留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

呼伦湖表层沉积物有机质的释放效应分析

王雯雯 陈俊伊 姜霞 李贺 王书航

王雯雯, 陈俊伊, 姜霞, 李贺, 王书航. 呼伦湖表层沉积物有机质的释放效应分析[J]. 环境科学研究, 2021, 34(4): 812-823. doi: 10.13198/j.issn.1001-6929.2021.02.03
引用本文: 王雯雯, 陈俊伊, 姜霞, 李贺, 王书航. 呼伦湖表层沉积物有机质的释放效应分析[J]. 环境科学研究, 2021, 34(4): 812-823. doi: 10.13198/j.issn.1001-6929.2021.02.03
WANG Wenwen, CHEN Junyi, JIANG Xia, LI He, WANG Shuhang. Release Effect of Surface Sediment Organic Matters in Lake Hulun[J]. Research of Environmental Sciences, 2021, 34(4): 812-823. doi: 10.13198/j.issn.1001-6929.2021.02.03
Citation: WANG Wenwen, CHEN Junyi, JIANG Xia, LI He, WANG Shuhang. Release Effect of Surface Sediment Organic Matters in Lake Hulun[J]. Research of Environmental Sciences, 2021, 34(4): 812-823. doi: 10.13198/j.issn.1001-6929.2021.02.03

呼伦湖表层沉积物有机质的释放效应分析

doi: 10.13198/j.issn.1001-6929.2021.02.03
基金项目: 

国家自然科学基金项目 42202018033

详细信息
    作者简介:

    王雯雯(1987-),女,黑龙江哈尔滨人,博士,主要从事湖泊水环境研究,wangwenwen-5720088@163.com

    通讯作者:

    王书航(1985-),男,安徽阜阳人,高级工程师,博士,主要从事湖泊水环境研究,wangsh@craes.org.cn

  • 中图分类号: X524

Release Effect of Surface Sediment Organic Matters in Lake Hulun

Funds: 

National Natural Science Foundation of China 42202018033

  • 摘要: 沉积物有机质是湖泊物质循环的重要组成部分之一,研究沉积物有机质的赋存和迁移转化特征对于湖泊生态保护具有重要意义.以位于我国寒旱区的蒙新湖区典型代表湖泊——呼伦湖为例,利用连续提取法、三维荧光激发发射矩阵光谱-平行因子法(EEMs-PARAFAC)和碳稳定同位素(δ13C)、碳氮比值(C/N)指标测定,并结合室内模拟试验,研究了呼伦湖表层沉积物有机质的赋存特征、释放效应及影响因素.结果表明:①呼伦湖表层沉积物有机质含量在26.67~38.09 g/kg之间,其主要组分为胡敏素(HM),HM占沉积物有机质的相对比例为74.1%.沉积物有机质主要来自于陆源,陆源相对贡献率在80%左右.②沉积物室内静态释放模拟试验结果表明,沉积物有机质释放会导致上覆水中溶解性有机质(DOM)浓度和组分均发生改变,上覆水中溶解性有机碳(DOC)浓度由30.85 mg/L升至37.57 mg/L,类腐殖质组分所占比例升高.沉积物有机质释放还导致上覆水中氮磷浓度升高,其中溶解性总氮(DTN)和溶解性总磷(DTP)的浓度分别升高了0.89和0.16 mg/L.③近年来,呼伦湖流域温度升高,导致呼伦湖沉积物有机质的释放效应增强.研究显示,虽然呼伦湖沉积物有机质主要以难降解组分为主,但是其释放效应对水体碳、氮、磷浓度的影响仍然不容忽视.

     

  • 图  1  呼伦湖沉积物采样点布设

    Figure  1.  Sampling sites and location of the sediments of Lake Hulun

    图  2  呼伦湖表层沉积物有机质含量及组分构成

    Figure  2.  Content and component composition of sediment organic matter in surface sediments of Lake Hulun

    图  3  沉积物有机质释放过程中上覆水DOM浓度及累积增加量的变化

    Figure  3.  Changes of content and cumulative increment of DOM in overlying water during the sediment organic matter release

    图  4  沉积物有机质释放过程中上覆水CDOM浓度(α254, m-1)的变化

    注:CDOM的浓度以α254的值来表征,单位为m-1.

    Figure  4.  Changes of CDOM (α254, m-1) in overlying water during the sediment organic matter release

    图  5  沉积物有机质释放过程中上覆水DOM的荧光组分

    Figure  5.  Fluorescent components of DOM in overlying water during the sediment organic matter release

    图  6  沉积物有机质释放过程中上覆水DOM各组分荧光强度的变化

    Figure  6.  Changes of fluorescence intensities of DOM components in overlying water during the sediment organic matter release

    图  7  沉积物有机质释放过程中上覆水DOM总荧光强度(Ft)的变化

    Figure  7.  Changes of Ft of DOM in water during the sediment organic matter release

    图  8  沉积物有机质释放过程中上覆水DOM荧光强度和荧光构成的变化

    Figure  8.  Changes of fluorescence intensity and constitute of DOM in water during the sediment organic matter release

    图  9  沉积物有机质释放过程中上覆水溶解性氮、磷浓度的变化

    Figure  9.  Changes of dissolved nitrogen and phosphorus in overlying water during the sediment organic matter release

    图  10  上覆水中DOM浓度与氮、磷浓度的相关性

    Figure  10.  Correlation of DOM, nitrogen and phosphorus in overlying water

    图  11  不同温度培养下上覆水中DOM浓度的变化

    Figure  11.  Changes of DOM in overlying water at different temperatures

  • [1] BAINBRIDGE Z, LEWIS S, BARTLEY R, et al. Fine sediment and particulate organic matter: a review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems[J]. Marine Pollution Bulletin, 2018, 135: 1205-1220. doi: 10.1016/j.marpolbul.2018.08.002
    [2] 胡晓明, 崔骏, 裴元生. 秋冬交替季节白洋淀沉积物有机质特性研究[J]. 环境科学研究, 2019, 32(4): 636-646. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190412&flag=1

    HU Xiaoming, CUI Jun, PEI Yuansheng. Organic matter characteristics of sediment in Lake Baiyangdian in autumn-winter alternate season[J]. Research of Environmental Sciences, 2019, 32(4): 636-646. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190412&flag=1
    [3] TAO Yuqiang, ZHANG Ya, CAO Jicheng, et al. Climate change has weakened the ability of Chinese lakes to bury polycyclic aromatic hydrocarbons[J]. Environmental Pollution, 2019, 255: 113288. doi: 10.1016/j.envpol.2019.113288
    [4] LIPCZYNSKA-KOCHANY E.Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review[J]. Science of the Total Environment, 2018, 640/641: 1548-1565. doi: 10.1016/j.scitotenv.2018.05.376
    [5] OUTRIDGE P M, SANEI H, COURTNEY-MUSTAPHI C J, et al. Holocene climate change influences on trace metal and organic matter geochemistry in the sediments of an Arctic lake over 7, 000 years[J]. Applied Geochemistry, 2017, 78: 35-48. doi: 10.1016/j.apgeochem.2016.11.018
    [6] FAN J W, XIAO J L, WEN R L, et al. Organic geochemical investigations of the Dali Lake sediments in northern China: implications for environment and climate changes of the last deglaciation in the East Asian summer monsoon margin[J]. Journal of Asian Earth Sciences, 2017, 140: 135-146. doi: 10.1016/j.jseaes.2017.04.011
    [7] WANG Shengrui, JIAO Lixin, YANG Suwen, et al. Organic matter compositions and DOM release from the sediments of the shallow lakes in the middle and lower reaches of Yangtze River Region, China[J]. Applied Geochemistry, 2011, 26(8): 1458-1463. doi: 10.1016/j.apgeochem.2011.05.019
    [8] FANG J, WU F, XIONG Y, et al. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China[J]. Science of the Total Environment, 2014, 473/474: 410-421. doi: 10.1016/j.scitotenv.2013.10.066
    [9] LAN Jianghu, XU Hai, LIU Bin, et al. A large carbon pool in lake sediments over the arid/semiarid region, NW China[J]. Chinese Journal of Geochemistry, 2015, 34(3): 289-298. doi: 10.1007/s11631-015-0047-5
    [10] 杨杰, 田城, 布特根, 等. 呼伦湖的生态地位、生态现状及生态保护和修复[J]. 内蒙古科技与经济, 2015, 324(2): 53-56. doi: 10.3969/j.issn.1007-6921.2015.02.026
    [11] 王雯雯, 王书航, 姜霞, 等. 多方法研究呼伦湖表层沉积物有机质的赋存特征及来源[J]. 环境科学研究, 2020. doi: 10.13198/j.issn.1001-6929.2020.08.06.

    WANG Wenwen, WANG Shuhang, JIANG Xia, et al. Occurrence characteristics and sources analysis of sediment organic matter of Lake Hulun by multiple methods[J]. Research of Environmental Sciences, 2020. doi: 10.13198/j.issn.1001-6929.2020.08.06.
    [12] LI S, CHEN J P, XIANG J, et al. Water level changes of Hulun Lake in Inner Mongolia derived from Jason satellite data[J]. Journal of Visual Communication & Image Representation, 2019, 58: 565-575. http://www.sciencedirect.com/science/article/pii/S1047320318303572
    [13] 张风菊, 薛滨, 姚书春. 中全新世以来呼伦湖沉积物碳埋藏及其影响因素分析[J]. 湖泊科学, 2018, 30(1): 234-244. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801024.htm

    ZHANG Fengju, XUE Bin, YAO Shuchun. Organic carbon burial and its driving mechanism in the sediment of Lake Hulun, north-eastern Inner Mongolia, since the mid-Holocene[J]. Journal of Lake Sciences, 2018, 30(1): 234-244. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801024.htm
    [14] 张博, 王书航, 姜霞, 等. 湖泊沉积物有机质的连续提取与荧光光谱特征分析[J]. 环境科学学报, 2017, 37(8): 2878-2888. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201708008.htm

    ZHANG Bo, WANG Shuhang, JIANG Xia, et al. Sequential extractions and fluorescence spectroscopy characterization of organic matter in the lake sediment[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2878-2888. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201708008.htm
    [15] 梁越, 肖化云, 刘小真, 等. δ13C和δ15N指示不同生态类型湖泊无机氮及有机质来源[J]. 湖泊科学, 2014, 26(5): 691-697. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201405006.htm

    LIANG Yue, XIAO Huayun, LIU Xiaozhen, et al. Identifying provenance of inorganic nitrogen and organic matter in different ecotype lakes using δ13C and δ15N[J]. Journal of Lake Sciences, 2014, 26(5): 691-697. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201405006.htm
    [16] 王雯雯, 郑丙辉, 郑朔方, 等. 呼伦湖水体悬浮颗粒物中有机质的赋存特征及来源解析[J]. 环境科学研究, 2020. doi: 10.13198/j.issn.1001-6929.2020.05.05.

    WANG Wenwen, ZHENG Binghui, ZHENG Shuofang, et al. Characteristics of sources of suspended particulate organic matter in water of Lake Hulun[J]. Research of Environmental Sciences, 2020. doi: 10.13198/j.issn.1001-6929.2020.05.05.
    [17] WANG Wenwen, ZHENG Binghui, JIANG Xia, et al. Characteristics and source of dissolved organic matter in Lake Hulun, a large shallow eutrophic steppe lake in northern China[J]. Water, 2020, 12(4): 953. doi: 10.3390/w12040953
    [18] 环境保护部. HJ 636—2012水质总氮的测定碱性过硫酸钾消解紫外分光光度法[S]. 北京: 中国环境科学出版社, 2012.
    [19] 环境保护部. HJ 535—2009水质氨氮的测定纳氏试剂分光光度法[S]. 北京: 中国环境科学出版社, 2009.
    [20] 国家环境保护总局. HJ/T 346—2007水质硝酸盐氮的测定紫外分光光度法(试行)[S]. 北京: 中国环境科学出版社, 2007.
    [21] 环境保护部. HJ 670—2013水质磷酸盐和总磷的测定连续流动-钼酸铵分光光度法[S]. 北京: 中国环境科学出版社, 2013.
    [22] HUR J, LEE M, SHIN H.Spectroscopic characterization of dis-solved organic matter isolates from sediments and the associationwith phenanthrene binding affinity[J]. Chemosphere, 2014, 111: 450-457. doi: 10.1016/j.chemosphere.2014.04.018
    [23] ERHAYEM M, SOHN M.Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter[J]. Science of the Total Environment, 2014, 468/469: 249-257. doi: 10.1016/j.scitotenv.2013.08.038
    [24] ARVOLA L, LEPPÄRANTA M, ÄIJÄLÄ C.CDOM variations in Finnish lakes and rivers between 1913 and 2014[J]. Science of the Total Environment, 2017, 601/602: 1638-1648. doi: 10.1016/j.scitotenv.2017.06.034
    [25] HU B, WANG P F, QIAN J, et al. Characteristics, sources, and photobleaching of chromophoric dissolved organic matter (CDOM) in large and shallow Hongze Lake, China[J]. Journal of Great Lakes Research, 2017, 43: 1165-1172. doi: 10.1016/j.jglr.2017.09.004
    [26] SONG K S, SHANG Y X, WEN Z D, et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis[J]. Water Research, 2019, 150: 403-417. doi: 10.1016/j.watres.2018.12.004
    [27] STEDMON C A, MARKAGER S, BRO R.Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82: 239-254. doi: 10.1016/S0304-4203(03)00072-0
    [28] SHARMA P, LAOR Y, RAVIV M, et al. Compositional characteristics of organic matter and its water-extractable components across a profile of organically managed soil[J]. Geoderma, 2017, 286: 73-82. doi: 10.1016/j.geoderma.2016.10.014
    [29] LV W W, YAO X, SHAO K Q, et al. Unraveling the sources and fluorescence compositions of dissolved and particulate organic matter (DOM and POM) in Lake Taihu, China[J]. Environmental Science and Pollution Research, 2019, 26: 4027-4040. doi: 10.1007/s11356-018-3873-2
    [30] SCHNEIDER B, OTTO S.Organic matter mineralization in the deep water of the Gotland Basin (Baltic Sea): rates and oxidant demand[J]. Journal of Marine Systems, 2019, 195: 20-29. doi: 10.1016/j.jmarsys.2019.03.006
    [31] YU Z T, WANG X J, ZHAO C Y, et al. Carbon burial in Bosten Lake over the past century: impacts of climate change and human activity[J]. Chemical Geology, 2015, 419: 132-141. doi: 10.1016/j.chemgeo.2015.10.037
    [32] CHEN Q Y, NI Z K, WANG S R, et al. Climate change and human activities reduced the burial efficiency of nitrogen and phosphorus in sediment from Dianchi Lake, China[J]. Journal of Cleaner Production, 2020, 274: 122839. doi: 10.1016/j.jclepro.2020.122839
  • 加载中
图(11)
计量
  • 文章访问数:  546
  • HTML全文浏览量:  71
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2021-02-10
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回