐作达, 等.SPARROW模型的传输过程研究:以新安江流域总氮为例[J].水资源与水工程学报, 2017, 28(1):7-13. http://www.cqvip.com/QK/97015A/20171/672019823.html

    LU Cheng, LI Guoguang, QI Zuoda, et al.Research on the transport processes of SPARROW model:a case study for total nitrogen in Xin'anjiang River Basin[J].Journal of Water Resources & Water Engineering, 2017, 28(1):7-13. http://www.cqvip.com/QK/97015A/20171/672019823.html
    [46] 代义彬, 郎赟超, 王铁军, 等.SPARROW模型及其应用研究进展[J].地球与环境, 2019, 47(3):397-404. http://d.old.wanfangdata.com.cn/Periodical_dzdqhx201903020.aspx

    DAI Yibin, LANG Yunchao, WANG Tiejun, et al.Research progress of the SPARROW model and its application[J].Earth and Envrionment, 2019, 47(3):397-404. http://d.old.wanfangdata.com.cn/Periodical_dzdqhx201903020.aspx
    [47] ALEXANDER R B, SMITH R A, SCHWARZ G E.Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico[J].Nature, 2000, 403(6771):758-761. doi: 10.1038/35001562
    [48] ALEXANDER R B, SMITH R A, SCHWARZ G E.Differences in phosphorus and nitrogen delivery to the gulf of Mexico from the Mississippi River Basin[J].Environmental Science & Technology, 2008, 42(3):822-830. http://bioscience.oxfordjournals.org/external-ref?access_num=10.1021/es0716103&link_type=DOI
    [49] 李雪, 曹芳芳, 陈先春, 等.敏感区域目标污染物空间溯源分析:以新安江流域跨省界断面为例[J].中国环境科学, 2013, 33(9):1714-1720. http://qikan.cqvip.com/Qikan/Article/Detail?id=47135558

    LI Xue, CAO Fangfang, CHEN Xianchun, et al.Spatial source apportionment analysis of target pollutant for sensitive area:a case study in Xin'anjiang River Basin for interprovincial assessment section[J].China Environmental Science, 2013, 33(9):1714-1720. http://qikan.cqvip.com/Qikan/Article/Detail?id=47135558
    [50] 胡胜, 曹明明, 邱海军, 等.CFSR气象数据在流域水文模拟中的适用性评价:以灞河流域为例[J].地理学报, 2016, 71(9):1571-1586. http://www.cqvip.com/QK/90059X/201609/670176612.html

    HU Sheng, CAO Mingming, QIU Haijun, et al.Applicability evaluation of CFSR climate data for hydrologic simulation:a case study in the Bahe River Basin[J].Acta Geographica Sinica, 2016, 71(9):1571-1586. http://www.cqvip.com/QK/90059X/201609/670176612.html
    [51] 潘祥东, 唐磊, 蒲迅赤, 等.基于一维水质模型的盐津河纳污能力计算[J].中国农村水利水电, 2020(6):72-75. http://www.cnki.com.cn/Article/CJFDTotal-ZNSD202006012.htm

    PAN Xiangdong, TANG Lei, PU Xunchi, et al.Calculation of allowable assimilative capacity of Yanjin River based on one dimensional water quality model[J].China Rural Water and Hydropower, 2020(6):72-75. http://www.cnki.com.cn/Article/CJFDTotal-ZNSD202006012.htm
    [52] 周睿, 王博, 林豪栋, 等.一维水质模型结合改进的输出系数法在流域非点源污染负荷估算中的应用[J].吉林大学学报(地球科学版), 2020, 3(50):1-11.

    ZHOU Rui, WANG Bo, LIN Haodong, et al.Application of 1-dimensional water quality model combined with the improved export coefficient method in polluting load estimation of non-point source pollution[J].Journal of Jilin University(Earth Science Edition), 2020, 3(50):1-11.
    [53] BRAKEBILL J W, PRESTON S D.A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed[M].Berlin:Springer, 2003:73-84.
    [54] ALEXANDER R B, ELLIOTT A H, SHANKAR U, et al.Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand[J].Water Resources Research, 2002, 38(12):1-4.
    [55] 代碧波, 陈晓菲.粮食主产区农业现代化与新型城镇化的耦合协调度测算[J].统计与决策, 2020, 36(9):104-108. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=TJJC202009023

    DAI Bibo, CHEN Xiaofei.Measurement of coordination degree of coupling of agricultural modemization and new urbanization in China's major grain production area[J].Statistics and Decision, 2020, 36(9):104-108. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=TJJC202009023
    [56] 郭华, 张奇, 王艳君.鄱阳湖流域水文变化特征成因及旱涝规律[J].地理学报, 2012, 67(5):699-709.

    GUO Hua, ZHANG Qi, WANG Yanjun.Annual variations in climate han hydrological processes and related flood and drought occurrences in the Poyang Lake Basin[J].Acta Geographica Sinica, 2012, 67(5):699-709.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  949
  • HTML全文浏览量:  116
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-27
  • 修回日期:  2020-09-19
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回