Analysis of the Typical Air Pollutants Emission Reduction Potential of Non-Key Industries Furnaces in the '14th Five-Year Plan'
-
摘要: 工业炉窑是大气污染物的重要排放源之一,针对除钢铁、水泥、焦化、石化等行业外的非重点行业炉窑,研究二氧化硫、氮氧化物、颗粒物的排放量及其在2025年的削减潜力,以期对“十四五”时期炉窑污染治理提出建议.非重点行业炉窑具有行业和区域分布广、底数不清、治理水平差、对环境质量影响大等特点,基于第二次全国污染源普查结果,二氧化硫、氮氧化物、颗粒物排放量分别占工业源排放总量的34.0%、21.2%、9.9%.研究充分考虑“十四五”经济社会发展特征和生态环境保护需要,建立了淘汰小型燃煤炉窑、清洁能源替代、提高末端治理设施去除率等减排方案,设定了两种减排情景(其中,情景1为小型燃煤炉窑淘汰+部分燃煤炉窑实施煤改气+治理效率提高至炉窑平均去除率,情景2为小型燃煤炉窑淘汰+部分燃煤炉窑实施煤改气+治理效率提高至工业源平均去除率),估算了2025年不同情景下非重点行业炉窑二氧化硫、氮氧化物、颗粒物的削减潜力及其排放量.结果表明:维持2017年管控水平下,2025年二氧化硫、氮氧化物、颗粒物排放量较2017年分别增加42.32%、40.11%、45.82%;情景1下,2025年二氧化硫、氮氧化物、颗粒物排放量分别较2017年减少0.84%、增加20.86%、减少71.49%;情景2下,2025年二氧化硫、氮氧化物、颗粒物排放量分别较2017年减少63.30%、16.67%、68.51%.根据情景分析结果,结合典型大气污染物“十四五”减排策略,明确了增设末端治理设施的行业,以及开展小型燃煤炉窑清理整顿和清洁能源替代的区域等.Abstract: Industrial furnace is one of the important emission sources of air pollution. In order to put forward some suggestions on the pollution control of furnaces during the '14th Five-Year Plan' period, this paper studies the emission of sulfur dioxide, nitrogen oxides, particulate matter from non-key industrial furnaces and the emission reduction potential in 2025. Non-key industries refer to industries other than iron and steel, cement, coking, petrochemical industries. Their furnaces have the characteristics of wide distribution, unclear emissions, poor treatment levels and great influence on environmental quality. Based on the results of the second national pollution source census, sulfur dioxide, nitrogen oxides and particulate matter emissions from non-key industries accounted for 34.0%, 21.2% and 9.9% of the total industrial source emissions, respectively. Taking full account of the economic and social development characteristics and ecological environmental protection needs of the '14th Five-Year Plan', the emission reduction projects including eliminating small coal-fired furnaces, replacing clean energy and improving end-of-pipe treatment are established, and two scenarios are developed. The first one is to eliminate small coal-fired furnaces, replace partial coal-fired furnaces with clean energy, and improve the removal rate of furnaces to the average level of all industrial furnaces. And the second one is to eliminate small coal-fired furnaces, replace partial coal-fired furnaces with clean energy, improve the removal rate of furnaces to the average level of all industrial end-of-pipe treatment facilities. The reduction potential and emissions of sulfur dioxide, nitrogen oxides and particulate matter in non-key industrial furnaces under different scenarios in 2025 are estimated. The results show that the emission of sulfur dioxide, nitrogen oxides and particulate matter will increase by 42.32%, 40.11% and 45.82% respectively in 2025 compared with 2017 while maintaining current levels of control. Under the first reduction scenario, the emissions of sulfur dioxide, nitrogen oxides and particulate matter will be decreased by 0.84%, 20.86% and 71.49% respectively in 2025 compared with 2017. Under the second reduction scenario, the emissions of sulfur dioxide, nitrogen oxides and particulate matter will be decreased by 63.30%, 16.67% and 68.51% respectively compared with 2017. Based on the results of scenario analysis, combined with the emission reduction strategy for typical air pollutants during the '14th Five-Year Plan', the industries where the end treatment facilities should be added, and the areas where small coal-fired furnaces should be cleaned and replaced with clean energy are clarified.
-
Key words:
- industrial furnaces /
- emissions /
- reduction potential /
- '14th Five-Year Plan'
-
表 1 情景方案设定
Table 1. Designation of different scenarios
项目 现役源淘汰一批 现役源替代一批 现役源治理一批 新增源 维持2017年管控水平 不淘汰 不替代 不治理 默认污染物产生量增速与产品产量增速相等,计算污染物新增产生量,去除率为2017年非重点行业炉窑的平均去除率 情景1
(A+B+C1方案)淘汰煤炭用量小于1 000 t/a的燃煤炉窑(A方案),煤改电 煤改天然气,按照《能源发展“十三五”规划》中煤炭消费比重五年累计值减少6% (B方案) 去除率提高至重点+非重点工业炉窑平均水平(C1方案) 默认污染物产生量增速与产品产量增速相等,计算污染物新增产生量,去除率基于A+B+C1方案确定 情景2
(A+B+C2方案)淘汰煤炭用量小于1 000 t/a的燃煤炉窑(A方案),煤改电 煤改天然气,按照《能源发展“十三五”规划》中煤炭消费比重五年累计值减少6% (B方案) 去除率提高至工业源平均水平(C2方案) 默认污染物产生量增速与产品产量增速相等,计算污染物新增产生量,去除率基于A+B+C2方案确定 表 2 工业炉窑煤炭与天然气污染物排放绩效对比
Table 2. Comparison of pollutants emission performance between coal and natural gas of industrial furnace
燃料类型 单位污染物排放量/[t/(104 t)] 二氧化硫 氮氧化物 颗粒物 煤炭 34.85 38.40 44.57 天然气 11.36 15.95 8.48 表 3 非重点行业炉窑2025年污染物产生量估算
Table 3. Estimation of the production of pollutants from furnaces in non-key industries in 2025
行业 最小增速/% 最小增速条件下2025年污染物产生量/(104 t) 二氧化硫 氮氧化物 颗粒物 非金属矿物制品业 3.26 322.12 158.40 742.30 有色金属冶炼和压延加工业 7.26 223.72 40.80 892.44 化学原料和化学制品制造业 0.86 45.93 13.54 414.41 黑色金属冶炼和压延加工业 7.25 28.94 44.48 601.89 其他行业 4.66 21.32 15.69 234.66 合计 642.04 272.91 2 885.69 表 4 非重点行业炉窑现役源不同情景削减潜力
Table 4. Reduction potential in different scenarios of kiln sources in non-key industries
104 t 项目 2017年排放基数 2025年削减量 淘汰一批 替代一批 治理一批 合计 维持2017年管控水平 二氧化硫 180.15 0 0 0 0 氮氧化物 137.03 0 0 0 0 颗粒物 126.49 0 0 0 0 情景1 二氧化硫 180.15 21.05 1.98 31.60 54.63 氮氧化物 137.03 7.10 1.90 9.83 18.82 颗粒物 126.49 12.32 3.05 86.40 101.78 情景2 二氧化硫 180.15 21.05 1.98 110.67 133.70 氮氧化物 137.03 7.10 1.90 46.54 55.53 颗粒物 126.49 12.32 3.05 83.83 99.20 表 5 不同减排情景下现役源去除率和新增源排放量
Table 5. Determination of the removal rate of active sources and estimation of emission from new sources under different scenarios
污染物 2017年产生量
/ (104 t)去除率/% 2025年新增排放量
/(104 t)2025年新增产生量/ (104 t) 维持2017年年管控水平 情景1 情景2 维持2017年年管控水平 情景1 情景2 二氧化硫 451.11 60.07 72.17 89.70 190.93 76.24 53.12 19.66 氮氧化物 194.78 29.65 39.31 58.16 78.12 54.96 47.41 32.69 颗粒物 1977.34 93.62 98.75 98.62 908.34 57.95 11.35 12.54 表 6 不同情景下2025年排放量估算
Table 6. Estimation of air pollutants emission under different scenarios in 2025
项目 2017年排放基数
/ (104 t)现役源削减量
/ (104 t)新增源排放量
/ (104 t)2025年排放量
/ (104 t)与2017年相比变化情况/% 维持2017年管控水平 二氧化硫 180.15 0 76.24 256.39 42.32 氮氧化物 137.03 0 54.96 191.99 40.11 颗粒物 126.49 0 57.95 184.44 45.82 情景1 二氧化硫 180.15 54.63 53.12 178.64 -0.84 氮氧化物 137.03 18.82 47.41 165.62 20.86 颗粒物 126.49 101.78 11.35 36.06 -71.49 情景2 二氧化硫 180.15 133.70 19.66 66.11 -63.30 氮氧化物 137.03 55.53 32.69 114.19 -16.67 颗粒物 126.49 99.20 12.54 39.83 -68.51 -
[1] 生态环境部,国家发展和改革委员会,工业和信息化部,等.关于印发《工业炉窑大气污染综合治理方案》的通知(环大气〔2019〕56号)[EB/OL].北京:生态环境部,2019-07-09[2020-08-08].http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201907/t20 190712_709309.html. [2] 杜敏, 邓雨录.工业炉设计绿色之路的发展趋势[J].工业炉, 2016, 38(2):5-6.DU Min, DENG Yulu.Development tendency of green road of industrial furnace design[J].Industrial furnace, 2016, 38(2):5-6. [3] 生态环境部, 国家统计局, 农业农村部.第二次全国污染源普查公报[R/OL].北京: 生态环境部, 2020-06-09[2020-07-31].http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html. [4] 苟林.中国钢铁行业节能减排潜力分析[J].生态经济, 2015, 31(9):52-55. doi: 10.3969/j.issn.1671-4407.2015.09.012GOU Lin.Co-benefits of energy-saving and emission-reduction in iron and steel industry[J].Ecological Economy, 2015, 31(9):52-55. doi: 10.3969/j.issn.1671-4407.2015.09.012 [5] 张薇, 王玉洁, 刘帅, 等.基于CSC方法的钢铁行业节能减排技术潜力分析[J].中国冶金, 2019, 29(1):70-76.ZHANG Wei, WANG Yujie, LIU Shuai, et al.Analysis of energy conservation and emission reduction potential in iron and steel industry based on CSC method[J].China Metallurgy, 2019, 29(1):70-76. [6] 王克, 王灿, 吕学都, 等.基于LEAP的中国钢铁行业CO2减排潜力分析[J].清华大学学报(自然科学版), 2006, 46(12):1982-1986. doi: 10.3321/j.issn:1000-0054.2006.12.009WANG Ke, WANG Can, LV Xuedu, et al.Abatement potential of CO2 emissions from China's iron and steel industry based on LEAP[J].Journal of Tsinghua University(Science & Technology), 2006, 46(12):1982-1986. doi: 10.3321/j.issn:1000-0054.2006.12.009 [7] 顾阿伦, 史宵鸣, 汪澜, 等.中国水泥行业节能减排的潜力与成本分析[J].中国人口·资源与环境, 2012, 22(8):16-21.GU Alun, SHI Xiaoming, WANG Lan, et al.The potential and cost analysis of energy saving and emission reduction in China dement sector[J].China Population, Resources and Environment, 2012, 22(8):16-21. [8] 王红梅, 刘宇, 王凡, 等.我国水泥工业废气量减排与污染物减排潜力分析[J].环境工程技术学报, 2015, 5(3):241-246.WANG Hongmei, LIU Yu, WANG Fan, et al.Analysis of waste gas volume and pollutants reduction potential for cement industry in China[J].Journal of Environmental Engineering Technology, 2015, 5(3):241-246. [9] 李新, 路路, 穆献中, 等.基于LEAP模型的京津冀地区钢铁行业中长期减排潜力分析[J].环境科学研究, 2019, 32(3):365-371. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190301&flag=1LI Xin, LU Lu, MU Xianzhong, et al.Emission reduction potential of pollutants emissions from iron and steel industry over Beijing-Tianjin-Hebei Region based on LEAP[J].Research of Environmental Sciences, 2019, 32(3):365-371. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190301&flag=1 [10] 戴兰生.摸清我国工业炉窑能耗的底数: 忆我国工业炉窑耗能情况的调查[C]//中国机械工程学会工业炉分会.第八届全国工业炉学术会议.北京: 中国机械工程学会, 2011: 1-4. [11] 牛莎莎.有色金属工业炉窑的现状及未来发展研究[J].世界有色金属, 2019(6):1-3.NIU Shasha.The research on the present situation and development of non-ferrous metal industrial furnaces[J].World Nonferrous Metals, 2019(6):1-3. [12] 邱震宇.我国工业炉窑环境保护治理研究[J].山西冶金, 2018, 41(6):95-97.QIU Zhenyu.Study on environmental protection of industrial furnace and kiln in China[J].Shanxi Metallurgy, 2018, 41(6):95-97. [13] 于占平.我国玻璃炉窑现状及节能技术的发展[J].设备管理与维修, 2018(6):191-192. [14] 孙恒.浅谈工业炉窑节能的途径[J].工业技术, 2016(10):130. [15] 国务院办公厅.国务院关于印发大气污染防治行动计划的通知[EB/OL].北京: 中华人民共和国中央人民政府, 2013-09-10, [2020-08-08]. http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm. [16] 生态环境部, 国家发展和改革委员会, 工业和信息化部, 等.关于印发《京津冀及周边地区2019-2020年秋冬季大气污染综合治理攻坚行动方案》的通知[EB/OL].北京: 生态环境部, 2019-10-11[2020-08-08]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201910/t20191016_737803.html. [17] 陈娟, 李巍, 程红光, 等.北京市大气污染减排潜力及居民健康效益评估[J].环境科学研究, 2015, 28(7):1114-1121. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150714&flag=1CHEN Juan, LI Wei, CHENG Hongguang, et al.Evaluation of emission reduction potentials of key air pollutants and health benefits for residents of Beijing[J].Research of Environmental Sciences, 2015, 28(7):1114-1121. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150714&flag=1 [18] 钟悦之, 蒋春来, 宋晓晖, 等.火电行业"十三五"主要大气污染物减排潜力情景分析研究[J].环境科学与管理, 2016, 41(12):58-62.ZHONG Yuezhi, JIANG Chunlai, SONG Xiaohui, et al.Scenario analysis of main air pollutant reduction potentials in thermal power industry during 'the 13th Five-year Plan'[J].Environmental Science and Management, 2016, 41(12):58-62. [19] 吉木色.基于情景分析的城市大气污染物减排潜力研究[J].环境与可持续发展, 2015, 40(5):102-105. doi: 10.3969/j.issn.1673-288X.2015.05.030JI Muse.Based on the scenario analysis of atmospheric pollutants emissionreduction potential research[J].Environment and Sustainable Development, 2015, 40(5):102-105. doi: 10.3969/j.issn.1673-288X.2015.05.030 [20] 刘永, 郭怀成, 王丽婧, 等.环境规划中情景分析方法及应用研究[J].环境科学研究, 2005, 18(3):82-87. doi: 10.3321/j.issn:1001-6929.2005.03.020LIU Yong, GUO Huaicheng, WANG Lijing, et al.Scenario analysis and its application in environmental planning[J].Research of Environmental Sciences, 2005, 18(3):82-87. doi: 10.3321/j.issn:1001-6929.2005.03.020 [21] MENG Xiance, LI Chen, CUI Suping, et al.Scenario analysis of denitration for Chinese coal-fired power generation[J].Materials Science Forum, 2015, 814:425-429. doi: 10.4028/www.scientific.net/MSF.814.425 [22] 乔琦, 白璐, 刘丹丹, 等.我国工业污染源产排污核算系数法发展历程及研究进展[J].环境科学研究, 2020.doi: 10.13198/j.issn.1001-6929.2020.05.09.QIAO Qi, BAI Lu, LIU Dandan, et al.Development and research progress of pollutant generation and discharge coefficients for industrial pollution sources in China[J].Research of Environmental Sciences, 2020.doi:10.13198/j.issn.1001-6929. 2020.05.09. [23] 国家统计局, 统计数据-数据查询-年度查询-工业-工业产品产量[EB/OL].北京: 国家统计局, 2020-10-27[2020-10-27].https://data.stats.gov.cn/easyquery.htm?cn=C01. [24] LEEC F, LINS J, LEWIS C.Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors[J].Energy Policy, 2008, 36(2):722-729. doi: 10.1016/j.enpol.2007.10.025 [25] WANG J, ZHAO T, WANG Y N.How to achieve the 2020 and 2030 emissions targets of China:evidence from high, mid and lowenergy-consumption industrial sub-sectors[J].Atmospheric Environment, 2016, 145:280-292. doi: 10.1016/j.atmosenv.2016.09.038 [26] 王迪, 和维, 聂锐.中国2030年CO2排放情景预测与减排潜力分析[J].系统工程学报, 2019, 34(6):721-735.WANG Di, HE Wei, NIE Rui.China's CO2 emission scenario prediction and emission reduction potential analysis in 2030[J].Journal of Systems Engineering, 2019, 34(6):721-735. [27] 国务院办公厅.关于印发《第二次全国污染源普查制度》的通知(国污普[2018]15号)[EB/OL].中华人民共和国中央人民政府, 2017-09-21[2020-08-08].http://www.gov.cn/zhengce/content/2017-09/21/content_5226606.htm. [28] 朱琳, 马秀琴, 郭铭昕, 等.京津冀地区农村煤改气现状及减排潜力分析[J].能源与节能, 2020(5):41-44.ZHU Lin, MA Xiuqin, GUO Mingxin, et al.Analysis on the current situation and emission reduction potential of rural coal to gas in Beijing-Tianjin-Hebei Region[J].Energy and Energy Conservation, 2020(5):41-44. [29] 孙现伟, 邓双, 朱云, 等.我国燃煤电厂PM2.5减排潜力预测与分析[J].环境科学研究, 2016, 29(5):637-645. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160504&flag=1SUN Xianwei, DENG Shuang, ZHU Yun, et al.PM2.5 emissions reduction potential from coal-fired power plants in China[J].Research of Environmental Sciences, 2016, 29(5):637-645. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160504&flag=1 [30] 杨硕, 郭威, 张秀丽, 等.工业领域电能替代潜力与协同控制分析[J].河北电力技术, 2019, 38(3):11-14.YANG Shuo, GUO Wei, ZHANG Xiuli, et al.Coordination control analysis of potential energy substitution in industrial enterprises[J].Hebei Electric Power, 2019, 38(3):11-14. [31] LI Yaru, JACQUELINE M, DONALD G.Health and air quality benefits of policies to reduce coal-fired power plant emissions:a case study in North Carolina[J].Environmental Science & Technology, 2014, 48:10019-10027. [32] 国家发展和改革委员会, 国家能源局.关于印发能源发展"十三五"规划的通知(发改能源[2016] 2744号)[EB/OL].国家能源局, 2016-12-26[2020-08-08]. http://www.nea.gov.cn/2017-01/17/c_135989417.htm. -