Spatio-Temporal Distribution and Cause Analysis of Arsenic in Lake Hulun
-
摘要: 为探究呼伦湖中As(砷)的时空变化格局及成因,分别于春季、夏季、秋季、冬季采集呼伦湖表层水和表层沉积物样品,对As的时空分布及其组成特征进行了调查,并探讨呼伦湖中As的来源及环境因素对水体As分布的影响.结果表明:①呼伦湖水体中ρ(TAs)(TAs为总As)在6.6~87.3 μg/L之间,平均值为47.0 μg/L,其中ρ(DTAs)(DTAs为溶解态TAs)占比为70.6%~99.8%,且As(Ⅴ)(砷酸盐)为主要存在形态.春季、冬季ρ(TAs)平均值高于夏季、秋季,且冬季ρ(TAs)的空间分布与其他3个季节差异明显.②表层沉积物w(TAs)为1.64~15.49 mg/kg,各季节w(TAs)空间分布均呈由西北向东南递减的趋势;w(F1)(F1为可交换态及碳酸盐结合态As)和w(F2)(F2为Fe/Mn氧化物结合态As)在w(TAs)中的占比相对较高,分别为31.7%和30.0%,一定环境条件下F1和F2易向水体迁移,是水体中As的主要来源.③呼伦湖水体pH、冬季冰封、入湖河流等环境因素均可影响水体中As的时空分布,其中冰封引起的沉积物-水界面缺氧环境及污染物浓缩效应是造成冬季湖泊西北沿岸水体ρ(TAs)显著升高的主要原因.研究显示,呼伦湖水体及沉积物中的As均以自然来源为主,其中沉积物释放及环境变化是水体中As时空分布格局的主要影响因素.Abstract: In order to explore the spatio-temporal pattern and the cause of arsenic (As) in Lake Hulun, surface water and sediment samples were collected in spring, summer, autumn and winter. The spatio-temporal distribution and component characteristics of As in Lake Hulun were investigated, and the As source as well as the influences of environmental factors on As distribution in water were analyzed. The results showed that: (1) The ρ(TAs) (TAs: total As) in Lake Hulun was between 6.6 and 87.3 μg/L, with an average value of 47.0 μg/L. ρ(DTAs) (DTAs: dissolved TAs) accounted for 70.6%-99.8% of ρ(TAs), and arsenate (As(Ⅴ)) was the dominant species in the water. The average ρ(TAs) in spring and winter was higher than that in summer and autumn, and the spatial distribution of ρ(TAs) in winter was significantly different from the other three seasons. (2) The w(TAs) in the surface sediment ranged from 1.64 to 15.49 mg/kg, and it showed a decreasing spatial distribution from the northwestern to southeastern parts of the lake. There were relatively high proportions of w(F1) (F1: exchangeable and carbonate bound As) and w(F2) (F2: Fe/Mn oxides bound As) to w(TAs) (31.7% and 30.0%, respectively), indicating a high mobility of these As fractions into water under certain environmental conditions. They were the main source of As in water. (3) Environmental factors such as pH value, freezing period and river inflow affected the spatio-temporal distribution of As. Freezing-caused anaerobic environment at the sediment-water interface and the effect of pollutant concentration were the main reasons for the significant increase of ρ(TAs) in the water of the northwest coast of the lake during winter. The arsenic in the water and sediments of Lake Hulun mainly came from natural sources, and the release of As in the sediments and environmental changes were important factors influencing the spatio-temporal distribution of As in the water.
-
Key words:
- arsenic /
- spatio-temporal changes /
- component characteristics /
- environmental factor /
- Lake Hulun
-
表 1 呼伦湖水体及沉积物物理化学指标
Table 1. Physical and chemical parameters in water and sediments of Lake Hulun
项目 水体 沉积物 ρ(TFe)1)/(μg/L) pH2) w(TFe)1)/(g/kg) 黏粒占比2)/% 粉粒占比2)/% 砂粒占比2)/% 最大值 162.1 9.7 33.28 22.16 77.00 84.72 最小值 ND3) 8.3 3.47 3.03 11.49 6.19 平均值 29.3 9.1 18.25 14.16 58.62 27.43 标准偏差 34.3 0.2 8.41 4.88 17.01 20.68 注:1)为春季、夏季、秋季、冬季测定数据;2)为春季测定数据;3)为未检出. 表 2 呼伦湖表层沉积物中As化学形态含量及占比
Table 2. Content and proportions of As chemical forms in surface sediments of Lake Hulun
项目 w/(mg/kg) 占比/% F1 F2 F3 F4 F1 F2 F3 F4 最大值 7.19 4.90 3.95 2.76 56.6 47.1 32.5 37.1 最小值 0.30 0.66 0.34 0.39 11.0 22.4 12.6 3.4 平均值 2.95 2.59 1.98 1.32 31.7 30.0 21.9 16.3 标准偏差 1.66 1.10 1.02 0.69 7.9 4.3 4.3 7.0 -
[1] SMEDLEY P L, KINNIBURGH D G.A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5 [2] VIOLANTE A, GAUDIO S D, PIGNA M, et al. Soil mineral microbe-organic interactions[M]. New York: Springer, 2008: 39-69. [3] AKTER K F, OWENS G, DAVEY D E, et al. Reviews of environmental contamination and toxicology[M]. New York: Springer, 2005: 97-149. [4] CHE Feifei, DU Miaomiao, YAN Changzhou. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels[J]. Journal of Environmental Sciences, 2018, 66: 41-49. doi: 10.1016/j.jes.2017.05.041 [5] YAN Changzhou, CHE Feifei, ZENG Liqing, et al. Spatial and seasonal changes of arsenic species in Lake Taihu in relation to eutrophication[J]. Sciences of the Total Environment, 2016, 563/564: 496-505. doi: 10.1016/j.scitotenv.2016.04.132 [6] 胡立刚, 蔡勇. 砷的生物地球化学[J]. 化学进展, 2009, 21(2/3): 458-466. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2009Z1019.htmHU Ligang, CAI Yong. Biogeochemistry of arsenic[J]. Progress in Chemistry, 2009, 21(2/3): 458-466. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2009Z1019.htm [7] TANG Ying, ZHANG Meiyi, SUN Guoxin, et al. Impact of eutrophication on arsenic cycling in freshwaters[J]. Water Research, 2019, 150: 191-199. doi: 10.1016/j.watres.2018.11.046 [8] MA Jie, GUO Huaming, LEI Mei, et al. Arsenic adsorption and its fractions on aquifer sediment: effect of pH, arsenic species, and iron/manganese minerals[J]. Water, Air, & Soil Pollution, 2015. doi: 10.1007/s11270-015-2524-1. [9] 岳彩英, 赵卫东, 李明娜, 等. 达赉湖水质状况及影响因素分析[J]. 内蒙古环境科学, 2008, 20(2): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB200802005.htmYUE Caiying, ZHAO Weidong, LI Mingna, et al. The situation of Da Lai Lake water quality and influencing factors analysis[J]. Inner Mongolian Environmental Sciences, 2008, 20(2): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB200802005.htm [10] 王阳. 治理后水质仍为最差劣五类水: 呼伦湖生态环保不容乐观[EB/OL]. 北京: 人民网-法制日报, 2019-10-12[2020-11-15]. http://env.people.com.cn/n1/2019/1012/c1010-31395662.html. [11] 孙德尧, 臧淑英, 孙华杰, 等. 近150年呼伦湖重金属污染历史及潜在生态风险[J]. 农业环境科学学报, 2018, 37(1): 137-147. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201801017.htmSUN Deyao, ZANG Shuyang, SUN Huajie, et al. Pollution history and potential ecological risk assessment of heavy metals in core sediments in Hulun Lake during the past 150 years[J]. Journal of Agro-Environment Science, 2018, 37(1): 137-147. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201801017.htm [12] 张晓晶, 李畅游, 张生, 等. 呼伦湖沉积物重金属分布特征及生态风险评价[J]. 农业环境科学学报, 2010, 29(1): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201001029.htmZHANG Xiaojing, LI Changyou, ZHANG Sheng, et al. Distribution features and ecological risk assessment of heavy metals in superficial sediment of Hulun Lake[J]. Journal of Agro-Environment Science, 2010, 29(1): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201001029.htm [13] 都达古拉. 呼伦湖水-沉积物系统中重金属的环境地球化学特征[D]. 呼和浩特: 内蒙古大学, 2014. [14] 都达古拉, 何江, 吕昌伟, 等. 呼伦湖水-沉积物系统中重金属的含量特征[J]. 农业环境科学学报, 2015, 34(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201501018.htmDudagula, HE Jiang, LV Changwei, et al. Distribution of heavy metals in water-sediment system of Hulun Lake, China[J]. Journal of Agro-Environment Science, 2015, 34(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201501018.htm [15] BEDNAR A J, GARBARINO J R, RANVILLE J F, et al. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples[J]. Environmental Science & Technology, 2002, 36(10): 2213-2218. [16] ZHU Y G, SUN G X, LEI M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science & Technology, 2008, 42(13): 5008-5013. doi: 10.1021/es8001103 [17] JIANG Xia, WANG Wenwen, WANG Shuhang, et al. Initial identification of heavy metals contamination in Taihu Lake, a eutrophic lake in China[J]. Journal of Environmental Sciences, 2012, 24(9): 1539-1548. doi: 10.1016/S1001-0742(11)60986-8 [18] MOSSOP K F, DAVIDSON C M.Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments[J]. Analytical Chimica Acta, 2003, 478: 111-118. doi: 10.1016/S0003-2670(02)01485-X [19] 韩知明, 贾克力, 赵胜男, 等. 呼伦湖冰封期与非冰封期营养盐与离子分布特征研究[J]. 生态环境学报, 2017, 26(7): 1201-1209. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201707016.htmHAN Zhiming, JIA Keli, ZHAO Shengnan, et al. Distribution characteristics of the nutrients and ion of Hulun Lake in frozen and unfrozen period[J]. Ecology and Environmental Sciences, 2017, 26(7): 1201-1209. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201707016.htm [20] 郭金燕, 贾克力, 史小红, 等. 呼伦湖非冰封期与冰封期水化学特征变化研究[J]. 生态科学, 2017, 36(2): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201702007.htmGUO Jinyan, JIA Keli, SHI Xiaohong, et al. Hulun Lake water chemical characteristics analysis during frozen and non frozen period[J]. Ecological Science, 2017, 36(2): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201702007.htm [21] CHE Feifei, CHEN Junyi, ZHANG Bo, et al. Distribution, risk and bioavailability of metals in sediments of Lake Yamdrok Basin on the Tibetan Plateau, China[J]. Journal of Environmental Sciences, 2020, 97: 169-179. http://www.cnki.com.cn/Article/CJFDTotal-HJKB202011019.htm [22] ZHU Yongguan, XUE Ximei, KAPPLER A, et al. Linking genes to microbial biogeochemical cycling: lessons from arsenic[J]. Environmental Science & Technology, 2017, 51: 7326-7339. [23] TUFANO K J, REYES C, SALTIKOV C W, et al. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction[J]. Environmental Science & Technology, 2008, 42(22): 8283-8289. http://europepmc.org/abstract/MED/19068807 [24] 赵一阳. 中国海大陆架沉积物地球化学的若干模式[J]. 地质科学, 1983(4): 307-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198304000.htmZHAO Yiyang. Some geochemical patterns of shelf sediments of the China seas[J]. Scientia Geologica Sinica, 1983(4): 307-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198304000.htm [25] 李强, 霍守亮, 王晓伟, 等. 巢湖及其入湖河流表层沉积物营养盐和粒度的分布及其关系研究[J]. 环境工程技术学报, 2013, 3(2): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201302013.htmLI Qiang, HUO Shouliang, WANG Xiaowei, et al. Distribution and correlation of nutrients and particle size in surface sediments of Lake Chaohu and its inflow rivers[J]. Journal of Environmental Engineering Technology, 2013, 3(2): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201302013.htm [26] 武广, 糜梅, 高峰军, 等. 满洲里地区银铅锌矿床成矿流体特征及矿床成因[J]. 地学前缘, 2010, 17(2): 239-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002029.htmWU Guang, MI Mei, GAO Fengjun, et al. Ore-forming fluid characteristics and genesis of silver-lead-zinc deposits in the Manzhouli area, Inner Mongolia, China[J]. Earth Science Frontiers, 2010, 17(2): 239-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002029.htm [27] 佘宏全, 李红红, 李进文, 等. 内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J]. 地质学报, 2009, 83(10): 1456-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200910011.htmYU Hongquan, LI Honghong, LI Jinwen, et al. The metallogenetical characteristics and prospecting dircetion of the copper-lead-zinc polymetal deposits in the northern-central Daxing'anling Mountain, Inner Monglia[J]. Acta Geologica Sinica, 2009, 83(10): 1456-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200910011.htm [28] JOHNSTON R B, SINGER P C.Solubility of symplesite (ferrous arsenate): implications for reduced groundwaters and other geochemical environments[J]. Soil Science Society of America Journal, 2007, 71(1): 101-107. [29] LI Shehong, WANG Mingguo, YANG Qiang, et al. Enrichment of arsenic in surface water, stream sediments and soils in Tibet[J]. Journal of Geochemical Exploration, 2013, 135: 104-116. http://europepmc.org/abstract/med/24367140 [30] SAUNDERS J A, LEE M K, UDDIN A, et al. Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes[J]. Geochemistry Geophysics Geosystems, 2005, 6(4): 1-7. doi: 10.1029/2004GC000803 [31] SCHIFF K C, WEISBERG S B.Iron as a reference element for determining trace metal enrichment in southern California coastal shelf sediments[J]. Marine Environmental Research, 1999, 48(2): 161-176. http://www.sciencedirect.com/science/article/pii/S0141113699000331 [32] 刘珊珊. 青岛近海海域沉积物重金属环境质量评价研究[D]. 石家庄: 石家庄经济学院, 2013. [33] 李卫平. 高原典型湖泊营养元素地球化学循环与重金属污染研究[D]. 呼和浩特: 内蒙古农业大学, 2012. [34] 毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10): 1669-1676. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20181003&flag=1MAO Lingchen, YE Hua. Influence of redox potential on heavy metal behavior in soils: a review[J]Research of Environmental Sciences, 2018, 31(10): 1669-1676. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20181003&flag=1 [35] ZENG Liqing, YAN Changzhou, GUO Jianhua, et al. Influence of algal blooms decay on arsenic dynamics at the sediment-water interface of a shallow lake[J]. Chemosphere, 2019, 219: 1014-1023. [36] 梁丽娥. 中晚全新世以来呼伦湖沉积记录的环境与气候演变[D]. 呼和浩特: 内蒙古农业大学, 2017. [37] SINGH K P, MOHAN D, SINGH V K, et al. Studies on distribution and fractionation of heavy metals in Gomti River sediments: a tributary of the Ganges, India[J]. Journal of Hydrology, 2005, 312(1/2/3/4): 14-27. http://www.ingentaconnect.com/content/el/00221694/2005/00000312/00000001/art00005 [38] 张立杰. 基于Delft3D模型的呼伦湖水质水动力数值模拟[D]. 呼和浩特: 内蒙古农业大学, 2016. [39] US EPA.National recommended water quality criteria[S].Washington DC: US EPA Office of Water, 2006. [40] WANG Zhenhong, LUO Zhuanxi, YAN Changzhou. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa[J]. Environmental Science and Pollution Research, 2013, 20(10): 7286-7295. http://www.ncbi.nlm.nih.gov/pubmed/23636594/ -