[1] |
BAINBRIDGE Z, LEWIS S, BARTLEY R, et al. Fine sediment and particulate organic matter: a review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems[J]. Marine Pollution Bulletin, 2018, 135: 1205-1220. doi: 10.1016/j.marpolbul.2018.08.002
|
[2] |
胡晓明, 崔骏, 裴元生. 秋冬交替季节白洋淀沉积物有机质特性研究[J]. 环境科学研究, 2019, 32(4): 636-646. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190412&flag=1HU Xiaoming, CUI Jun, PEI Yuansheng. Organic matter characteristics of sediment in Lake Baiyangdian in autumn-winter alternate season[J]. Research of Environmental Sciences, 2019, 32(4): 636-646. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190412&flag=1
|
[3] |
TAO Yuqiang, ZHANG Ya, CAO Jicheng, et al. Climate change has weakened the ability of Chinese lakes to bury polycyclic aromatic hydrocarbons[J]. Environmental Pollution, 2019, 255: 113288. doi: 10.1016/j.envpol.2019.113288
|
[4] |
LIPCZYNSKA-KOCHANY E.Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review[J]. Science of the Total Environment, 2018, 640/641: 1548-1565. doi: 10.1016/j.scitotenv.2018.05.376
|
[5] |
OUTRIDGE P M, SANEI H, COURTNEY-MUSTAPHI C J, et al. Holocene climate change influences on trace metal and organic matter geochemistry in the sediments of an Arctic lake over 7, 000 years[J]. Applied Geochemistry, 2017, 78: 35-48. doi: 10.1016/j.apgeochem.2016.11.018
|
[6] |
FAN J W, XIAO J L, WEN R L, et al. Organic geochemical investigations of the Dali Lake sediments in northern China: implications for environment and climate changes of the last deglaciation in the East Asian summer monsoon margin[J]. Journal of Asian Earth Sciences, 2017, 140: 135-146. doi: 10.1016/j.jseaes.2017.04.011
|
[7] |
WANG Shengrui, JIAO Lixin, YANG Suwen, et al. Organic matter compositions and DOM release from the sediments of the shallow lakes in the middle and lower reaches of Yangtze River Region, China[J]. Applied Geochemistry, 2011, 26(8): 1458-1463. doi: 10.1016/j.apgeochem.2011.05.019
|
[8] |
FANG J, WU F, XIONG Y, et al. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China[J]. Science of the Total Environment, 2014, 473/474: 410-421. doi: 10.1016/j.scitotenv.2013.10.066
|
[9] |
LAN Jianghu, XU Hai, LIU Bin, et al. A large carbon pool in lake sediments over the arid/semiarid region, NW China[J]. Chinese Journal of Geochemistry, 2015, 34(3): 289-298. doi: 10.1007/s11631-015-0047-5
|
[10] |
杨杰, 田城, 布特根, 等. 呼伦湖的生态地位、生态现状及生态保护和修复[J]. 内蒙古科技与经济, 2015, 324(2): 53-56. doi: 10.3969/j.issn.1007-6921.2015.02.026
|
[11] |
王雯雯, 王书航, 姜霞, 等. 多方法研究呼伦湖表层沉积物有机质的赋存特征及来源[J]. 环境科学研究, 2020. doi: 10.13198/j.issn.1001-6929.2020.08.06.WANG Wenwen, WANG Shuhang, JIANG Xia, et al. Occurrence characteristics and sources analysis of sediment organic matter of Lake Hulun by multiple methods[J]. Research of Environmental Sciences, 2020. doi: 10.13198/j.issn.1001-6929.2020.08.06.
|
[12] |
LI S, CHEN J P, XIANG J, et al. Water level changes of Hulun Lake in Inner Mongolia derived from Jason satellite data[J]. Journal of Visual Communication & Image Representation, 2019, 58: 565-575. http://www.sciencedirect.com/science/article/pii/S1047320318303572
|
[13] |
张风菊, 薛滨, 姚书春. 中全新世以来呼伦湖沉积物碳埋藏及其影响因素分析[J]. 湖泊科学, 2018, 30(1): 234-244. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801024.htmZHANG Fengju, XUE Bin, YAO Shuchun. Organic carbon burial and its driving mechanism in the sediment of Lake Hulun, north-eastern Inner Mongolia, since the mid-Holocene[J]. Journal of Lake Sciences, 2018, 30(1): 234-244. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801024.htm
|
[14] |
张博, 王书航, 姜霞, 等. 湖泊沉积物有机质的连续提取与荧光光谱特征分析[J]. 环境科学学报, 2017, 37(8): 2878-2888. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201708008.htmZHANG Bo, WANG Shuhang, JIANG Xia, et al. Sequential extractions and fluorescence spectroscopy characterization of organic matter in the lake sediment[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2878-2888. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201708008.htm
|
[15] |
梁越, 肖化云, 刘小真, 等. δ13C和δ15N指示不同生态类型湖泊无机氮及有机质来源[J]. 湖泊科学, 2014, 26(5): 691-697. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201405006.htmLIANG Yue, XIAO Huayun, LIU Xiaozhen, et al. Identifying provenance of inorganic nitrogen and organic matter in different ecotype lakes using δ13C and δ15N[J]. Journal of Lake Sciences, 2014, 26(5): 691-697. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201405006.htm
|
[16] |
王雯雯, 郑丙辉, 郑朔方, 等. 呼伦湖水体悬浮颗粒物中有机质的赋存特征及来源解析[J]. 环境科学研究, 2020. doi: 10.13198/j.issn.1001-6929.2020.05.05.WANG Wenwen, ZHENG Binghui, ZHENG Shuofang, et al. Characteristics of sources of suspended particulate organic matter in water of Lake Hulun[J]. Research of Environmental Sciences, 2020. doi: 10.13198/j.issn.1001-6929.2020.05.05.
|
[17] |
WANG Wenwen, ZHENG Binghui, JIANG Xia, et al. Characteristics and source of dissolved organic matter in Lake Hulun, a large shallow eutrophic steppe lake in northern China[J]. Water, 2020, 12(4): 953. doi: 10.3390/w12040953
|
[18] |
环境保护部. HJ 636—2012水质总氮的测定碱性过硫酸钾消解紫外分光光度法[S]. 北京: 中国环境科学出版社, 2012.
|
[19] |
环境保护部. HJ 535—2009水质氨氮的测定纳氏试剂分光光度法[S]. 北京: 中国环境科学出版社, 2009.
|
[20] |
国家环境保护总局. HJ/T 346—2007水质硝酸盐氮的测定紫外分光光度法(试行)[S]. 北京: 中国环境科学出版社, 2007.
|
[21] |
环境保护部. HJ 670—2013水质磷酸盐和总磷的测定连续流动-钼酸铵分光光度法[S]. 北京: 中国环境科学出版社, 2013.
|
[22] |
HUR J, LEE M, SHIN H.Spectroscopic characterization of dis-solved organic matter isolates from sediments and the associationwith phenanthrene binding affinity[J]. Chemosphere, 2014, 111: 450-457. doi: 10.1016/j.chemosphere.2014.04.018
|
[23] |
ERHAYEM M, SOHN M.Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter[J]. Science of the Total Environment, 2014, 468/469: 249-257. doi: 10.1016/j.scitotenv.2013.08.038
|
[24] |
ARVOLA L, LEPPÄRANTA M, ÄIJÄLÄ C.CDOM variations in Finnish lakes and rivers between 1913 and 2014[J]. Science of the Total Environment, 2017, 601/602: 1638-1648. doi: 10.1016/j.scitotenv.2017.06.034
|
[25] |
HU B, WANG P F, QIAN J, et al. Characteristics, sources, and photobleaching of chromophoric dissolved organic matter (CDOM) in large and shallow Hongze Lake, China[J]. Journal of Great Lakes Research, 2017, 43: 1165-1172. doi: 10.1016/j.jglr.2017.09.004
|
[26] |
SONG K S, SHANG Y X, WEN Z D, et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis[J]. Water Research, 2019, 150: 403-417. doi: 10.1016/j.watres.2018.12.004
|
[27] |
STEDMON C A, MARKAGER S, BRO R.Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82: 239-254. doi: 10.1016/S0304-4203(03)00072-0
|
[28] |
SHARMA P, LAOR Y, RAVIV M, et al. Compositional characteristics of organic matter and its water-extractable components across a profile of organically managed soil[J]. Geoderma, 2017, 286: 73-82. doi: 10.1016/j.geoderma.2016.10.014
|
[29] |
LV W W, YAO X, SHAO K Q, et al. Unraveling the sources and fluorescence compositions of dissolved and particulate organic matter (DOM and POM) in Lake Taihu, China[J]. Environmental Science and Pollution Research, 2019, 26: 4027-4040. doi: 10.1007/s11356-018-3873-2
|
[30] |
SCHNEIDER B, OTTO S.Organic matter mineralization in the deep water of the Gotland Basin (Baltic Sea): rates and oxidant demand[J]. Journal of Marine Systems, 2019, 195: 20-29. doi: 10.1016/j.jmarsys.2019.03.006
|
[31] |
YU Z T, WANG X J, ZHAO C Y, et al. Carbon burial in Bosten Lake over the past century: impacts of climate change and human activity[J]. Chemical Geology, 2015, 419: 132-141. doi: 10.1016/j.chemgeo.2015.10.037
|
[32] |
CHEN Q Y, NI Z K, WANG S R, et al. Climate change and human activities reduced the burial efficiency of nitrogen and phosphorus in sediment from Dianchi Lake, China[J]. Journal of Cleaner Production, 2020, 274: 122839. doi: 10.1016/j.jclepro.2020.122839
|