Discharge Characteristics and Pollution Aggregation Pattern of Water Pollution in Yellow River Basin
-
摘要: 掌握污染源排放特征及其空间差异,是在流域尺度提升水污染治理水平的重要基础.该研究分别从污染源的活动水平(简称“活动水平”)、污染物产生、污染物去除和污染物排放4个方面选取了28个指标,对黄河流域60个市州主要水污染物排放特征开展了现状评价和聚类分析.采用污染分布的地理集中度指数表征各市州污染集聚格局,并利用空间分析模型Global Moran's I和Gi*指数判断污染排放的空间集聚趋势与冷热点地区.结果表明:按照水污染排放特征的差异,黄河流域不同地区在水污染格局上可划分为高排放强度区、高排放绩效区、污染集聚区和低排放绩效区;水污染物排放与经济发展格局分布一致,上游、中游到下游地区呈现明显的阶梯型分布,上游地区单位水资源利用效率和排放绩效低,下游地区区域性污染集聚效应明显;山西省、河南省和山东省沿黄城市在空间上表现为区域性连片污染集聚,集中分布在晋中城市群和中原城市群.针对当前黄河流域水污染排放特征和空间集聚格局,建议制定统一的生态环境保护与治理策略,加强中下游城市群的污染协同控制.Abstract: Understanding the discharge characteristics of pollution sources and their differences in geographical space is an important basis for improving water pollution control level in basin scale. Discharge characteristic evaluation and cluster analysis of basic water pollutants in 60 cities in the Yellow River Basin were carried out by 28 characteristic evaluation indexes, which were selected from four aspects including activity level of pollutant sources, pollutant generation, pollutant removal and pollutant discharge. The geographical concentration index of pollution distribution was used to calculate and characterize the pollution concentration patterns of each city. The spatial autocorrelation of Global Moran's I and Gi* indexes was used to analyze the Global spatial autocorrelation and local spatial autocorrelation, respectively, so as to judge the spatial agglomeration trend of pollution discharge and identify cold and hot spots. The results showed that different areas in the Yellow River Basin can be divided into high emission intensity area, high emission performance area, pollution agglomeration area and low emission performance area according to the differences of water pollution discharge characteristics. Besides, the spatial distribution patterns of water pollutant discharge were in consistent with economic development spatial pattern. The upstream, middle and downstream regions showed an obvious step-type distribution. Specifically, it showed low unit water resource utilization efficiency and discharge performance in upstream region, and significant regional pollution concentration effect in downstream region. Moreover, the cities along the Yellow River in Shanxi, Henan and Shandong provinces showed regional agglomeration of pollution, especially concentrated in Jinzhong City group and central plains city group. In view of the current pollution discharge characteristics and spatial agglomeration pattern in the Yellow River Basin, a unified strategy of ecological environment protection and governance should be put forwarded, developing and tightening coordinated control of pollution in the middle and downstream city clusters should be developed and strengthened.
-
图 2 黄河流域各地区水污染排放特征聚类结果空间分布
注:1—阿坝藏族羌族自治州;2—阿拉善盟;3—安阳市;4—巴彦淖尔市;5—白银市;6—包头市;7—宝鸡市;8—滨州市;9—长治市;10—定西市;11—东营市;12—鄂尔多斯市;13—固原市;14—果洛藏族自治州;15—海北藏族自治州;16—海东市;17—海南藏族自治州;18—海西蒙古族藏族自治州;19—呼和浩特市;20—黄南藏族自治州;21—济南市;22—晋城市;23—晋中市;24—开封市;25—莱芜市;26—兰州市;27—临汾市;28—吕梁市;29—洛阳市;30—平凉市;31—庆阳市;32—三门峡市;33—商洛市;34—石嘴山市;35—泰安市;36—太原市;37—天水市;38—铜川市;39—渭南市;40—乌海市;41—乌兰察布市;42—吴忠市;43—武威市;44—西安市;45—西宁市;46—咸阳市;47—新乡市;48—忻州市;49—延安市;50—银川市;51—榆林市;52—玉树藏族自治州;53—运城市;54—郑州市;55—中卫市;56—濮阳市;57—临夏回族自治州;58—甘南藏族自治州;59—焦作市;60—济源市.
Figure 2. Spatial distribution of clustering results of water pollution discharge characteristics in various cities of the Yellow River Basin
表 1 黄河流域水污染排放特征评价结果
Table 1. Evaluation results of discharge characteristics of water pollution in the Yellow River Basin
一级分类 二级分类 指标 指标属性 单位 上游 中游 下游 活动水平 社会经济发展 第一产业增加值占比 结构指标 % 7.440 6.528 5.834 第二产业增加值占比 结构指标 % 45.236 47.293 47.343 城镇人口:农村人口 结构指标 — 1.288:1 1.405:1 1.417:1 工业 新鲜水耗 总量指标 104 m3 200 720.244 286 889.186 254 516.519 农业 畜禽养殖量(折合猪当量) 总量指标 104头 4 121.413 5 097.949 3 666.527 生活 人口数量 总量指标 104人 4 176.470 7 782.170 5 293.590 污染物产生 工业 单位产值污染物产生强度 强度指标 t/(104元) 0.011 0.008 0.006 农业 单位产值污染物产生强度 强度指标 t/(104元) 0.037 0.018 0.008 生活 人均水污染物产生强度 强度指标 kg/人 188.590 93.708 56.205 污染物去除 工业 主要水污染物平均去除率 效率指标 % 96.800 96.700 96.450 农业 主要水污染物平均去除率 效率指标 % 89.830 86.830 86.460 生活 主要水污染物平均去除率 效率指标 % 62.480 64.730 65.040 集中式 集中式污水处理设施负荷率 效率指标 % 59.980 70.890 71.760 污染物排放 污染物排放结构 工业源源排放占比 结构指标 % 6.780 3.700 3.950 农业源排放占比 结构指标 % 55.350 51.930 50.020 生活源排放占比 结构指标 % 37.680 43.570 46.000 单位国土面积污染物排放强度 单位国土面积化学需氧量排放量 强度指标 t/km2 0.524 3.026 11.109 单位国土面积氨氮排放量 强度指标 t/km2 0.012 0.088 0.328 单位国土面积总氮排放量 强度指标 t/km2 0.043 0.307 1.317 单位国土面积总磷排放量 强度指标 t/km2 0.004 0.033 0.118 单位水资源量污染物排放强度 单位水资源量化学需氧量排放量 强度指标 kg/(104 m3) 61.669 340.041 996.625 单位水资源量氨氮排放量 强度指标 kg/(104 m3) 1.446 9.835 29.396 单位水资源量总氮排放量 强度指标 kg/(104 m3) 5.056 34.455 118.110 单位水资源量总磷排放量 强度指标 kg/(104 m3) 0.495 3.680 10.624 单位GDP污染物排放强度 单位GDP化学需氧量排放量 强度指标 kg/(104元) 4.362 1.021 3.004 单位GDP氨氮排放量 强度指标 kg/(104元) 0.102 0.030 0.089 单位GDP总氮排放量 强度指标 kg/(104元) 0.358 0.103 0.356 单位GDP总磷排放量 强度指标 kg/(104元) 0.035 0.011 0.032 表 2 黄河流域各地区水污染排放特征聚类结果
Table 2. Clustering results of water pollution discharge characteristics in various cities of the Yellow River Basin
分类 区域划分 所属省份 行政区划名称 高排放强度区(4) 上游 甘肃省 兰州市 中游 陕西省 西安市 下游 河南省 郑州市 山东省 滨州市 高排放绩效区(2) 上游 内蒙古自治区 包头市、鄂尔多斯市 污染集聚区(29) 上游 青海省 海西蒙古族藏族自治州 宁夏回族自治区 银川市 内蒙古自治区 乌海市 中游 内蒙古自治区 呼和浩特市 陕西省 榆林市、延安市、宝鸡市、咸阳市、渭南市 山西省 临汾市、太原市、晋中市、吕梁市、忻州市、运城市、晋城市、长治市 河南省 三门峡市、洛阳市、济源市 下游 河南省 开封市、焦作市、新乡市、安阳市、濮阳市 山东省 泰安市、济南市、莱芜市、东营市 低排放绩效区(25) 上游 青海省 玉树藏族自治州、果洛藏族自治州、黄南藏族自治州、海南藏族自治州、海北藏族自治州、西宁市、海东市 四川省 阿坝藏族羌族自治州 甘肃省 甘南藏族自治州、临夏回族自治州、武威市、白银市、定西市、天水市、平凉市、庆阳市 宁夏回族自治区 中卫市、固原市、吴忠市、石嘴山市 内蒙古自治区 阿拉善盟、巴彦淖尔市 中游 内蒙古自治区 乌兰察布市 陕西省 商洛市、铜川市 注:括号中数值为相应排放特征的个数. 表 3 黄河流域水污染排放空间自相关指数结果
Table 3. Results of Global Moran′s I of water pollution discharge aggregation in the Yellow River Basin
项目 化学需氧量 氨氮 总氮 总磷 Global Moran′s I指数 0.537 0.307 0.606 0.679 Z得分 9.466 7.529 10.863 12.055 方差 0.003 0.002 0.003 0.003 P值 0.000 0.000 0.000 0.000 表 4 黄河流域水污染排放热点和冷点地区识别结果
Table 4. Identification results of hot and cold spots of water pollution discharge in the Yellow River Basin
类别 化学需氧量 氨氮 总氮 总磷 热点地区 晋中市、长治市、临汾市、晋城市、焦作市、济源市、新乡市、洛阳市、郑州市、开封市、安阳市、濮阳市、泰安市、济南市、莱芜市 晋中市、长治市、临汾市、晋城市、运城市、商洛市、三门峡市、焦作市、济源市、新乡市、洛阳市、郑州市、开封市、安阳市、濮阳市、泰安市 晋中市、长治市、临汾市、晋城市、安阳市、濮阳市、焦作市、济源市、新乡市、洛阳市、郑州市、开封市、泰安市、济南市、莱芜市 晋中市、长治市、临汾市、晋城市、运城市、安阳市、濮阳市、焦作市、济源市、三门峡市、新乡市、洛阳市、郑州市、开封市、泰安市、济南市 冷点地区 鄂尔多斯市、吴忠市 无 吴忠市、庆阳市、固原市、定西市、白银市、海东市、临夏回族自治州 吴忠市、庆阳市、中卫市、白银市、定西市、海东市、临夏回族自治州 -
[1] CHEN Yu, ZHU Mengke, LU Junlin, et al.Evaluation of ecological city and analysis of obstacle factors under the background of high-quality development:taking cities in the Yellow River Basin as examples[J].Ecological Indicators, 2020, 118:106771-106780. [2] XIE Pengyuan, ZHUO La, YANG Xi, et al.Spatial-temporal variations in blue and green water resources, water footprints and water scarcities in a Large River Basin:a case for the Yellow River Basin[J].Journal of Hydrology, 2020, 590:125222-125233. [3] 王金南.黄河流域生态保护和高质量发展战略思考[J].环境保护, 2020, 48(S1):18-21.WANG Jinnan.A primary framework on protection ecological environment and realization of high-quality development for the Yellow River Basin[J].Environmental Protection, 2020, 48(S1):18-21. [4] 王东.黄河流域水污染防治问题与对策[J].民主与科学, 2018(6):24-25. [5] 习近平.在黄河流域生态保护和高质量发展座谈会上的讲话[J].求是, 2019(20):1-3. [6] 郭晗, 任保平.黄河流域高质量发展的空间治理:机理诠释与现实策略[J].改革, 2020(4):74-85.GUO Han, REN Baoping.Spatial governance of high-quality development in the Yellow River Basin:mechanism interpretation and practical strategies[J].Reform, 2020(4):74-85. [7] ICHIKI A, OHNISHI T, YAMADA K.Estimation of urban nonpoint source pollution in Lake Biwa Basin[J].Water Ence & Technology, 1998, 38(10):157-163. [8] CHEN Haiyang, TENG Yanguo, WANG Jinsheng, et al.Source apportionment of water pollution in the Jinjiang River (China) using factor analysis with nonnegative constraints and support vector machines[J].Environmental Forensics, 2012, 13(2):175-184. [9] LEE J H, PARK S, KIM D, et al.Long-term monitoring and analysis for discharge characteristics of nonpoint source pollution by land use types in Geum River Basin[J].Journal of Korean Society of Hazard Mitigation, 2012, 12(6):343-350. [10] LU Hongwei, YU Sen.Pollutant source analysis and tempo-spatial analysis of pollutant discharge intensity in a transboundary river basin[J].Environmental Science and Pollution Research, 2018, 26(2):1336-1354. [11] ZHANG Yan, DOU Ming, LI Ping, et al.Spatiotemporal variation characteristics and source identification of water pollutants in Shayinghe River Basin[J].River Research and Applications, 2020, 1:1-15. [12] SINGH K P, MALIK A, SINHA S.Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques:a case study[J].Analytica Chimica Acta, 2005, 538(1/2):355-374. [13] YU Huibin, XI Beidou, JIANG Jinyuan, et al.Environmental heterogeneity analysis, assessment of trophic state and source identification in Chaohu Lake, China[J].Environmental Science and Pollution Research, 2011, 18(8):1333-1342. [14] LI Qiling, ZHANG Han, GUO Shanshan, et al.Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China[J].Environmental Science and Pollution Research, 2019, 6:1-12. [15] LIANG Qi, ZHANG Zhen, LIU Yongxian, et al.Integrated control of agricultural non-point source pollution to provide safe and healthy drinking water for rural areas[J].Asian Agricultural Research, 2017, 9(9):28-30. [16] TRAN V B, ISHIDAIRA H, NAKAMURA T, et al.Estimation of nitrogen load with multi-pollution sources using the SWAT model:a case study in the Cau River Basin in northern Vietnam[J].Journal of Water & Environment Technology, 2017, 15(3):106-119. [17] CHO J H, LEE J H.Watershed model calibration framework developed using an influence coefficient algorithm and a genetic algorithm and analysis of pollutant discharge characteristics and load reduction in a TMDL planning area[J].Journal of Environmental Management, 2015, 163:2-10. [18] WANG Kang, WANG Pengxaing, ZHANG Renduo, et al.Determination of spatiotemporal characteristics of agricultural non-point source pollution of river basins using the dynamic time warping distance[J].Journal of Hydrology, 2020, 583:124303-124315. [19] 环境保护部, 国家发展和改革委员会, 水利部.关于印发《重点流域水污染防治规划(2016-2020年)》的通知[EB/OL].北京: 生态环境部, 2017-10-19[2020-09-08].http://www.mee.gov.cn/gkml/hbb/bwj/201710/t20171027_424176.htm. [20] 马海涛, 徐楦钫.黄河流域城市群高质量发展评估与空间格局分异[J].经济地理, 2020, 40(4):11-18.MA Haitao, XU Xuanfang.High-quality development assessment and spatial heterogeneity of urban agglomeration in the Yellow River Basin[J].Economic Geography, 2020, 40(4):11-18. [21] 水利部黄河水利委员会.黄河年鉴2018[M].郑州:黄河年鉴社, 2018. [22] WANG Puze, YAO Jiping, WANG Guoqiang, et al.Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants[J].Science of the Total Environment, 2019, 693:133440-133454. [23] 荆红卫, 张志刚, 郭婧.北京北运河水系水质污染特征及污染来源分析[J].中国环境科学, 2013, 33(2):319-327.JING Hongwei, ZHANG Zhigang, GUO Jing.Water pollution characteristics and pollution sources of Bei Canal River system in Beijing[J].China Environmental Science, 2013, 33(2):319-327. [24] 王骏, 王士同, 邓赵红.聚类分析研究中的若干问题[J].控制与决策, 2012, 27(3):321-328.WANG Jun, WANG Shitong, DENG Zhaohong.Survey on challenges in clustering analysis research[J].Control and Decision, 2012, 27(3):321-328. [25] 孙吉贵, 刘杰, 赵连宇.聚类算法研究[J].软件学报, 2008, 19(1):48-61.SUN Jigui, LIU Jie, ZHAO Lianyu.Clustering algorithms research[J].Journal of Software, 2008, 19(1):48-61. [26] 刘满凤, 谢晗进.中国省域经济集聚性与污染集聚性趋同研究[J].经济地理, 2014, 34(4):25-32.LIU Manfeng, XIE Hanjin.The convergence reseach of economy aggregation and pollution aggregation among China's provinces[J].Economic Geography, 2014, 34(4):25-32. [27] 贾卓, 强文丽, 王月菊, 等.兰州-西宁城市群工业污染集聚格局及其空间效应[J].经济地理, 2020, 40(1):68-75.JIA Zhuo, QIANG Wenli, WANG Yueju, et al.The spatial characteristics and spatial effect of industrial pollution agglomeration in Lanzhou-Xining urban agglomeration[J].Economic Geography, 2020, 40(1):68-75. [28] 张松林, 张昆.全局空间自相关Moran指数和G系数对比研究[J].中山大学学报(自然科学版), 2007, 46(4):93-97.ZHANG Songlin, ZHANG Kun.Comparison between general Moran's index and Getis-Ord general G of spatial autocorrelation[J].Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(4):93-97. [29] YE Xinyue, CHENG Jinhua, DAI Sheng.Spatiotemporal heterogeneity of industrial pollution in China[J].China Economic Review, 2016, 40:179-191. [30] SONG Mei, WU Jin, SONG Mengran, et al.Spatiotemporal regularity and spillover effects of carbon emission intensity in China's Bohai economic rim[J].Science of the Total Environment, 2020, 740:140184-140194. [31] ZHANG Chaosheng, LUO Lin, XU Weilin, et al.Use of local Moran's I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland[J].Science of the Total Environment, 2008, 398(1/2/3):212-221. [32] ZHAO Xueting, BURNETT J W, FLETCHER J J.Spatial analysis of China province-level CO2 emission intensity[J].Renewable and Sustainable Energy Reviews, 2014, 33:1-10. [33] DIAO Beidi, DING Lei, SU Panda, et al.The spatial-temporal characteristics and influential factors of NOx emissions in China:a spatial econometric analysis[J].International Journal of Environmental Research & Public Health, 2018, 15(7):1405-1423. [34] WANG Shaojin, HUANG Yongyuan, ZHOU Yuquan.Spatial spillover effect and driving forces of carbon emission intensity at the city level in China[J].Journal of Geographical Sciences, 2019, 29(2):231-252. [35] DONG Feng, WANG Yue, ZHENG Lu, et al.Can industrial agglomeration promote pollution agglomeration? evidence from China[J].Journal of Cleaner Production, 2019, 246:118960-118972. [36] SONG Hongqiao, ZHANG Mang.Investigation of regional gap in the Yellow River Basin and analysis of high-quality development strategies[C]//LIU K J.International Conference on Urban Engineering and Management Science (ICUEMS).New York: IEEE Xplore Digital Library, 2020: 105-111. [37] 王金南.我国生态环保工作取得积极进展[N].中国环境报, 2020-06-15(003). [38] 赵领娣, 王文龙.干旱区工业绿色发展及其对工业企业业绩的影响研究[J].干旱区资源与环境, 2020, 34(7):23-29.ZHAO Lingdi, WANG Wenlong.Industrial green development in arid areas and its impact on the performance of industrial enterprises[J].Journal of Arid Land Resources and Environment, 2020, 34(7):23-29. [39] 陆大道, 孙东琪.黄河流域的综合治理与可持续发展[J].地理学报, 2019, 74(12):2431-2436.LU Dadao, SUN Dongqi.Development and management tasks of the Yellow River Basin:a preliminary understanding and suggestion[J].Acta Geographica Sinica, 2019, 74(12):2431-2436. [40] 张宁宁, 粟晓玲, 周云哲, 等.黄河流域水资源承载力评价[J].自然资源学报, 2019, 34(8):1759-1770.ZHANG Ningning, SU Xiaoling, ZHOU Yunzhe, et al.Water resources carrying capacity evalution of the Yellow River Basin on EFAST weight algorithm[J].Journal of Natural Resources, 2019, 34(8):1759-1770. -