留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RS和GIS的峨眉山风景区生态风险评价

黄诗曼 胡庆武 李海东 王少华

黄诗曼, 胡庆武, 李海东, 王少华. 基于RS和GIS的峨眉山风景区生态风险评价[J]. 环境科学研究, 2020, 33(12): 2745-2751. doi: 10.13198/j.issn.1001-6929.2020.10.21
引用本文: 黄诗曼, 胡庆武, 李海东, 王少华. 基于RS和GIS的峨眉山风景区生态风险评价[J]. 环境科学研究, 2020, 33(12): 2745-2751. doi: 10.13198/j.issn.1001-6929.2020.10.21
HUANG Shiman, HU Qingwu, LI Haidong, WANG Shaohua. Ecological Risk Assessment of Mount Emei Based on RS and GIS[J]. Research of Environmental Sciences, 2020, 33(12): 2745-2751. doi: 10.13198/j.issn.1001-6929.2020.10.21
Citation: HUANG Shiman, HU Qingwu, LI Haidong, WANG Shaohua. Ecological Risk Assessment of Mount Emei Based on RS and GIS[J]. Research of Environmental Sciences, 2020, 33(12): 2745-2751. doi: 10.13198/j.issn.1001-6929.2020.10.21

基于RS和GIS的峨眉山风景区生态风险评价

doi: 10.13198/j.issn.1001-6929.2020.10.21
基金项目: 

国家重点研发计划项目 2018YFD1100104

详细信息
    作者简介:

    黄诗曼(1998-), 女, 湖南嘉禾人, 2015301630010@whu.edu.cn

    通讯作者:

    胡庆武(1975-), 男, 湖北武汉人, 教授, 博士, 博导, 主要从事地理信息系统、全球定位系统集成研究, huqw@whu.edu.cn

  • 中图分类号: X820.4;TP79

Ecological Risk Assessment of Mount Emei Based on RS and GIS

Funds: 

National Key Research and Development Program of China 2018YFD1100104

  • 摘要: 风景区的生态风险评价有助于指导其村镇建设、产业发展和实现绿色生态可持续发展.为探究峨眉山风景区生态风险分布和主要影响因素,在RS(Remote Sensing,遥感)和GIS(Geographic Information System,地理信息系统)技术支持下,以2015年土地覆盖数据为基础,结合DEM、遥感影像数据,从自然灾害和人类干扰两方面分析生态风险,依据生态风险度量原理,通过计算风险发生概率和生态易损性求得生态风险值,利用克里金插值法求得峨眉山风景区生态风险空间分布.结果表明:①峨眉山风景区综合生态风险值较小,主要受自然灾害影响,其贡献率高达89.9%;人类干扰带来的影响也不可忽视,贡献率为10.1%.自然灾害中,干旱、地质灾害对风景区的影响较大,贡献率分别为40.9%、49.3%.②峨眉山风景区综合生态风险呈条带状分布,越往东综合生态风险值越大,自然灾害风险空间分布与其基本一致.综合生态风险高风险区聚集在万年寺、清音阁、神水阁景区,景区东部黄湾乡旅游镇属于人文风险高风险区.研究显示,峨眉山风景区综合生态风险主要受到自然灾害影响,存在带状分异的空间规律.

     

  • 图  1  峨眉山风景区地理位置示意

    Figure  1.  Location and regionalization map of Mount Emei

    图  2  峨眉山风景区生态风险评价分级

    Figure  2.  Regionalization map of ecological risk in Mount Emei

    表  1  土壤侵蚀分级

    Table  1.   Digitalization of the elevation indicators for erosion

    土地利用类型 植被覆盖度 土壤侵蚀分级
    5°~8°1) 8°~15° 15°~25° 25°~35° >35°
    非耕地 60%~75% 轻度 轻度 轻度 中度 中度
    45%~60% 轻度 轻度 中度 中度 强度
    30%~45% 轻度 中度 中度 强度 极强
    < 30% 中度 中度 强度 极强 剧烈
    耕地 轻度 中度 强度 极强 剧烈
    水体、居民区及未利用地 轻度 轻度 轻度 轻度 轻度
    注:1)表示坡度,下同.
    下载: 导出CSV

    表  2  地质灾害影响因子赋值表

    Table  2.   Digitalization of the elevation indicators for geological disasters

    项目 赋值方法
    控制因素 坡度 0°~15°、15°~30°、30°~45°、45°~60°、60°~90°分别赋值1、3、5、4、2
    坡高 < 400、400~600、600~800、800~1 100、>1 100 m分别赋值1、3、4、5、2
    坡向 正北赋值为5,西北、东北赋值为4,正东和正西赋值为3,东南和西南赋值为2,正南赋值为1
    坡型 对坡型数据进行归一化处理,0~0.38、0.38~0.42、0.42~0.46、0.46~0.51、0.51~1.00分别赋值1、2、3、4、5
    NDVI 对NDVI进行归一化处理,0~0.25、0.25 ~0.37、0.37~0.48、0.48~0.61、0.61~1.00分别赋值5、4、3、2、1
    影响因素 河网 对河网进行缓冲区处理,0~200、200~400、400~600、600~800、>800 m分别赋值5、4、3、2、1
    下载: 导出CSV

    表  3  峨眉山风景区生态风险综合评价结果

    Table  3.   Results of the ecological risk assessment in Mount Emei

    项目 自然灾害 人类干扰
    风险概率 干旱 0.168 8(40.9%) 0.039 3
    土壤侵蚀 0.040 1(9.8%)
    地质灾害 0.203 4(49.3%)
    总计 0.412 3
    生态易损性 0.050 5 0.050 5
    风险值 0.025 8 0.002 8
    贡献率/% 89.9 10.1
    注:括号内数值表示3种不同自然灾害对自然灾害风险概率的贡献率.
    下载: 导出CSV
  • [1] 李霞, 林丽丽, 吴元晶, 等.GIS支持下旅游小镇生态敏感性评价:以福建省湖坑镇为例[J].中国城市林业, 2019, 17(6):63-69.

    LI Xia, LING Lili, WU Yuanjing, et al.Ecological sensitivity evaluation of tourism town based on GIS:a case study of Hukeng town in Fujian Province[J]. Journal of Chinese Urban Forestry, 2019, 17(6):63-69.
    [2] 杨涵, 沈立成.旅游生态系统能值分析研究:以峨眉山风景区为例[J].生态经济, 2020, 36(4):129-132.

    YANG Han, SHEN Licheng.Emergy analysis on the ecotourism system:a case of Emei mountain scenic area[J]. Ecological Economy, 2020, 36(4):129-132.
    [3] 李娴, 殷继成.山地可持续旅游开发模式探讨:以川西贡嘎山地区为例[J].旅游论坛, 2011, 4(1):33-35.

    LI Xian, YIN Jicheng.Study on mountain ecotourism exploitation mode:taking Gongga mountain region as an example[J]. Tourism Forum, 2011, 4(1):33-35.
    [4] ALEXAKIS D D, AGAPIOU A, THEMISTOCLEOUS K, et al.Natural and human hazard assessment of the archaeological sites of Paphos area (Cyprus) with the use of remote sensing and GIS[J]. Bulletin of the geological Society of Greece, 2013, 47(3):1448-1457.
    [5] ALEXAKIS D, SARRIS A.Environmental and human risk assessment of the prehistoric and historic archaeological sites of Western Crete (Greece) with the use of GIS, remote sensing, fuzzy logic and neural networks[C]//IOANNIDES M.Digital Heritage.Berlin: Springer, 2010: 332-342.
    [6] HADJIMITSIS D G, AGAPIOU A, SARRIS A.Risk assessment intended for cultural heritage sites and monuments in Cyprus using remote sensing and GIS[C]//KOUI M.Monument damage hazards and rehabilitation technologies.Patras: National Technical University of Athens, 2010.
    [7] 付在毅, 许学工.区域生态风险评价[J].地球科学进展, 2001(2):267-271.

    FU Zaiyi, XU Xuegong.Regional ecological risk assessment[J]. Advances in Earth Sciences, 2001(2):267-271.
    [8] HUNSAKER C T, GRAHAM R L, SUTER G W, et al.Assessing ecological risk on a regional scale[J]. Environmental Management, 1990, 14(3):325-332.
    [9] HODGSON E.Toxicology and Human Environments[M]. London:Academic Press, 2012:323-348.
    [10] MURRAY N J, KEITH D A, BLAND L M, et al.The role of satellite remote sensing in structured ecosystem risk assessments[J]. Science of the Total Environment, 2018, 619:249-257.
    [11] 张雅洲, 谢小平.基于RS和GIS的南四湖生态风险评价[J].生态学报, 2015, 35(5):1371-1377.

    ZHANG Yazhou, XIE Xiaoping.Ecological risk assessment of Nansi Lake based on RS and GIS[J]. Journal of Ecology, 2015, 35(5):1371-1377.
    [12] 李耀明, 王玉杰, 王云琦.基于GIS的北京地区生态风险评价[J].中国水土保持科学, 2017, 15(2):100-106.

    LI Yaoming, WANG Yujie, WANG Yunqi.Ecological risk assessment in Beijing based on GIS[J]. Science of Soil and Water Conservation, 2017, 15(2):100-106.
    [13] ZHANG Jiquan, LIANG Jingdan, LIU Xingpeng, et al.GIS-based risk assessment of ecological disasters in Jilin Province, northeast China[J]. Human and Ecological Risk Assessment, 2009, 15(4):727-745.
    [14] BATHRELLOS G D, SKILODIMOU H D, CHOUSIANTIS K, et al.Suitability estimation for urban development using multi-hazard assessment map[J]. Science of the Total Environment, 2017, 575:119-134.
    [15] AGAPIOU A, LYSANDROU V, ALEXAKIS D D, et al.Cultural heritage management and monitoring using remote sensing data and GIS:the case study of Paphos area, Cyprus[J]. Computers, Environment and Urban Systems, 2015, 54:230-239.
    [16] AGAPIOU A, LYSANDROU V, THEMISTOCLEOUS K, et al.Risk assessment of cultural heritage sites clusters using satellite imagery and GIS:the case study of Paphos District, Cyprus[J]. Natural Hazards, 2016, 83(1):5-20.
    [17] LIU Yongchao, LIU Yongxue, Li Jialin, et al.Evolution of landscape ecological risk at the optimal scale:a case study of the open coastal wetlands in Jiangsu, China[J]. International Journal of Environmental Research and Public Health, 2018, 15(8):1691.
    [18] LI Hui, YAO Wenjing, Su pengfei, et al.Shangri-La County ecological risk evaluation based on RS and GIS[J]. Advanced Materials Research, 2013, 663:773-776.
    [19] 李谢辉, 王磊, 李景宜.基于GIS的渭河下游河流沿线区域生态风险评价[J].生态学报, 2009, 29(10):5523-5534.

    LI Xiehui, WANG Lei, LI Jingyi.Regional ecological risk assessment along the lower Weihe River based on GIS[J]. Journal of Ecology, 2009, 29(10):5523-5534.
    [20] BELAL A A, EL-RAMADY H R, MOHAMED E S, et al.Drought risk assessment using remote sensing and GIS techniques[J]. Arabian Journal of Geosciences, 2014, 7(1):35-53.
    [21] ALI S, TONG Deming, XU Zhentian, et al.Characterization of drought monitoring events through MODIS-and TRMM-based DSI and TVDI over South Asia during 2001-2017[J]. Environmental Science and Pollution Research, 2019, 26(32):33568-33581.
    [22] DU Lingtong, SONG Naiping, LIU Ke, et al.Comparison of two simulation methods of the temperature vegetation dryness index (TVDI) for drought monitoring in semi-arid regions of China[J]. Remote Sensing, 2017, 9(2):177.
    [23] SANDLOT I, RASMUSSEN K, ANDERSEN J.A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2):213-224.
    [24] 周昊昊, 冯恒栋.基于遥感和GIS的珲春市生态环境动态监测与评价[J].延边大学学报(自然科学版), 2018, 44(2):183-188.

    ZHOU Haohao, FENG Hengdong.Based on remote sensing and geographic information system in dynamic monitoring and evaluation of ecological environment for Hunchun City[J]. Journal of Yanbian University(Natural Science), 2018, 44(2):183-188.
    [25] 水利部.SL 190—2007土壤侵蚀分类分级标准[S].北京:中国水利水电出版社, 2008:3-12.
    [26] SKILODIMOU H D, BATHRELLOS G D, CHOUSIANITIS K, et al.Multi-hazard assessment modeling via multi-criteria analysis and GIS:a case study[J]. Environmental Earth Sciences, 2019, 78(2):47.
    [27] 臧丽萍, 山永祥, 孔逊.基于GIS的层次分析法在同德县地质灾害易发性评价中的应用[J].青海大学学报, 2018, 36(6):58-64.

    ZANG Liping, SHAN Yongxiang, KONG Xun.Application of GIS-based analytic hierarchy process in geological hazards assessment in Tongde County[J]. Journal of Qinghai University, 2018, 36(6):58-64.
    [28] KAYASTHA P, DHITAL M R, SMEDT DE F.Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping:a case study from the Tinau watershed, west Nepal[J]. Computers & Geosciences, 2013, 52:398-408.
    [29] LYU H, SHEN J S, ARULRAJAH A.Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou, China[J]. Sustainability, 2018, 10(2):304.
    [30] ZHANG Fei, YU Shanjiang, WANG Dongfang.Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics[J]. Environmental Earth Sciences, 2018, 77(13):491.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  1068
  • HTML全文浏览量:  36
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 修回日期:  2020-10-23
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回