留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑河中下游防风固沙功能时空变化及影响因子分析

彭婉月 王兆云 李海东 柳本立

彭婉月, 王兆云, 李海东, 柳本立. 黑河中下游防风固沙功能时空变化及影响因子分析[J]. 环境科学研究, 2020, 33(12): 2734-2744. doi: 10.13198/j.issn.1001-6929.2020.10.28
引用本文: 彭婉月, 王兆云, 李海东, 柳本立. 黑河中下游防风固沙功能时空变化及影响因子分析[J]. 环境科学研究, 2020, 33(12): 2734-2744. doi: 10.13198/j.issn.1001-6929.2020.10.28
PENG Wanyue, WANG Zhaoyun, LI Haidong, LIU Benli. Spatio-Temporal Changes of Sand-Fixing Function and Its Driving Forces in the Middle and Lower Reaches of Heihe River Basin[J]. Research of Environmental Sciences, 2020, 33(12): 2734-2744. doi: 10.13198/j.issn.1001-6929.2020.10.28
Citation: PENG Wanyue, WANG Zhaoyun, LI Haidong, LIU Benli. Spatio-Temporal Changes of Sand-Fixing Function and Its Driving Forces in the Middle and Lower Reaches of Heihe River Basin[J]. Research of Environmental Sciences, 2020, 33(12): 2734-2744. doi: 10.13198/j.issn.1001-6929.2020.10.28

黑河中下游防风固沙功能时空变化及影响因子分析

doi: 10.13198/j.issn.1001-6929.2020.10.28
基金项目: 

国家重点研发计划项目 2018YFD1100104

中国科学院青年创新促进会项目 2016373

详细信息
    作者简介:

    彭婉月(1998-), 女, 江西景德镇人, wanyue@lzb.ac.cn

    通讯作者:

    柳本立(1986-), 男, 河南漯河人, 副研究员, 博士, 主要从事风沙灾害防治研究, liubenli@lzb.ac.cn

  • 中图分类号: X901

Spatio-Temporal Changes of Sand-Fixing Function and Its Driving Forces in the Middle and Lower Reaches of Heihe River Basin

Funds: 

National Key Research and Development Program of China 2018YFD1100104

Youth Innovation Promotion Association of CAS, China 2016373

  • 摘要: 黑河中下游是我国重要的防风固沙生态功能区,分析该区域的防风固沙功能时空变化,明确其主要的影响因子贡献,对于指导荒漠化防治、维护流域生态安全十分重要.该研究基于修正风蚀方程(revised wind erosion equation,RWEQ)、一元线性回归斜率分析、灰色关联分析和GIS技术,分析了2000—2017年黑河中下游防风固沙功能动态变化及其影响因子.结果表明:①2000—2017年,黑河中下游年均防风固沙量为3.2×109 t,年均防风固沙功能约为2.44×104 t/km2;防风固沙量总体呈增强趋势,年均增加6.67×107 t,年均变化率为1.85%.②区域防风固沙功能呈现中游较强,向下游递减的空间分布特征,防风固沙功能较高区约占研究区面积的31.54%,一般区占20.77%,较低区(北部荒漠区)占47.69%;甘肃省张掖市和嘉峪关市防风固沙功能呈增加趋势,回归方程系数(slope)为0~26.29%,占总面积的12.51%;额济纳旗东北部和甘肃省高台县中部防风固沙功能呈下降趋势,回归方程系数为-17.17%~0,占总面积的23.30%.③防风固沙功能主要影响因子中,风力因子最主要,贡献率为30.04%,其次为积雪覆盖、土壤湿度、植被覆盖,贡献率分别为24.57%、24.26%和21.13%.研究显示,防风固沙工程应综合考虑气候变化、植被覆盖、土壤特性及人类活动的复合影响,实行具有空间差异化的方案.

     

  • 图  1  黑河中下游遥感镶嵌图

    注:数据来源于赵军, 王建华.国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans),2015.

    Figure  1.  Remote sensing mosaicking map of the middle and lower reaches of Heihe River Basin

    图  2  黑河中下游多年平均土壤风蚀模数及防风固沙功能空间分布

    Figure  2.  Distributions of average soil wind erosion modulus and average sand-fixing function in the middle and lower reaches of Heihe River Basin

    图  3  2000—2017年黑河中下游年防风固沙功能变化趋势

    Figure  3.  Variation in sand-fixing function between 2000 and 2017 in the middle and lower reaches of Heihe River Basin

    图  4  2000—2017年黑河中下游土壤风蚀模数变化

    Figure  4.  Changes of soil wind erosion modulus in the middle and lower reaches of Heihe River Basin from 2000 to 2017

    图  5  代表性年份的黑河中下游土壤风蚀模数变化

    Figure  5.  Distribution of soil wind erosion modulus in the middle and lower reaches of Heihe River Basin at four representative years

    图  6  2000—2017年黑河中下游防风固沙功能变化

    Figure  6.  Changes of sand-fixing function in the middle and lower reaches of Heihe River Basin from 2000 to 2017

    图  7  代表性年份的黑河中下游防风固沙功能变化

    Figure  7.  Distribution of sand-fixing function in the middle and lower reaches of Heihe River Basin at four representative years

    图  8  黑河中下游防风固沙功能主要影响因子空间分布

    Figure  8.  Distribution of the main driving factors of sand-fixing function in the middle and lower reaches of Heihe River Basin

    图  9  黑河中下游2000—2017年植被覆盖度变化趋势

    Figure  9.  Variation in vegetation coverage between 2000 and 2017 in the middle and lower reaches of Heihe River Basin

    图  10  各主要影响因子与防风固沙功能关联系数

    Figure  10.  Correlation coefficients between sand-fixing function and its driving forces

    表  1  数据来源介绍

    Table  1.   Introduction of data sources

    数据名称 数据类型 时间分辨率 空间分辨率或比例尺 数据来源
    气象数据 TXT 中国气象数据网(http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html)
    土壤湿度数据 NETCDF 0.5° NOAA(https://psl.noaa.gov/data/gridded/data.cpcsoil.html)
    中国雪深长时间序列数据集 TXT 25 km 国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans/data/df40346a-0202-4ed2-bb07-b65dfcda9368/?q=中国雪深长时间序列数据集),参考文献[34-36]
    黑河流域土壤粒径分布数据集 TIFF 0.008 33° 国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans/data/cae9a5c0-8ab8-4952-9869-f736f824d2bd/?q=黑河流域土壤粒径分布数据集),参考文献[37]
    面向陆面模拟的中国土壤数据集 NETCDF 30″ 国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans/data/11573187-fd64-47b1-81a6-0c7c224112a0/?q=面向陆面模拟的中国土壤数据集),参考文献[38]
    中国土壤有机质数据集 NETCDF 30″ 国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans/data/8ba0a731-5b0b-4e2f-8b95-8b29cc3c0f3a/?q=中国土壤有机质数据集)
    MOD13A3 HDR 1 km NASA(https://ladsweb.modaps.eosdis.nasa.gov)
    GDEM DEM IMG 30 m 地理空间数据云(http://www.gscloud.cn)
    下载: 导出CSV
  • [1] 环境保护部, 中国科学院.全国生态功能区划[EB/OL].北京: 环境保护部, 2015-11-23[2020-09-10]. http://www.mee.gov.cn/gkml/hbb/bgg/201511/t20151126_317777.htm?keywords=全国生态功能区划.
    [2] 沈渭寿, 张慧, 邹长新, 等.区域生态承载力与生态安全研究[M]. 1版.北京:中国环境科学出版社, 2010:38-57.
    [3] 王家骥, 姚小红, 李京荣, 等.黑河流域生态承载力估测[J].环境科学研究, 2000, 13(2):44-48.

    WANG Jiaji, YAO Xiaohong, LI Jingrong, et al.Assessment for ecological carrying capacity of Heihe River Basin[J]. Research of Environmental Sciences, 2000, 13(2):44-48.
    [4] 环境保护部, 国家发展和改革委员会.生态保护红线划定指南[EB/OL].北京: 环境保护部, 2017-07-20[2020-09-10]. http://www.mee.gov.cn/gkml/hbb/bgt/201707/t20170728_418679.htm?keywords=生态保护红线划定指南.
    [5] 韩永伟, 拓学森, 高吉喜, 等.黑河下游重要生态功能区防风固沙功能辐射效益[J].生态学报, 2010, 30(19):5185-5193.

    HAN Yongwei, TUO Xuesen, GAO Jixi, et al.Ecosystem services radiation of significant eco-function area in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2010, 30(19):5185-5193.
    [6] 韩永伟, 王宝良, 刘成程, 等.关于重点生态功能区生态补偿量计算中应用辐射效应理论的探讨:以黑河下游防风固沙重点生态功能区为例[J].生态经济, 2015, 31(1):31-34.

    HAN Yongwei, WANG Baoliang, LIU Chengcheng, et al.Study on ecological compensation of ecological function scheme:based on the theory of radiation effect[J]. Ecological Economy, 2015, 31(1):31-34.
    [7] 廖空太, 严子柱, 满多清, 等.黑河流域防风固沙林生态效益研究:以甘肃省高台县为例[J].中国生态农业学报, 2007(6):26-29.

    LIAO Kongtai, YAN Zizhu, MAN Duoqing, et al.Ecological effect of windbreaks and sand-fixation forests on Heihe River Valley:a case stuay of Gaotai County, Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2007(6):26-29.
    [8] 任娟, 肖洪浪, 王勇, 等.居延海湿地生态系统服务功能及价值评估[J].中国沙漠, 2012, 32(3):852-856.

    RENG Juan, XIAO Honglang, WANG Yong, et al.Valuation of ecosystem service values of Juyan Lake wetland[J]. Journal of Desert Research, 2012, 32(3):852-856.
    [9] WOODRUFF N P, SIDDOWAY F H.A wind erosion equation[J]. Proceedings of the Soil ence Society of America, 1965, 29(5):602-608.
    [10] FRYREAR D W, BILBRO J D, SALEH A, et al.RWEQ:improved wind erosion technology[J]. Journal of Soil and Water Conservation, 2000, 55(2):183-189.
    [11] SINGH U B, GREGORY J M, WILSON G R.Texas erosion analysis model: theory and validation[C]//MANHATTAN K S.Proceedings of Wind Erosion: An International Symposium/Workshop, 1997: 117-129.
    [12] SHAO Y, RAUPACH M, SHORT D.Preliminary assessment of wind erosion patterns in the Murray-Darling Basin[J]. Australian Journal of Soil and Water Conservation, 1994, 47(3):323-339.
    [13] HAGEN L J.Evaluation of the wind erosion prediction system (WEPS) erosion submodel on cropland fields[J]. Environmental Modelling & Software, 2004, 19(2):171-176.
    [14] 南岭, 杜灵通, 王锐.土壤风蚀模型研究进展[J].世界科技研究与发展, 2013(4):505-509.

    NAN Ling, DU Lingtong, WANG Rui.Reviews on development of soil wind erosion models[J]. World Sci-Tech R & D, 2013(4):505-509.
    [15] 巩国丽, 黄麟.RWEQ模型中土壤结皮和可蚀性因子的改进和应用[J].水土保持通报, 2018, 38(2):271-280.

    GONG Guoli, HUANG Lin.Improvement and application of soil crust and erodibility factors in RWEQ model[J]. Bulletin of Soil and Water Conservation, 2018, 38(2):271-280.
    [16] 巩国丽, 刘纪远, 邵全琴.基于RWEQ的20世纪90年代以来内蒙古锡林郭勒盟土壤风蚀研究[J].地理科学进展, 2014, 33(6):825-834.

    GONG Guoli, LIU Jiyuan, SHAO Quanqin.Wind erosion in Xilingol League, Inner Mongolia since the 1990s using the revised wind erosion equation[J]. Progress in Geography, 2014, 33(6):825-834.
    [17] 江凌, 肖燚, 欧阳志云, 等.基于RWEQ模型的青海省土壤风蚀模数估算[J].水土保持研究, 2015, 22(1):21-33.

    JIANG Ling, XIAO Yan, OUYANG Zhiyun, et al.Estimate of the wind erosion modules in Qinghai Province based on RWEQ model[J]. Research of Soil and Water Conservation, 2015, 22(1):21-33.
    [18] 申陆, 田美荣, 高吉喜, 等.浑善达克沙漠化防治生态功能区防风固沙功能的时空变化及驱动力[J].应用生态学报, 2016, 27(1):73-82.

    SHEN Lu, TIAN Meirong, GAO Jixi, et al.Spatio-temporal change of sandfixing function and its driving forces in desertification control ecological function area of Hunshandake, China[J]. Chinese Journal of Applied Ecology, 2016, 27(1):73-82.
    [19] MENG Z, DANG X, GAO Y, et al.Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China[J]. Journal of Arid Land, 2018, 10(4):534-547.
    [20] 魏慧, 赵文武, 王晶.土壤可蚀性研究述评[J].应用生态学报, 2017, 28(8):2749-2759.

    WEI Hui, ZHAO Wenwu, WANG Jing.Research progress on soil erodibility[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2749-2759.
    [21] ZHOU X J, KE T, LI S X, et al.Induced biological soil crusts and soil properties varied between slope aspect, slope gradient and plant canopy in the Hobq Desert of China[J]. Catena, 2020, 190:1-12.
    [22] 程军回, 张元明.影响生物土壤结皮分布的环境因子[J].生态学杂志, 2010, 29(1):133-141.

    CHENG Junhui, ZHANG Yuanming.Enviromental factors affectings soil bio-crust distribution[J]. Chinese Journal of Ecology, 2010, 29(1):133-141.
    [23] DE-ORO L A, COLAZO J C, BUSCHIAZZO D E.RWEQ-wind erosion predictions for variable soil roughness conditions[J]. Aeolian Research, 2016, 20:139-146.
    [24] TOURE A A, TIDJANI A D, RAJOT J L, et al.Dynamics of wind erosion and impact of vegetation cover and land use in the Sahel:a case study on sandy dunes in southeastern Niger[J]. Catena, 2019, 177:272-285.
    [25] 余沛东, 陈银萍, 李玉强, 等.植被盖度对沙丘风沙流结构及风蚀量的影响[J].中国沙漠, 2019, 39(5):29-36.

    YU Peidong, CHEN Yinping, LI Yuqiang, et al.Influence of vegetation coverage on sand flow structure and wind erosion yield with wind tunnel experiment as a case[J]. Journal of Desert Research, 2019, 39(5):29-36.
    [26] JIANG L, XIAO Y, ZHENG H, et al.Spatio-temporal variation of wind erosion in Inner Mongolia of China between 2001 and 2010[J]. Chinese Geographical Science, 2016, 26(2):155-164.
    [27] LI J Y, MA X F, ZHANG C.Predicting the spatiotemporal variation in soil wind erosion across central Asia in response to climate change in the 21st century[J]. Science of the Total Environment, 2020, 709:1-14.
    [28] ZHANG H, FAN J, CAO W, et al.Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015[J]. Science of the Total Environment, 2018, 639:1038-1050.
    [29] ANDREOTTI B, CLAUDIN P, POULIQUEN O.Measurements of the aeolian sand transport saturation length[J]. Geomorphology, 2010, 123(3/4):343-348.
    [30] ZHANG G F, AZORIN-MOLINA C, SHI P J, et al.Impact of near-surface wind speed variability on wind erosion in the eastern agro-pastoral transitional zone of northern China, 1982-2016[J]. Agricutural and Forest Meteorology, 2019, 271:102-115.
    [31] DWIGHT T W.The fitting of linear regression lines by the method of least squares[J]. The Forestry Chronicle, 1937, 13(4):509-519.
    [32] ZHANG H P, FANG R D, XIAO W Y.A research on the evaluation of regional economic vitality of major cities in China based on grey relational analysis[J]. Journal of Global Economy, Business and Finance, 2020, 2(4):55-59.
    [33] GURU S, MAHALIK D K.A comparative study on performance measurement of Indian public sector banks using AHP-TOPSIS and AHP-grey relational analysis[J]. Opsearch, 2019, 56(4):1213-1239.
    [34] CHE T, LI X, JIN R, et al.Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49:145-154.
    [35] DAI L Y, CHE T, DING Y J.Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J]. Remote Sensing, 2015, 7(6):7212-7230.
    [36] DAI L Y, CHE T, DING Y J, et al.Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing[J]. Cryosphere, 2017, 11(4):1933-1948.
    [37] SHANGGUAN W, DAI Y, LIU B, et al.A soil particle-size distribution dataset for regional land and climate modelling in China[J]. Geoderma, 2012, 171/172:85-91.
    [38] SHANGGUAN W, DAI Y J, LIU B, et al.A China data set of soil properties for land surface modeling[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2):212-224.
    [39] 董治宝.建立小流域风蚀量统计模型初探[J].水土保持通报, 1998(5):56-63.

    DONG Zhibao.Establishing statistic model of wind erosion on small watershed basis[J]. Bulletin of Soil and Water Conservation, 1998(5):56-63.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  126
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-23
  • 修回日期:  2020-10-13
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回