Spatiotemporal Changes of Vegetation in Chishui River Basin Based on Topographic Position Index
-
摘要: 地形因子和植被覆盖是区域灾害评价的关键指标,也是山区型村镇建设生态安全评估的重要内容.为探析山区型村镇建设的生态约束条件,以赤水河流域为研究对象,基于1998—2018年SPOT_VGT NDVI数据,利用地形位置指数(Topographic Position Index,TPI)和坡度位置指数方法,研究了赤水河流域植被生长季NDVI时空变化及地形分异特征.结果表明:①赤水河流域内,1998—2018年植被生长季平均NDVI呈缓慢上升趋势,斜率为0.004 7;NDVI>0.60的集中连片区域主要分布在古蔺县北部、赤水市大部和习水县西北部,占赤水河流域总面积的8.42%;Sen's slope在0.009~0.015区间时,赤水河流域植被生长增强趋势最明显,主要集中分布在赤水河中上游、二道河以及下游的大同河干流地区.②TPI在-39.4~34.3区间的面积最多,为6 221.63 km2,占赤水河流域总面积的34.05%;将赤水河流域坡度类型划分为山脊、上坡、中坡、平坡、下坡、山谷6个坡度位置类型,其中,中坡面积(7 792.02 km2)最大,占流域总面积的42.64%,表明TPI数值较小且坡度大于5°的区域是赤水河流域地形主体.③赤水河流域植被在山脊的平均NDVI最高,为0.747,且山脊平均Sen's slope最高,为0.007 2;山谷平均NDVI最低,为0.709.研究显示,赤水河流域植被分布在118.5~486.9的TPI区间或分布在山脊处时整体生长较好,且生长增强趋势最明显.Abstract: Terrain factors and vegetation coverage are the key indicators for regional disaster assessment, and are important factors for ecological security assessment of mountainous villages and towns. In order to analyze the ecological constraints of the construction of mountainous villages and towns, in this study, the Chishui River Basin was used as an example to analyze the ecological constraints for the construction of mountainous villages and villages, and the topographical variation characteristics of the vegetation was investigated using the 1998-2018 SPOT_VGT NDVI product data, the Topographic Position Index (TPI), and slope position method. The results show that: (1) From 1998 to 2018, the average NDVI value of vegetation growth season showed a slow upward trend with a slope of 0.0047; while the concentrated contiguous areas with NDVI greater than 0.60 were mainly distributed in the northern part of Gulin County, most of Chishui City and northwestern part of Xishui County, accounting for 8.42% of the total area of the Chishui River Basin. When the Sen's slope value was in the range of 0.009 to 0.015, the vegetation in Chishui River Basin had the highest growth trend; these areas were mainly located in the middle and upper reaches of the Chishui River, the mainstream of the Erdao River, and the mainstream of the downstream Datong River. (2) TPI had the largest area in the range of -39.4 to 34.3, which was 6221.63 km2, accounting for 34.05% of the total basin area. The slope types of the Chishui River Basin were divided into six slope position types: ridge, upslope, mid-slope, flat slope, downslope, and valley. Among them, the area of middle slope (7792.02 km2) was the largest, accounting for 42.64% of the total area of the basin, indicating that the slope position area with a smaller TPI value and a slope greater than 5° was the main terrain of the Chishui River Basin. (3) In the Chishui River Basin, the highest average NDVI value of the ridge was 0.747 with the highest average Sen's slope value, up to 0.0072; the average NDVI value of the valley slope position is the lowest, 0.709. Studies show that the vegetation in the Chishui River Basin grows better when distributed in the TPI range of 118.5-486.9 or at the position of the ridge slope, and the growth trend is the strongest.
-
Key words:
- Chishui River Basin /
- Topographic Position Index /
- slope position /
- vegetation
-
表 1 基于TPI的坡度位置划分
Table 1. Division of slope position based on TPI
坡度位置 划分方法 山脊 SD≤TPI 上坡 0.5SD≤TPI <SD 中坡 -0.5SD≤TPI<0.5SD, slope>5° 平坡 -0.5SD≤TPI<0.5SD, slope≤5° 下坡 -SD≤TPI<-0.5SD 山谷 TPI<-SD 注:SD为TPI计算结果的标准差,slope表示绝对数值坡度. 表 2 基于TPI的赤水河流域植被生长季NDVI地形分异特征
Table 2. Topographic variation of vegetation NDVI in growing season at Chishui River Basin based on TPI
TPI 面积/km2 面积占比/% 平均NDVI 平均Sen′s slope -407.8~-127.1 1 504.67 8.24 0.723 0.007 3 -127.1~-39.4 4 223.04 23.11 0.715 0.007 1 -39.4~34.3 6 221.63 34.05 0.722 0.007 1 34.3~118.5 4 593.14 25.14 0.736 0.007 2 118.5~486.9 1 728.31 9.46 0.762 0.007 3 表 3 基于坡度位置的赤水河流域植被生长季NDVI地形分异特征
Table 3. Topographic variation of vegetation NDVI in growing season at Chishui River Basin based on slope position
坡度位置 面积/km2 面积占比/% 平均NDVI 平均Sen′s slope 山脊 1 932.32 10.57 0.747 0.007 2 上坡 3 063.06 16.76 0.737 0.007 1 中坡 7 792.02 42.64 0.725 0.007 1 平坡 551.12 3.02 0.723 0.006 6 下坡 2 928.32 16.03 0.715 0.007 0 山谷 2 006.31 10.98 0.709 0.007 0 -
[1] 林孝松, 林庆, 王梅力, 等.山区镇域山洪灾害危险性分区研究:以跳石镇为例[J].自然灾害学报, 2015, 24(3):90-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201503012LIN Xiaosong, LIN Qing, WANG Meili, et al.Hazard zoning of flash flood in mountainous administrative region of town:a case study on Tiaoshi Town[J] Journal of Natural Disasters, 2015, 24(3):90-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201503012 [2] 曹润, 杨朝现, 刘勇, 等.基于生态保护格局的丘陵山区乡村聚落空间重构策略[J].生态与农村环境学报, 2019, 35(6):689-697. http://www.cnki.com.cn/Article/CJFDTotal-NCST201906002.htmCAO Run, YANG Chaoxian, LIU Yong, et al.Restructuring strategy of rural settlement space in hilly and mountainous areas based on ecological protection pattern[J] Journal of Ecology and Rural Environment, 2019, 35(6):689-697. http://www.cnki.com.cn/Article/CJFDTotal-NCST201906002.htm [3] 马海涛, 赵西梅.基于"三生空间"理念的中国特色小镇发展模式认知与策略探讨[J].发展研究, 2017(12):50-56. doi: 10.3969/j.issn.1003-0670.2017.12.009 [4] WEISS A.Topographic position and landforms analysis[R].San Diego, CA: ESRI Users Conference, 2001. [5] SALINASMELGOZA M, SKUTSCH M, LOVETT J C, et al.Predicting aboveground forest biomass with topographic variables in human-impacted tropical dry forest landscapes[J].Ecosphere, 2018, 9(1):1-20. doi: 10.1002/ecs2.2063/full [6] TAJIK S, AYOUBI S, LORENZ N, et al.Soil microbial communities affected by vegetation, topography and soil properties in a forest ecosystem[J].Applied Soil Ecology, 2020, 149(5):103514. http://www.sciencedirect.com/science/article/pii/S092913931930993X [7] DICKSON B G, BEIER P.Quantifying the influence of topographic position on cougar (Puma concolor) movement in southern California, USA[J].Journal of Zoology, 2006, 271(3):270-277. [8] MIEZA M S, CRAVERO W R, KOVAC F D, et al.Delineation of site-specific management units for operational applications using the topographic position index in La Pampa, Argentina[J].Computers and Electronics in Agriculture, 2016, 127(9):158-167. [9] DE-REU J, BOURGEOIS J, BATS M, et al.Application of the topographic position index to heterogeneous landscapes[J].Geomorphology, 2013, 186(19):39-49. [10] FAN Jiaqi, XU Yan, GE Haoyuan, et al.Vegetation growth variation in relation to topography in Horqin Sandy Land[J].Ecological Indicators, 2020, 113(6):106215. http://www.sciencedirect.com/science/article/pii/S1470160X20301527 [11] 环境保护部, 中国科学院.《全国生态功能区划(修编版)》(公告2015年第61号)[EB/OL].北京: 生态环境部, 2015-11-13[2015-11-23]. http://www.mee.gov.cn/gkml/hbb/bgg/201511/t20151126_317777.htm. [12] 杨昕, 汤国安, 刘学军, 等.数字地形分析的理论、方法与应用[J].地理学报, 2009, 64(9):1058-1070. doi: 10.3321/j.issn:0375-5444.2009.09.004YANG Xin, TANG Guo'an, LIU Xuejun, et al.Digital terrain analysis:theory, method and application[J].Acta Geographica Sinica, 2009, 64(9):1058-1070. doi: 10.3321/j.issn:0375-5444.2009.09.004 [13] PIAO S, LIU Q, CHEN A, et al.Plant phenology and global climate change:current progresses and challenges.[J].Global Change Biology, 2019, 25(6):1922-1940. doi: 10.1111/gcb.14619 [14] 杨锁华, 胡守庚, 瞿诗进.长江中游地区生态系统服务价值的地形梯度效应[J].应用生态学报, 2018, 29(3):976-986.YANG Suohua, HU Shougeng, QU Shijin.Terrain gradient effect of ecosystem service value in middle reach of Yangtze River, China[J].Chinese Journal of Applied Ecology, 2018, 29(3):976-986. [15] MOTTET A, LADET S, COQUE N, et al.Agricultural land-use change and its drivers in mountain landscapes:a case study in the Pyrenees[J].Agriculture, Ecosystems & Environment, 2006, 114(2):296-310. [16] 臧玉珠, 刘彦随, 杨园园.山区县域土地利用格局变化及其地形梯度效应:以井冈山市为例[J].自然资源学报, 2019, 34(7):1391-1404. http://www.cnki.com.cn/Article/CJFDTotal-ZRZX201907004.htmZANG Yuzhu, LIU Yansui, YANG Yuanyuan.Land use pattern change and its topographic gradient effect in the mountainous areas:a case study of Jinggangshan City[J].Journal of Natural Resources, 2019, 34(7):1391-1404. http://www.cnki.com.cn/Article/CJFDTotal-ZRZX201907004.htm [17] 郭洪峰, 许月卿, 吴艳芳.基于地形梯度的土地利用格局与时空变化分析:以北京市平谷区为例[J].经济地理, 2013, 33(1):160-166. http://www.cqvip.com/QK/93124X/201301/44793933.htmlGUO Hongfeng, XU Yueqing, WU Yanfang.Analysis of the land use spatial pattern and spatio-temporal changes based on terrain gradient:a case study of Pinggu District in Beijing[J].Economic Geography, 2013, 33(1):160-166. http://www.cqvip.com/QK/93124X/201301/44793933.html [18] 蔡宏, 何政伟, 安艳玲, 等.基于RS和GIS的赤水河流域植被盖度与各地形因子的相关强度研究[J].地球与环境, 2014, 42(4):518-524.CAI Hong, HE Zhengwei, AN Yanling, et al.Correlation intensity of vegetation coverage and topographic factors in Chishui Watershed based on RS and GIS[J].Earth and Environment, 2014, 42(4):518-524. [19] MARCHETTO A, ROGORA M, ARISCI S.Trend analysis of atmospheric deposition data:a comparison of statistical approaches[J].Atmospheric Environment, 2013, 64(1):95-102. http://www.sciencedirect.com/science/article/pii/S1352231012007923 [20] LIBISELLER C, GRIMVALL A.Performance of partial Mann-Kendall tests for trend detection in the presence of covariates[J].Environmetrics, 2002, 13(1):71-84. doi: 10.1002/env.507 [21] ATTA-ur RAHMAN, DAWOOD M.Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen's slope approach[J].Climate Dynamics, 2017, 48(3):783-797. doi: 10.1007/s00382-016-3110-y [22] GROHMANN C H, RICCOMINI C.Comparison of roving-window and search-window techniques for characterizing landscape morphometry[J].Computers & Geosciences, 2009, 35(10):2164-2169. http://www.sciencedirect.com/science/article/pii/S0098300409001381 [23] 邹豹君.小地貌学原理[M].北京:商务印书馆, 1985. [24] 李阳兵, 罗光杰, 白晓永, 等.典型峰丛洼地耕地, 聚落及其与喀斯特石漠化的相互关系:案例研究[J].生态学报, 2014, 34(9):2195-2207. http://www.cqvip.com/QK/90772X/20149/49622280.htmlLI Yangbing, LUO Guangjie, BAI Xiaoyong, et al.The correlations among arable land, settlement and karst rocky desertification:cases study based on typical peak-cluster depression[J].Acta Ecologica Sinica, 2014, 34(9):2195-2207. http://www.cqvip.com/QK/90772X/20149/49622280.html [25] 吴敏, 刘淑娟, 叶莹莹, 等.喀斯特地区坡耕地与退耕地土壤有机碳空间异质性及其影响因素[J].生态学报, 2016, 36(6):1619-1627. http://www.cqvip.com/QK/90772X/20166/668482521.htmlWU Min, LIU Shujuan, YE Yingying, et al.Spatial variability of surface soil organic carbon and its influencing factors in cultivated slopes and abandoned lands in a Karst peak-cluster depression area[J].Acta Ecologica Sinica, 2016, 36(6):1619-1627. http://www.cqvip.com/QK/90772X/20166/668482521.html [26] 韩逸, 郭熙, 江叶枫, 等.南方丘陵区耕地景观生态安全影响因素及其空间差异.生态学报, 2019, 39(17):6522-6533.HAN Yi, GUO Xi, JIANG Yefeng, et al.Cultivated land landscape ecological security:Influencing factors and spatial differences in the hilly region of South China[J].Acta Ecologica Sinica, 2019, 39(17):6522-6533. [27] 邹翔, 薛小红, 赵健.赤水河流域水土流失特点与分区防治研究[J].长江科学院院报, 2010, 27(8):12-15. doi: 10.3969/j.issn.1001-5485.2010.08.003ZOU Xiang, XUE Xiaohong, ZHAO Jian.Study on soil loss characteristics and different preventive measures in Chishui River Basin[J].Journal of Yangtze River Scientific Research Institute, 2010, 27(8):12-15. doi: 10.3969/j.issn.1001-5485.2010.08.003 [28] 彭文君, 舒英格.喀斯特山区县域耕地景观生态安全及演变过程[J].生态学报, 2018, 38(3):852-865. http://www.cnki.com.cn/Article/CJFDTotal-STXB201803011.htmPENG Wenjun, SHU Yingge.Analysis of landscape ecological security and cultivated land evolution in the Karst mountain area[J].Acta Ecologica Sinica, 2018, 38(3):852-865. http://www.cnki.com.cn/Article/CJFDTotal-STXB201803011.htm [29] 黄林峰, 田鹏举, 帅士章, 等.2000-2016年赤水河流域植被生态质量变化分析[J].中低纬山地气象, 2018, 42(5):23-27.HUANG Linfeng, TIAN Pengju, SHUAI Shizhang, et al.Analysis of eco-environment quality variation of vegetation in Chishui River Basin from 2000 to 2016[J].Mid-Low Latitude Mountain Meteorology, 2018, 42(5):23-27. [30] 段学军, 王雅竹, 康珈瑜, 等.村镇建设资源环境承载力的理论基础与测算体系[J].资源科学, 2020, 42(7):1236-1248.DUAN Xuejun, WANG Yazhu, KANG Jiayu, et al.Theoretical foundations and measurement system of resource and environmental carrying capacity for village and town development[J].Resources Science, 2020, 42(7):1236-1248. -