Optimization of Spatial Layout of Ecological-Production-Living Spaces in Mountainous Characteristic Towns Based on Micro-Topography Constraints
-
摘要: 优化国土空间开发格局是生态文明建设的重要内容,在村镇尺度下生态-生产-生活(简称“‘三生’”)空间结构与布局,对于特色小镇绿色发展具有重要意义.为优化山区以工业和旅游融合为优势的特色小镇“三生”空间布局,以茅台镇为研究对象,基于“产业兴旺、生态宜居”乡村振兴战略要求,通过10 m分辨率DEM、土地利用等数据,以主导生态功能和山区微地貌为约束条件,通过GeoSOS-FLUS模型开展了生态优先情景下茅台镇“三生”空间布局优化研究,并与无地貌约束的自然演变和经济优先2种情景做了对比.结果表明:①茅台镇生态空间和农业生产空间在峡谷底、陡坡和山脊区域均有大量分布且面积数量差异较小,而生活空间和工业生产空间多分布在峡谷底部.②自然演变情景模拟下,河谷地带的缓坡和部分陡坡位置均被转换为建设用地;经济优先情景模拟下,缓坡位置的耕地较易转化为建设用地;而生态优先情景模拟下,林地实现了空间上的连通和聚集,建设用地主要在茅台镇中南部河谷地带以及缓坡地区适度扩张.③生态优先情景下,峡谷底区域“三生”空间布局得到优化,生态空间面积从41.29 km2增至43.80 km2,工业生产空间面积由6.86 km2增至7.89 km2,农业生产空间由24.29 km2降至20.00 km2.研究显示,对于山区型村镇,微地貌约束土地利用模拟使得工业生产空间和生活空间集中分布在峡谷底区域,而生态空间则较多分布在缓坡和陡坡区域.Abstract: Optimizing the spatial development pattern of land is an important part of the construction of ecological civilization, especially the optimization of the structure and layout of Ecological-Production-Living Spaces of villages and towns is of great significance for the green development of characteristic towns. In order to optimize the spatial layout of Ecological-Production-Living Spaces in mountainous characteristic towns, taking Maotai Town as the research object, the land use layout of Maotai Town was optimized with the dominant ecological function and mountain micro-topography as constraints based on the strategic requirements for rural revitalization of 'industrial prosperity, ecological livability', through DEM with 10 m resolution, land use, and traffic location data with the GeoSOS-FLUS model. Meanwhile, this paper studies the spatial layout optimization of Ecological-Production-Living Spaces in Maotai Town under the ecological priority scenario, and makes a comparison with natural evolution and economical priority scenarios. The results showed that: (1) The ecological space and agricultural production space in Maotai Town were distributed at the valley bottom, steep slope and ridge area, and the difference in area number was small, while the living space and industrial production space were mostly distributed at the bottom of the canyon. (2) Under the natural evolution scenario simulation, the gentle slopes and some steep slopes of the valley are converted into construction land. Under the economic priority scenario, the cultivated land on the gentle slopes is easier to convert into construction land. And under the ecological priority scenario simulation, the forest lands are connected and gathered in space, and the construction land in the valley area and gentle slope area in the middle and south of Maotai Town is moderately expanded. (3) Under the ecological priority scenario, the spatial layout of Ecological-Production-Living Spaces at the valley bottom area is optimized. Specifically, the ecological space area increases from 41.29 km2 to 43.80 km2, the industrial production space area increases from 6.86 km2 to 7.89 km2, and the agricultural production space decreases from 24.29 km2 to 20.00 km2. This study shows that for mountainous villages and towns, micro-topography constrained land use simulation concentrates industrial production space and residential space at the valley bottom area, while ecological space is more distributed in gentle and steep slope areas.
-
表 1 2000—2018年茅台镇土地利用和“三生”空间变化
Table 1. Land use and Production-Life-Ecology Space change in Moutai Town from 2000 to 2018
km2 土地利用划分 2000年 2010年 2018年 2000—2010年变化 2010—2018年变化 2000—2018年变化 耕地 84.55 84.51 78.87 -0.03 -5.64 -5.68 林地 72.45 75.74 73.63 3.30 -2.11 1.19 草地 51.42 48.11 46.17 -3.31 -1.94 -5.25 水域 3.00 3.00 3.41 0.00 0.41 0.41 建设用地 1.43 1.48 10.76 0.04 9.28 9.33 农业生产空间 84.55 84.51 78.87 -0.03 -5.64 -5.68 工业生产空间 2.34 3.03 7.13 0.69 4.10 4.79 生活空间 1.23 1.43 3.63 0.20 2.20 2.40 生态空间 124.72 123.87 123.21 -0.85 -0.66 -1.51 表 2 数据信息说明
Table 2. Data information description
数据类型 数据来源 说明 用途 DEM 2017年6月资源三号卫星遥感影像立体像对提取 分辨率为10 m×10 m 求取坡度、坡向、TWI、TPI、微地貌等 茅台镇2000年、2010年、2018年土地利用数据 中国科学院资源环境科学数据中心 分辨率为30 m×30 m 模型输入数据 《全国生态功能区划(修编版)》 — 主导生态功能定位 规划资料 《贵州省生态保护红线》 — 生态约束条件 《仁怀市土地利用总体规划(2015—2020年)》 — 上位规划约束条件 基础地理信息数据 https://www.openstreetmap.org 比例尺为1:300 000 交通区位驱动因子 表 3 基于TPI的地貌划分
Table 3. Division of landform classification based on TPI
坡度位置 划分方法 山脊 z0>8 陡坡 8≥z0>-8, slope>6° 缓坡 8>z0≥-8, slope≤6° 峡谷底 z0 < -8 表 4 基于地形约束的茅台镇“三生”空间划分及优化策略
Table 4. Space division and optimization strategy of Production-Life-Ecology Space in Maotai Town based on terrain constraints
地貌 面积/km2 面积占比% 面积/km2 优化策略 农业生产空间 工业生产空间 生活空间 生态空间 峡谷底 75.57 35.51 24.29 6.86 3.13 41.29 适当约束建设用地扩增 缓坡 5.98 2.81 3.12 0.19 0.36 2.31 有限开发,做好生态涵养和环境保护 陡坡 66.39 31.19 26.54 0.01 0.12 39.72 适度农业生产,退耕还林 山脊 64.90 30.49 24.92 0.07 0.02 39.89 退耕还林,恢复为草地或林地 总计 212.84 100.00 78.87 7.13 3.63 123.21 表 5 不同情景下土地利用布局
Table 5. Land use layout under different scenarios km2
土地利用划分 2018年现状 2018年模拟 自然演变情景 经济优先情景 生态优先情景 优化幅度 耕地 78.87 76.32 74.68 70.56 67.45 -11.42 林地 73.63 77.01 85.34 82.61 98.76 25.13 草地 46.17 47.30 28.38 33.42 27.35 -18.82 水域 3.41 3.40 3.43 3.43 3.52 0.11 建设用地 10.76 8.81 21.01 22.82 15.76 5.00 农业生产空间 78.87 76.32 74.68 70.56 67.45 -11.42 工业生产空间 7.13 5.46 15.65 17.57 9.87 2.74 生活空间 3.63 3.35 5.36 5.25 5.89 2.26 生态空间 123.21 127.71 117.15 119.46 129.63 6.42 -
[1] 樊杰.我国主体功能区划的科学基础[J].地理学报, 2007, 62(4):339-350.FAN Jie.The scientific foundation of major function oriented zoning in China[J]. Acta Geographica Sinica, 2007, 62(4):339-350. [2] YANG Y, BAO W, LIU Y.Coupling coordination analysis of rural Production-Living-Ecological Space in the Beijing-Tianjin-Hebei Region[J]. Ecological Indicators, 2020, 117(10):106512. [3] FANG C L, YANG J Y, FANG J W, et al.Optimization transmission theory and technical pathways that describe multiscale urban agglomeration spaces[J]. Chinese Geographical Science, 2018, 28(4):543-554. [4] LIU Y, LI J, YANG Y.Strategic adjustment of land use policy under the economic transformation[J]. Land Use Policy, 2018, 74(5):5-14. [5] 刘继来, 刘彦随, 李裕瑞.中国"三生空间"分类评价与时空格局分析[J].地理学报, 2017, 72(7):1290-1304.LIU Jilai, LIU Yansui, LI Yurui.Classification evaluation and spatial-temporal analysis of 'Production-Living-Ecological' Spaces in China[J]. Acta Geographical Sinica, 2017, 72(7):1290-1304. [6] 黄金川, 林浩曦, 漆潇潇.面向国土空间优化的三生空间研究进展[J].地理科学进展, 2017, 36(3):378-391.HUANG Jinchuan, LIN Haoxi, QI Xiaoxiao.A literature review on optimization of spatial development pattern based on ecological-production-living space[J]. Progress in Geography, 2017, 36(3):378-391. [7] 张红旗, 许尔琪, 朱会义.中国"三生用地"分类及其空间格局[J].资源科学, 2015, 37(7):1332-1338.ZHANG Hongqi, XU Erqi, ZHU Huiyi.An ecological-living-industrial land classification system and its spatial distribution in China[J]. Resources Science, 2015, 37(7):1332-1338. [8] 贾克敬, 何鸿飞, 张辉, 等.基于"双评价"的国土空间格局优化[J].中国土地科学, 2020, 34(5):43-51.JIA Kejing, HE Hongfei, ZHANG Hui, et al.Optimization of territorial space pattern based on resources and environment carrying capacity and land suitability assessment[J]. China Land Science, 2020, 34(5):43-51. [9] 李广东, 方创琳.城市生态—生产—生活空间功能定量识别与分析[J].地理学报, 2016, 71(1):49-65.LI Guangdong, FANG Chuanglin.Quantitative function identification and analysis of urban ecological-production-living spaces[J]. Acta Geographica Sinica, 2016, 71(1):49-65. [10] 樊杰.资源环境承载力和国土空间开发适宜性评价方法指南[M].北京:科学出版社, 2018. [11] 李鑫, 李宁, 欧名豪.土地利用结构与布局优化研究述评[J].干旱区资源与环境, 2016, 30(11):103-110.LI Xin, LI Ning, OU Minghao.Review of the studies on land use structure and layout optimization[J]. Journal of Arid Land Resources and Environment, 2016, 30(11):103-110. [12] ZOU Lilin, LIU Yansui, YANG Jianxin, et al.Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China's southeast coast[J]. Habitat International, 2020, 100(7):102182. [13] 张磊, 陈晓琴, 董晓翠, 等.三生互斥视角下工业用地空间布局优化:以天津市为例[J].地理与地理信息科学, 2019, 35(3):112-119.ZHANG Lei, CHEN Xiaoqin, DONG Xiaocui, et al.Research on spatial layout optimization of industrial land based on mutual exclusion of Ecological-Production-Living Spaces in Tianjin[J]. Geography and Geo-Information Science, 2019, 35(3):112-119. [14] 林伊琳, 赵俊三, 张萌, 等.滇中城市群国土空间格局识别与时空演化特征分析[J].农业机械学报, 2019, 50(8):176-191.LIN Yilin, ZHAO Junsan, ZHANG Meng, et al.Identification of territory space pattern and spatio-temporal evolution analysis of urban agglomeration in Central Yunnan[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8):176-191. [15] 席建超, 王首琨, 张瑞英.旅游乡村聚落"生产-生活-生态"空间重构与优化:河北野三坡旅游区苟各庄村的案例实证[J].自然资源学报, 2016, 31(3):425-435.XI Jianchao, WANG Shoukun, ZHANG Ruiying.Restructuring and optimizing Production-Living-Ecology Space in rural settlements:a case study of Gougezhuang Village at Yesanpo tourism attraction in Hebei Province[J]. Journal of Natural Resources, 2016, 31(3):425-435. [16] 邓伟, 张继飞, 时振钦, 等.山区国土空间解析及其优化概念模型与理论框架[J].山地学报, 2017, 35(2):121-128.DENG Wei, ZHANG Jifei, SHI Zhenqin, et al.Interpretation of mountain territory space and its optimized conceptual model and theoretical framework[J]. Mountain Research, 2017, 35(2):121-128. [17] 国家发展和改革委员会办公厅.《关于公布特色小镇典型经验和警示案例的通知》(发改办规划〔2020〕481号)[EB/OL].北京: 国家发展和改革委员会, 2020-06-26[2020-06-26]. http://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp? id=17122. [18] 国家发展和改革委员会办公厅.《关于建立特色小镇和特色小城镇高质量发展机制的通知》(发改办规划〔2018〕1041号)[EB/OL].北京: 国家发展和改革委员会, 2018-08-30[2018-09-28]. http://www.gov.cn/xinwen/2018-09/28/content_5326338.htm. [19] 钱易.努力实现生态优先、绿色发展[J].环境科学研究, 2020, 33(5):1069-1074.QIAN Yi.To realize ecological priority and green development[J]. Research of Environmental Sciences, 2020, 33(5):1069-1074. [20] 环境保护部, 中国科学院.《全国生态功能区划(修编版)》(公告2015年第61号)[EB/OL].北京: 生态环境部, 2015-11-13[2015-11-23]. http://www.mee.gov.cn/gkml/hbb/bgg/201511/t20151126_317777.htm. [21] LIU Xiaoping, LIANG Xun, LI Xia, et al.A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168(12):94-116. [22] 曹帅, 金晓斌, 杨绪红, 等.耦合MOP与GeoSOS-FLUS模型的县级土地利用结构与布局复合优化[J].自然资源学报, 2019, 34(6):1171-1185.CAO Shuai, JIN Xiaobin, YANG Xuhong, et al.Coupled MOP and GeoSOS-FLUS models research on optimization of land use structure and layout in Jintan District[J]. Journal of Natural Resources, 2019, 34(6):1171-1185. [23] YANG Yuanyuan, BAO Wenkai, LIU Yansui.Scenario simulation of land system change in the Beijing-Tianjin-Hebei Region[J]. Land Use Policy, 2020, 96(7), 104677. [24] 李少英, 刘小平, 黎夏, 等.土地利用变化模拟模型及应用研究进展[J].遥感学报, 2017, 21(3):329-340.LI Shaoying, LIU Xiaoping, LI Xia, et al.Simulation model of land use dynamics and application:progress and prospects[J]. Journal of Remote Sensing, 2017, 21(3):329-340. [25] LI Huanhuan, SONG Wei.Pattern of spatial evolution of rural settlements in the Jizhou District of China during 1962-2030[J]. Applied Geography, 2020, 122(9):102247. [26] GAO Z, ZHANG H, YANG X, et al.Assessing the impacts of ecological-living-productive land changes on eco-environmental quality in Xining City on Qinghai-Tibet Plateau, China[J]. Sciences in Cold and Arid Regions, 2019, 31(1):35:43. [27] 张彩霞, 杨勤科, 李锐.基于DEM的地形湿度指数及其应用研究进展[J].地理科学进展, 2005, 24(6):116-123.ZHANG Caixia, YANG Qinke, LI Rui.Advancement in topographic wetness index and its application[J]. Progress in Geography, 2005, 24(6):116-123. [28] WEISS A.Topographic position and landforms analysis[R]. San Diego, CA: ESRI Users Conference, 2001. [29] DICKSON B G, BEIER P.Quantifying the influence of topographic position on cougar (Puma concolor) movement in southern California, USA[J]. Journal of Zoology, 2006, 271(3):270-277. [30] 刘欣, 赵艳霞, 冯晓淼, 等.基于CLUE-S模型的多目标土地利用格局模拟与优化:以河北省廊坊市北三县为例[J].地理与地理信息科学, 2018, 34(5):92-98.LIU Xin, ZHAO Yanxia, FENG Xiaomiao, et al.Simulation and optimization of multi-objective land use pattern based on the clue-s model:a case study of the three northern counties of Langfang in Hebei Province[J] Geography and Geo-Information Science, 2018, 34(5):92-98. [31] YANG X, ZHENG X Q, CHEN R.A land use change model:Integrating landscape pattern indexes and Markov-CA[J]. Ecological Modelling, 2014, 283(3):1-7. [32] 喻阳华, 李光容, 皮发剑, 等.赤水河上游主要森林类型水源涵养功能评价[J].水土保持学报, 2015, 29(2):150-156.YU Yanghua, LI Guangrong, PI Fajian, et al.Water conservation function evaluation of some main forest type in the upper reaches of Chishui River[J]. Journal of Soil and Water Conservation, 2015, 29(2):150-156. -