Ecological Risk Assessment of Mount Emei Based on RS and GIS
-
摘要: 风景区的生态风险评价有助于指导其村镇建设、产业发展和实现绿色生态可持续发展.为探究峨眉山风景区生态风险分布和主要影响因素,在RS(Remote Sensing,遥感)和GIS(Geographic Information System,地理信息系统)技术支持下,以2015年土地覆盖数据为基础,结合DEM、遥感影像数据,从自然灾害和人类干扰两方面分析生态风险,依据生态风险度量原理,通过计算风险发生概率和生态易损性求得生态风险值,利用克里金插值法求得峨眉山风景区生态风险空间分布.结果表明:①峨眉山风景区综合生态风险值较小,主要受自然灾害影响,其贡献率高达89.9%;人类干扰带来的影响也不可忽视,贡献率为10.1%.自然灾害中,干旱、地质灾害对风景区的影响较大,贡献率分别为40.9%、49.3%.②峨眉山风景区综合生态风险呈条带状分布,越往东综合生态风险值越大,自然灾害风险空间分布与其基本一致.综合生态风险高风险区聚集在万年寺、清音阁、神水阁景区,景区东部黄湾乡旅游镇属于人文风险高风险区.研究显示,峨眉山风景区综合生态风险主要受到自然灾害影响,存在带状分异的空间规律.
-
关键词:
- 生态风险评价 /
- 峨眉山 /
- 遥感(RS) /
- 地理信息系统(GIS)
Abstract: The ecological risk assessment of scenic areas is helpful to guide the town construction and industrial development, which is important to the realization of sustainable development. To explore the ecological risk distribution and major influencing factors of Mount Emei, this paper proposes an effective risk assessment method based on RS (Remote Sensing) and GIS (Geographic Information System) technologies. Specifically, the proposed method combines the 2015 land cover data and other remote sensing data such as DEM and images to analyze the ecological risks from two aspects: natural disasters and human disturbance. First, the ecological risk values are calculated based on the probability of risk occurrence and ecological vulnerability according to the principle of ecological risk measurement. Then, the spatial distribution map of ecological risk in Mount Emei is obtained by using Kriging interpolation. The results show that: (1) The comprehensive ecological risk of the Mount Emei is relatively small. The main influencing factor is nature disasters, with a contribution rate is up to 89.9%. The impact of human interference cannot be ignored, i.e., the contribution rate is 10.1%. Among natural disasters, drought and geological disasters have a greater impact on scenic spots, with contribution rates of 40.9% and 49.3%, respectively. (2) The comprehensive ecological risk in the Mount Emei is distributed in a strip pattern. The more eastward, the greater the comprehensive ecological risk. Moreover, the spatial distribution of natural risks is almost the same. The high-risk areas of comprehensive ecological risk are clustered in Wannian Temple, Qingyin Pavilion and Shenshui Pavilion scenic spots. Huangwan Township in the eastern part belongs to the high-risk humanistic risk area. The research shows that the comprehensive ecological risks of Mount Emei are mainly affected by natural disasters, and there is a spatial law of zonal differentiation. -
表 1 土壤侵蚀分级
Table 1. Digitalization of the elevation indicators for erosion
土地利用类型 植被覆盖度 土壤侵蚀分级 5°~8°1) 8°~15° 15°~25° 25°~35° >35° 非耕地 60%~75% 轻度 轻度 轻度 中度 中度 45%~60% 轻度 轻度 中度 中度 强度 30%~45% 轻度 中度 中度 强度 极强 < 30% 中度 中度 强度 极强 剧烈 耕地 — 轻度 中度 强度 极强 剧烈 水体、居民区及未利用地 — 轻度 轻度 轻度 轻度 轻度 注:1)表示坡度,下同. 表 2 地质灾害影响因子赋值表
Table 2. Digitalization of the elevation indicators for geological disasters
项目 赋值方法 控制因素 坡度 0°~15°、15°~30°、30°~45°、45°~60°、60°~90°分别赋值1、3、5、4、2 坡高 < 400、400~600、600~800、800~1 100、>1 100 m分别赋值1、3、4、5、2 坡向 正北赋值为5,西北、东北赋值为4,正东和正西赋值为3,东南和西南赋值为2,正南赋值为1 坡型 对坡型数据进行归一化处理,0~0.38、0.38~0.42、0.42~0.46、0.46~0.51、0.51~1.00分别赋值1、2、3、4、5 NDVI 对NDVI进行归一化处理,0~0.25、0.25 ~0.37、0.37~0.48、0.48~0.61、0.61~1.00分别赋值5、4、3、2、1 影响因素 河网 对河网进行缓冲区处理,0~200、200~400、400~600、600~800、>800 m分别赋值5、4、3、2、1 表 3 峨眉山风景区生态风险综合评价结果
Table 3. Results of the ecological risk assessment in Mount Emei
项目 自然灾害 人类干扰 风险概率 干旱 0.168 8(40.9%) 0.039 3 土壤侵蚀 0.040 1(9.8%) 地质灾害 0.203 4(49.3%) 总计 0.412 3 生态易损性 0.050 5 0.050 5 风险值 0.025 8 0.002 8 贡献率/% 89.9 10.1 注:括号内数值表示3种不同自然灾害对自然灾害风险概率的贡献率. -
[1] 李霞, 林丽丽, 吴元晶, 等.GIS支持下旅游小镇生态敏感性评价:以福建省湖坑镇为例[J].中国城市林业, 2019, 17(6):63-69.LI Xia, LING Lili, WU Yuanjing, et al.Ecological sensitivity evaluation of tourism town based on GIS:a case study of Hukeng town in Fujian Province[J]. Journal of Chinese Urban Forestry, 2019, 17(6):63-69. [2] 杨涵, 沈立成.旅游生态系统能值分析研究:以峨眉山风景区为例[J].生态经济, 2020, 36(4):129-132.YANG Han, SHEN Licheng.Emergy analysis on the ecotourism system:a case of Emei mountain scenic area[J]. Ecological Economy, 2020, 36(4):129-132. [3] 李娴, 殷继成.山地可持续旅游开发模式探讨:以川西贡嘎山地区为例[J].旅游论坛, 2011, 4(1):33-35.LI Xian, YIN Jicheng.Study on mountain ecotourism exploitation mode:taking Gongga mountain region as an example[J]. Tourism Forum, 2011, 4(1):33-35. [4] ALEXAKIS D D, AGAPIOU A, THEMISTOCLEOUS K, et al.Natural and human hazard assessment of the archaeological sites of Paphos area (Cyprus) with the use of remote sensing and GIS[J]. Bulletin of the geological Society of Greece, 2013, 47(3):1448-1457. [5] ALEXAKIS D, SARRIS A.Environmental and human risk assessment of the prehistoric and historic archaeological sites of Western Crete (Greece) with the use of GIS, remote sensing, fuzzy logic and neural networks[C]//IOANNIDES M.Digital Heritage.Berlin: Springer, 2010: 332-342. [6] HADJIMITSIS D G, AGAPIOU A, SARRIS A.Risk assessment intended for cultural heritage sites and monuments in Cyprus using remote sensing and GIS[C]//KOUI M.Monument damage hazards and rehabilitation technologies.Patras: National Technical University of Athens, 2010. [7] 付在毅, 许学工.区域生态风险评价[J].地球科学进展, 2001(2):267-271.FU Zaiyi, XU Xuegong.Regional ecological risk assessment[J]. Advances in Earth Sciences, 2001(2):267-271. [8] HUNSAKER C T, GRAHAM R L, SUTER G W, et al.Assessing ecological risk on a regional scale[J]. Environmental Management, 1990, 14(3):325-332. [9] HODGSON E.Toxicology and Human Environments[M]. London:Academic Press, 2012:323-348. [10] MURRAY N J, KEITH D A, BLAND L M, et al.The role of satellite remote sensing in structured ecosystem risk assessments[J]. Science of the Total Environment, 2018, 619:249-257. [11] 张雅洲, 谢小平.基于RS和GIS的南四湖生态风险评价[J].生态学报, 2015, 35(5):1371-1377.ZHANG Yazhou, XIE Xiaoping.Ecological risk assessment of Nansi Lake based on RS and GIS[J]. Journal of Ecology, 2015, 35(5):1371-1377. [12] 李耀明, 王玉杰, 王云琦.基于GIS的北京地区生态风险评价[J].中国水土保持科学, 2017, 15(2):100-106.LI Yaoming, WANG Yujie, WANG Yunqi.Ecological risk assessment in Beijing based on GIS[J]. Science of Soil and Water Conservation, 2017, 15(2):100-106. [13] ZHANG Jiquan, LIANG Jingdan, LIU Xingpeng, et al.GIS-based risk assessment of ecological disasters in Jilin Province, northeast China[J]. Human and Ecological Risk Assessment, 2009, 15(4):727-745. [14] BATHRELLOS G D, SKILODIMOU H D, CHOUSIANTIS K, et al.Suitability estimation for urban development using multi-hazard assessment map[J]. Science of the Total Environment, 2017, 575:119-134. [15] AGAPIOU A, LYSANDROU V, ALEXAKIS D D, et al.Cultural heritage management and monitoring using remote sensing data and GIS:the case study of Paphos area, Cyprus[J]. Computers, Environment and Urban Systems, 2015, 54:230-239. [16] AGAPIOU A, LYSANDROU V, THEMISTOCLEOUS K, et al.Risk assessment of cultural heritage sites clusters using satellite imagery and GIS:the case study of Paphos District, Cyprus[J]. Natural Hazards, 2016, 83(1):5-20. [17] LIU Yongchao, LIU Yongxue, Li Jialin, et al.Evolution of landscape ecological risk at the optimal scale:a case study of the open coastal wetlands in Jiangsu, China[J]. International Journal of Environmental Research and Public Health, 2018, 15(8):1691. [18] LI Hui, YAO Wenjing, Su pengfei, et al.Shangri-La County ecological risk evaluation based on RS and GIS[J]. Advanced Materials Research, 2013, 663:773-776. [19] 李谢辉, 王磊, 李景宜.基于GIS的渭河下游河流沿线区域生态风险评价[J].生态学报, 2009, 29(10):5523-5534.LI Xiehui, WANG Lei, LI Jingyi.Regional ecological risk assessment along the lower Weihe River based on GIS[J]. Journal of Ecology, 2009, 29(10):5523-5534. [20] BELAL A A, EL-RAMADY H R, MOHAMED E S, et al.Drought risk assessment using remote sensing and GIS techniques[J]. Arabian Journal of Geosciences, 2014, 7(1):35-53. [21] ALI S, TONG Deming, XU Zhentian, et al.Characterization of drought monitoring events through MODIS-and TRMM-based DSI and TVDI over South Asia during 2001-2017[J]. Environmental Science and Pollution Research, 2019, 26(32):33568-33581. [22] DU Lingtong, SONG Naiping, LIU Ke, et al.Comparison of two simulation methods of the temperature vegetation dryness index (TVDI) for drought monitoring in semi-arid regions of China[J]. Remote Sensing, 2017, 9(2):177. [23] SANDLOT I, RASMUSSEN K, ANDERSEN J.A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2):213-224. [24] 周昊昊, 冯恒栋.基于遥感和GIS的珲春市生态环境动态监测与评价[J].延边大学学报(自然科学版), 2018, 44(2):183-188.ZHOU Haohao, FENG Hengdong.Based on remote sensing and geographic information system in dynamic monitoring and evaluation of ecological environment for Hunchun City[J]. Journal of Yanbian University(Natural Science), 2018, 44(2):183-188. [25] 水利部.SL 190—2007土壤侵蚀分类分级标准[S].北京:中国水利水电出版社, 2008:3-12. [26] SKILODIMOU H D, BATHRELLOS G D, CHOUSIANITIS K, et al.Multi-hazard assessment modeling via multi-criteria analysis and GIS:a case study[J]. Environmental Earth Sciences, 2019, 78(2):47. [27] 臧丽萍, 山永祥, 孔逊.基于GIS的层次分析法在同德县地质灾害易发性评价中的应用[J].青海大学学报, 2018, 36(6):58-64.ZANG Liping, SHAN Yongxiang, KONG Xun.Application of GIS-based analytic hierarchy process in geological hazards assessment in Tongde County[J]. Journal of Qinghai University, 2018, 36(6):58-64. [28] KAYASTHA P, DHITAL M R, SMEDT DE F.Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping:a case study from the Tinau watershed, west Nepal[J]. Computers & Geosciences, 2013, 52:398-408. [29] LYU H, SHEN J S, ARULRAJAH A.Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou, China[J]. Sustainability, 2018, 10(2):304. [30] ZHANG Fei, YU Shanjiang, WANG Dongfang.Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics[J]. Environmental Earth Sciences, 2018, 77(13):491. -