Spatio-Temporal Changes of Sand-Fixing Function and Its Driving Forces in the Middle and Lower Reaches of Heihe River Basin
-
摘要: 黑河中下游是我国重要的防风固沙生态功能区,分析该区域的防风固沙功能时空变化,明确其主要的影响因子贡献,对于指导荒漠化防治、维护流域生态安全十分重要.该研究基于修正风蚀方程(revised wind erosion equation,RWEQ)、一元线性回归斜率分析、灰色关联分析和GIS技术,分析了2000—2017年黑河中下游防风固沙功能动态变化及其影响因子.结果表明:①2000—2017年,黑河中下游年均防风固沙量为3.2×109 t,年均防风固沙功能约为2.44×104 t/km2;防风固沙量总体呈增强趋势,年均增加6.67×107 t,年均变化率为1.85%.②区域防风固沙功能呈现中游较强,向下游递减的空间分布特征,防风固沙功能较高区约占研究区面积的31.54%,一般区占20.77%,较低区(北部荒漠区)占47.69%;甘肃省张掖市和嘉峪关市防风固沙功能呈增加趋势,回归方程系数(slope)为0~26.29%,占总面积的12.51%;额济纳旗东北部和甘肃省高台县中部防风固沙功能呈下降趋势,回归方程系数为-17.17%~0,占总面积的23.30%.③防风固沙功能主要影响因子中,风力因子最主要,贡献率为30.04%,其次为积雪覆盖、土壤湿度、植被覆盖,贡献率分别为24.57%、24.26%和21.13%.研究显示,防风固沙工程应综合考虑气候变化、植被覆盖、土壤特性及人类活动的复合影响,实行具有空间差异化的方案.Abstract: The Heihe Basin is located in the middle of the Hexi Corridor is the second largest inland basin in northwest China. The middle and lower reaches of the Heihe Basin are important ecological function areas in terms of wind prevention and sand fixation. To control the desertification and maintain the ecological security of this region, it is necessary to analyze the temporal and spatial patterns of windbreak and sand-fixing ability, and to quantify the contributions of different driving forces. In the current study, we integrated the revised wind erosion equation (RWEQ), and carried out slope analysis of unary linear regression and grey relational analysis, and used GIS technology. Multi-years of wind, soil moisture, snow cover, vegetation cover, and soil surface characteristics were collected as input parameters. The results are as follows. (1) From 2000 to 2017, the average annual sand-fixing capacity of this region reached 3.2 billion tons in total, or 2.44×104 t/km2. The average annual sand-fixing capacity increased 6.67×107 t per year with an average change rate of 1.85%. (2) The sand-fixing function showed a decreasing trend from the middle reach in the south to the lower reach in the north. Areas with high, medium and low sand-fixing functions accounted for 31.54%, 20.77% and 47.69% of the study area, respectively. It was found that the function increased mainly in Zhangye City and Jiayuguan City, with unary linear regression coefficient (slope) ranging from 0 to 26.29%, accounting for 12.51% of the total area, while decreasing trend areas mainly distributed in the northeast Ejin Banner and in the central Gaotai County, with slope between -17.17% and 0 and accounting for 23.30% of the total area. (3) Wind was the most important factor causing 30.04% of sand-fixing function variation, followed by snow cover, soil moisture and vegetation coverage with 24.57%, 24.26% and 21.13% contributions, respectively. It is suggested that the projects to prevent soil wind erosion and control desertification should consider the combined effects of climate change, vegetation coverage, soil characteristics, and human activities, and that differentiated approaches should be considered for areas with different conditions. Future changes of sand-fixing function in the study area will be estimated using the IPCC-projected climate data.
-
图 1 黑河中下游遥感镶嵌图
注:数据来源于赵军, 王建华.国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans),2015.
Figure 1. Remote sensing mosaicking map of the middle and lower reaches of Heihe River Basin
表 1 数据来源介绍
Table 1. Introduction of data sources
数据名称 数据类型 时间分辨率 空间分辨率或比例尺 数据来源 气象数据 TXT 日 — 中国气象数据网(http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html) 土壤湿度数据 NETCDF 月 0.5° NOAA(https://psl.noaa.gov/data/gridded/data.cpcsoil.html) 中国雪深长时间序列数据集 TXT 日 25 km 国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans/data/df40346a-0202-4ed2-bb07-b65dfcda9368/?q=中国雪深长时间序列数据集),参考文献[ 34 -36 ]黑河流域土壤粒径分布数据集 TIFF — 0.008 33° 国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans/data/cae9a5c0-8ab8-4952-9869-f736f824d2bd/?q=黑河流域土壤粒径分布数据集),参考文献[ 37 ]面向陆面模拟的中国土壤数据集 NETCDF — 30″ 国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans/data/11573187-fd64-47b1-81a6-0c7c224112a0/?q=面向陆面模拟的中国土壤数据集),参考文献[ 38 ]中国土壤有机质数据集 NETCDF — 30″ 国家青藏高原科学数据中心(http://data.tpdc.ac.cn/zh-hans/data/8ba0a731-5b0b-4e2f-8b95-8b29cc3c0f3a/?q=中国土壤有机质数据集) MOD13A3 HDR 月 1 km NASA(https://ladsweb.modaps.eosdis.nasa.gov) GDEM DEM IMG — 30 m 地理空间数据云(http://www.gscloud.cn) -
[1] 环境保护部, 中国科学院.全国生态功能区划[EB/OL].北京: 环境保护部, 2015-11-23[2020-09-10]. http://www.mee.gov.cn/gkml/hbb/bgg/201511/t20151126_317777.htm?keywords=全国生态功能区划. [2] 沈渭寿, 张慧, 邹长新, 等.区域生态承载力与生态安全研究[M]. 1版.北京:中国环境科学出版社, 2010:38-57. [3] 王家骥, 姚小红, 李京荣, 等.黑河流域生态承载力估测[J].环境科学研究, 2000, 13(2):44-48.WANG Jiaji, YAO Xiaohong, LI Jingrong, et al.Assessment for ecological carrying capacity of Heihe River Basin[J]. Research of Environmental Sciences, 2000, 13(2):44-48. [4] 环境保护部, 国家发展和改革委员会.生态保护红线划定指南[EB/OL].北京: 环境保护部, 2017-07-20[2020-09-10]. http://www.mee.gov.cn/gkml/hbb/bgt/201707/t20170728_418679.htm?keywords=生态保护红线划定指南. [5] 韩永伟, 拓学森, 高吉喜, 等.黑河下游重要生态功能区防风固沙功能辐射效益[J].生态学报, 2010, 30(19):5185-5193.HAN Yongwei, TUO Xuesen, GAO Jixi, et al.Ecosystem services radiation of significant eco-function area in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2010, 30(19):5185-5193. [6] 韩永伟, 王宝良, 刘成程, 等.关于重点生态功能区生态补偿量计算中应用辐射效应理论的探讨:以黑河下游防风固沙重点生态功能区为例[J].生态经济, 2015, 31(1):31-34.HAN Yongwei, WANG Baoliang, LIU Chengcheng, et al.Study on ecological compensation of ecological function scheme:based on the theory of radiation effect[J]. Ecological Economy, 2015, 31(1):31-34. [7] 廖空太, 严子柱, 满多清, 等.黑河流域防风固沙林生态效益研究:以甘肃省高台县为例[J].中国生态农业学报, 2007(6):26-29.LIAO Kongtai, YAN Zizhu, MAN Duoqing, et al.Ecological effect of windbreaks and sand-fixation forests on Heihe River Valley:a case stuay of Gaotai County, Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2007(6):26-29. [8] 任娟, 肖洪浪, 王勇, 等.居延海湿地生态系统服务功能及价值评估[J].中国沙漠, 2012, 32(3):852-856.RENG Juan, XIAO Honglang, WANG Yong, et al.Valuation of ecosystem service values of Juyan Lake wetland[J]. Journal of Desert Research, 2012, 32(3):852-856. [9] WOODRUFF N P, SIDDOWAY F H.A wind erosion equation[J]. Proceedings of the Soil ence Society of America, 1965, 29(5):602-608. [10] FRYREAR D W, BILBRO J D, SALEH A, et al.RWEQ:improved wind erosion technology[J]. Journal of Soil and Water Conservation, 2000, 55(2):183-189. [11] SINGH U B, GREGORY J M, WILSON G R.Texas erosion analysis model: theory and validation[C]//MANHATTAN K S.Proceedings of Wind Erosion: An International Symposium/Workshop, 1997: 117-129. [12] SHAO Y, RAUPACH M, SHORT D.Preliminary assessment of wind erosion patterns in the Murray-Darling Basin[J]. Australian Journal of Soil and Water Conservation, 1994, 47(3):323-339. [13] HAGEN L J.Evaluation of the wind erosion prediction system (WEPS) erosion submodel on cropland fields[J]. Environmental Modelling & Software, 2004, 19(2):171-176. [14] 南岭, 杜灵通, 王锐.土壤风蚀模型研究进展[J].世界科技研究与发展, 2013(4):505-509.NAN Ling, DU Lingtong, WANG Rui.Reviews on development of soil wind erosion models[J]. World Sci-Tech R & D, 2013(4):505-509. [15] 巩国丽, 黄麟.RWEQ模型中土壤结皮和可蚀性因子的改进和应用[J].水土保持通报, 2018, 38(2):271-280.GONG Guoli, HUANG Lin.Improvement and application of soil crust and erodibility factors in RWEQ model[J]. Bulletin of Soil and Water Conservation, 2018, 38(2):271-280. [16] 巩国丽, 刘纪远, 邵全琴.基于RWEQ的20世纪90年代以来内蒙古锡林郭勒盟土壤风蚀研究[J].地理科学进展, 2014, 33(6):825-834.GONG Guoli, LIU Jiyuan, SHAO Quanqin.Wind erosion in Xilingol League, Inner Mongolia since the 1990s using the revised wind erosion equation[J]. Progress in Geography, 2014, 33(6):825-834. [17] 江凌, 肖燚, 欧阳志云, 等.基于RWEQ模型的青海省土壤风蚀模数估算[J].水土保持研究, 2015, 22(1):21-33.JIANG Ling, XIAO Yan, OUYANG Zhiyun, et al.Estimate of the wind erosion modules in Qinghai Province based on RWEQ model[J]. Research of Soil and Water Conservation, 2015, 22(1):21-33. [18] 申陆, 田美荣, 高吉喜, 等.浑善达克沙漠化防治生态功能区防风固沙功能的时空变化及驱动力[J].应用生态学报, 2016, 27(1):73-82.SHEN Lu, TIAN Meirong, GAO Jixi, et al.Spatio-temporal change of sandfixing function and its driving forces in desertification control ecological function area of Hunshandake, China[J]. Chinese Journal of Applied Ecology, 2016, 27(1):73-82. [19] MENG Z, DANG X, GAO Y, et al.Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China[J]. Journal of Arid Land, 2018, 10(4):534-547. [20] 魏慧, 赵文武, 王晶.土壤可蚀性研究述评[J].应用生态学报, 2017, 28(8):2749-2759.WEI Hui, ZHAO Wenwu, WANG Jing.Research progress on soil erodibility[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2749-2759. [21] ZHOU X J, KE T, LI S X, et al.Induced biological soil crusts and soil properties varied between slope aspect, slope gradient and plant canopy in the Hobq Desert of China[J]. Catena, 2020, 190:1-12. [22] 程军回, 张元明.影响生物土壤结皮分布的环境因子[J].生态学杂志, 2010, 29(1):133-141.CHENG Junhui, ZHANG Yuanming.Enviromental factors affectings soil bio-crust distribution[J]. Chinese Journal of Ecology, 2010, 29(1):133-141. [23] DE-ORO L A, COLAZO J C, BUSCHIAZZO D E.RWEQ-wind erosion predictions for variable soil roughness conditions[J]. Aeolian Research, 2016, 20:139-146. [24] TOURE A A, TIDJANI A D, RAJOT J L, et al.Dynamics of wind erosion and impact of vegetation cover and land use in the Sahel:a case study on sandy dunes in southeastern Niger[J]. Catena, 2019, 177:272-285. [25] 余沛东, 陈银萍, 李玉强, 等.植被盖度对沙丘风沙流结构及风蚀量的影响[J].中国沙漠, 2019, 39(5):29-36.YU Peidong, CHEN Yinping, LI Yuqiang, et al.Influence of vegetation coverage on sand flow structure and wind erosion yield with wind tunnel experiment as a case[J]. Journal of Desert Research, 2019, 39(5):29-36. [26] JIANG L, XIAO Y, ZHENG H, et al.Spatio-temporal variation of wind erosion in Inner Mongolia of China between 2001 and 2010[J]. Chinese Geographical Science, 2016, 26(2):155-164. [27] LI J Y, MA X F, ZHANG C.Predicting the spatiotemporal variation in soil wind erosion across central Asia in response to climate change in the 21st century[J]. Science of the Total Environment, 2020, 709:1-14. [28] ZHANG H, FAN J, CAO W, et al.Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015[J]. Science of the Total Environment, 2018, 639:1038-1050. [29] ANDREOTTI B, CLAUDIN P, POULIQUEN O.Measurements of the aeolian sand transport saturation length[J]. Geomorphology, 2010, 123(3/4):343-348. [30] ZHANG G F, AZORIN-MOLINA C, SHI P J, et al.Impact of near-surface wind speed variability on wind erosion in the eastern agro-pastoral transitional zone of northern China, 1982-2016[J]. Agricutural and Forest Meteorology, 2019, 271:102-115. [31] DWIGHT T W.The fitting of linear regression lines by the method of least squares[J]. The Forestry Chronicle, 1937, 13(4):509-519. [32] ZHANG H P, FANG R D, XIAO W Y.A research on the evaluation of regional economic vitality of major cities in China based on grey relational analysis[J]. Journal of Global Economy, Business and Finance, 2020, 2(4):55-59. [33] GURU S, MAHALIK D K.A comparative study on performance measurement of Indian public sector banks using AHP-TOPSIS and AHP-grey relational analysis[J]. Opsearch, 2019, 56(4):1213-1239. [34] CHE T, LI X, JIN R, et al.Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49:145-154. [35] DAI L Y, CHE T, DING Y J.Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J]. Remote Sensing, 2015, 7(6):7212-7230. [36] DAI L Y, CHE T, DING Y J, et al.Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing[J]. Cryosphere, 2017, 11(4):1933-1948. [37] SHANGGUAN W, DAI Y, LIU B, et al.A soil particle-size distribution dataset for regional land and climate modelling in China[J]. Geoderma, 2012, 171/172:85-91. [38] SHANGGUAN W, DAI Y J, LIU B, et al.A China data set of soil properties for land surface modeling[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(2):212-224. [39] 董治宝.建立小流域风蚀量统计模型初探[J].水土保持通报, 1998(5):56-63.DONG Zhibao.Establishing statistic model of wind erosion on small watershed basis[J]. Bulletin of Soil and Water Conservation, 1998(5):56-63. -