Risk Analysis of Impact of Human Activities on Ecological Health Based on Watershed Scale: A Case Study of Hulun Lake
-
摘要: 随着社会经济的快速发展,我国多数流域受到了不同程度的人类活动影响,并导致了水体污染、生物多样性退化等一系列问题,流域生态系统健康已成为制约我国经济社会可持续发展的突出因素之一.因此,开展人类活动对流域生态健康影响风险评估方法研究具有重要意义,也将对我国未来流域生态环境保护及建设的决策指导起到重要的作用.该研究以旱寒区呼伦湖流域为研究对象,基于人类活动、生态格局、生态功能和生态压力等多个角度,通过构建科学合理的流域人类活动-生态系统评价指标体系,并结合交互风险评估矩阵,开展人类活动对流域生态健康影响风险评估.结果表明:①呼伦湖流域GDP和人口主要分布在海拉尔区和满洲里市周边,其他区域GDP强度和人口强度较低;②呼伦湖流域GDP强度指标有2个子流域分别处于40~60和60~80之间,人口强度指标有1个子流域处于60~80之间,2个子流域处于40~60之间,生态系统指标有8个子流域处于60~80之间,其余子流域均大于80;③呼伦湖流域32个子流域中,有30个子流域处于低风险状态,面积占全区域的98.62%,另有2个子流域处于中等风险状态,面积占全流域的1.38%,研究区域内无高风险子流域.研究显示,该研究提出的评估方法可以有效评估人类活动对流域生态健康影响的风险,有助于明确流域生态健康主要影响因素及系统变化的内在驱动机制,从而为流域尺度生态环境保护及可持续发展提供理论依据与技术支持.Abstract: With the rapid development of social economy, most of the river basins in China have been affected by human activities, resulting in a series of problems such as water pollution and biodiversity degradation. The ecological health of river basin ecosystem has become one of the prominent factors restricting the sustainable development of China's economy and society. Therefore, it is of great significance to carry out the risk analysis of the impact of human activities on ecological health. It will also play an important role in the decision-making guidance of the future watershed ecological environment protection and construction in China. This study has established an index system including human activities, ecological pattern, ecological function and ecological pressure contents. Combined with interactive risk assessment matrix, the risk of the impact of human activities on ecological health based on watershed scale has been analyzed. The results show that: (1) The GDP and population of the Hulun Lake Basin are mainly distributed around Hailar District and Manzhouli City, while the GDP intensity and population intensity of other regions are relatively low. (2) The GDP intensity index of the Hulun Lake Basin has two sub basins in the medium and high state, respectively; the population intensity index has one sub basin in the high state, two sub basins in the medium state, and the ecological health index has eight sub basins. (3) Among the 32 sub watersheds in the Hulun Lake Basin, 30 sub watersheds are in low-risk state, accounting for 98.62% of the whole region, and the other 2 sub watersheds are in medium risk state, accounting for 1.38% of the whole basin. There is no high-risk sub watershed in the study area. Furthermore, the assessment method proposed in this study can effectively assess the risk of the impact of human activities on the ecological health, so as to provide theoretical basis and technical support for the ecological environment protection and sustainable development of the basin.
-
Key words:
- human activities /
- ecological health /
- risk assessment /
- Hulun Lake Basin
-
表 1 呼伦湖流域人类活动-生态系统评价指标及赋分
Table 1. Evaluation index value of human activity ecosystem in Hulun Lake Basin
指标 权重
(Wi)分级指标值(Vi) 指标值赋分
(Xi)[80, 100] [60, 80) [40, 60) [20, 40) [0, 20) 人类活动 GDP强度 0.500 [3 200, 4 000] [2 400, 3 200) [1 600, 2 400) [800, 1 600) [0, 800) 见式(3) 人口强度 0.500 [500, 1 000] [200, 500) [50, 200) [25, 50) [0, 25) 见式(3) 生态系统 林草覆盖率 0.300 [80, 100] [60, 80) [40, 60) [20, 40) [0, 20) 见式(3) 不透水比例 0.055 [0, 3] (3, 5] (5, 10] (10, 20] (20, 100] 见式(3) 土壤保持功能指数 0.135 [0, 10] (10, 20] (20, 30] (30, 40] (40, 100] 见式(3) 建设用地比例 0.220 [0, 10] (10, 20] (20, 30] (30, 40] (40, 100] 见式(3) 农田比例 0.180 [0, 10] (10, 20] (20, 30] (30, 40] (40, 100] 见式(3) 植被类型 0.110 — — — — — 见式(4) 表 2 呼伦湖流域人类活动-生态系统交互风险评估矩阵
Table 2. Human activities-ecological environment risk assessment form in Huhun Lake Basin
人类活动
指数(IP)生态系统指数(IE) 80~100 60~80 40~60 20~40 0~20 0~20 低 低 低 中 高 20~40 低 低 中 中 高 40~60 低 中 中 高 高 60~80 中 中 高 高 高 80~100 高 高 高 高 高 表 3 呼伦湖流域生态系统指标取值结果
Table 3. Evaluation results of ecosystem index in Hulun Lake Basin
子流域编号 林草覆盖率/% 植被类型 不透水比例/% 土壤保持功能指数/% 建设用地比例/% 农田比例/% 子流域编号 林草覆盖率/% 植被类型 不透水比例/% 土壤保持功能指数/% 建设用地比例/% 农田比例/% 1 75.80 49.33 0.14 15.11 0.25 7.84 17 62.86 54.68 0.47 0.57 0.93 23.35 2 89.85 53.11 0.02 10.01 0.07 0.00 18 65.14 47.29 3.77 19.45 5.14 22.90 3 90.82 51.81 1.53 23.00 1.53 0.04 19 85.08 67.64 0.03 0.56 0.08 4.23 4 74.69 55.09 0.15 16.95 0.23 0.10 20 80.70 56.43 3.15 4.42 4.00 2.54 5 76.91 55.58 0.04 6.91 0.13 0.00 21 78.15 57.50 0.04 1.80 0.05 10.16 6 89.24 48.53 1.22 20.04 1.66 0.14 22 70.37 51.72 2.17 4.59 4.06 2.52 7 93.16 50.07 0.05 31.21 0.29 0.68 23 79.31 60.33 0.04 1.93 0.07 10.81 8 80.97 52.47 0.06 24.55 0.17 0.18 24 76.69 51.26 0.06 10.30 0.36 0.18 9 86.42 53.06 0.38 34.28 0.47 0.10 25 78.64 53.91 0.00 1.64 0.20 1.82 10 90.98 47.35 0.01 57.44 0.01 0.00 26 66.60 44.91 15.70 15.45 20.81 0.00 11 95.29 50.12 0.16 24.18 0.62 0.31 27 73.05 55.86 0.03 0.00 0.28 16.07 12 98.24 89.91 0.00 0.00 0.00 0.00 28 67.95 53.47 2.26 4.99 3.04 8.36 13 92.00 64.63 0.44 0.42 0.76 2.58 29 56.62 64.10 0.60 1.83 2.60 0.13 14 76.87 71.97 0.19 0.14 0.21 1.93 30 74.36 47.31 0.12 4.25 0.36 0.02 15 61.60 53.30 2.01 0.18 2.41 30.17 31 47.00 59.21 0.05 11.04 1.84 2.20 16 89.28 62.02 0.32 0.22 0.62 8.91 32 61.99 43.65 23.26 11.42 23.92 3.70 表 4 呼伦湖流域人类活动-生态系统交互风险计算结果
Table 4. Calculation result of human ecological and environment risk in Huhun Lake Basin
子流域编号 人类活动指数 生态系统指数 子流域编号 人类活动指数 生态系统指数 子流域编号 人类活动指数 生态系统指数 子流域编号 人类活动指数 生态系统指数 1 1.01 80.10 9 1.04 81.12 17 5.48 74.73 25 3.71 87.33 2 1.12 89.06 10 0.87 79.91 18 30.29 66.46 26 55.46 66.66 3 1.18 84.49 11 1.18 86.13 19 2.87 90.24 27 1.98 81.14 4 1.02 82.70 12 0.29 98.42 20 3.57 84.36 28 2.39 78.74 5 1.07 86.25 13 5.02 92.17 21 3.63 84.59 29 17.84 81.13 6 2.44 84.48 14 4.84 89.08 22 3.59 81.07 30 1.96 85.16 7 1.15 83.64 15 10.24 70.63 23 1.51 84.97 31 0.98 75.01 8 1.12 82.27 16 6.15 88.95 24 2.44 84.62 32 68.15 63.01 -
[1] 刘慧敏, 刘绿怡, 丁圣彦. 人类活动对生态系统服务流的影响[J]. 生态学报, 2017, 37(10): 3232-3242. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201710002.htmLIU Huiming, LIU Lvyi, DING Shengyan. The impact of human activities on ecosystem services flow[J]. Acta Ecologica Sinica, 2017, 37(10): 3232-3242. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201710002.htm [2] ZHAO C, SHAO N, YANG S, et al. Integrated assessment of ecosystem health using multiple indicator species[J]. Ecological Engineering, 2019, 130: 157-168. doi: 10.1016/j.ecoleng.2019.02.016 [3] ZHAO Y W, ZHOU L Q, DONG B Q, et al. Health assessment for urban rivers based on the pressure, state and response framework: a case study of the Shiwuli River[J]. Ecological Indicators, 2019, 99(4): 324-331. http://www.sciencedirect.com/science/article/pii/S1470160X18309567 [4] WANG S, ZHANG Q, YANG T, et al. River health assessment: proposing a comprehensive model based on physical habitat, chemical condition and biotic structure[J]. Ecological Indicators, 2019, 103(4): 446-460. http://www.sciencedirect.com/science/article/pii/S1470160X19302596 [5] IZAKOVICOVA Z, OSZLANYI J.The impact of stress factors, landscape loads and human activities: implications for sustainable development[J]. International Journal of Environment and Waste Management, 2013, 11(2): 111-128. doi: 10.1504/IJEWM.2013.051842 [6] HALPERN B S, WALBRIDGE S, SELKOE K A, et al. A global map of human impact on marine ecosystems[J]. Science, 2008, 319(5865): 948-952. doi: 10.1126/science.1149345 [7] LI J, ZHAO Y, XU Q, et al. Human influence as a potential source of bias in pollen-based quantitative climate reconstructions[J]. Quaternary Science Reviews, 2014, 99: 112-121. doi: 10.1016/j.quascirev.2014.06.005 [8] CHARLOTTE G A, EXEQUIEL E, PEDRO P G, et al. The human footprint in mexico: physical geography and historical legacies[J]. Plos One, 2015, 10(3): e0121203. doi: 10.1371/journal.pone.0121203 [9] VENTER O, SANDERSON E W, MAGRACH A, et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation[J]. Nature Communications, 2016, 7(1): 12558. doi: 10.1038/ncomms12558 [10] XU W, DONG Z, HAO Z, et al. River health evaluation based on the fuzzy matter-element extension assessment model[J]. Polish Journal of Environmental Studies, 2017, 26(3): 1353-1361. doi: 10.15244/pjoes/67369 [11] STREHMEL A, SCHMALZ B, FOHRER N.Evaluation of land use, land management and soil conservation strategies to reduce non-point source pollution loads in the Three Gorges Region, China[J]. Environmental Management, 2016, 58(5): 1-16. http://europepmc.org/abstract/MED/27590307 [12] 牛远, 胡小贞, 王琳杰, 等. 抚仙湖流域"山水林田湖草"生态保护修复思路与实践[J]. 环境工程技术学报, 2019, 9(5): 482-490. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201905002.htmNIU Yuan, HU Xiaozhen, WANG linjie, et al. Ideas and practice of ecological protection and restoration of mountain-river-forest-farmland-lake-grassland system in Lake Fuxian Basin[J]. Journal of Environmental Engineering Technology, 2019, 9(5): 482-490. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201905002.htm [13] 张杰, 苏航, 盛楚涵, 等. 浑太河河流生态系统完整性评价体系的构建[J]. 环境科学研究, 2020, 33(2): 363-374. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200214&flag=1ZHANG Jie, SU Hang, SHENG Chuhan, et al. Construction of an evaluation system to assess the ecosystem integrity of the Hun-Tai River[J]. Research of Environmental Sciences, 2020, 33(2): 363-374. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200214&flag=1 [14] YI Y, YANG Z, ZHANG S.Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River Basin[J]. Environmental Pollution, 2011, 159(10): 2575-2585. doi: 10.1016/j.envpol.2011.06.011 [15] ZHAO C, PAN T, DOU T, et al. Making global river ecosystem health assessments objective, quantitative and comparable[J]. Science of the Total Environment, 2019, 667(6): 500-510. http://www.sciencedirect.com/science/article/pii/S0048969719308873 [16] 刘丽娜, 马春子, 张靖天, 等. 东北湖区典型流域生态安全评估[J]. 环境科学研究, 2019, 32(7): 1108-1116. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190702&flag=1LIU Lina, MA Chunzi, ZHANG Jingtian, et al. Ecological security assessment of typical watershed in northeast, China[J]. Research of Environmental Sciences, 2019, 32(7): 1108-1116. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190702&flag=1 [17] 杜金鸿, 刘方正, 周越, 等. 自然保护地生态系统服务价值评估研究进展[J]. 环境科学研究, 2019, 32(9): 1475-1482. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190905&flag=1DU Jinhong, LIU Fangzheng, ZHOU Yue, et al. A review of ecosystem services assessment and valuation of protected areas[J]. Research of Environmental Sciences, 2019, 32(9): 1475-1482. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190905&flag=1 [18] LUO Z, ZUO Q, SHAO Q.A new framework for assessing river ecosystem health with consideration of human service demand[J]. Science of the Total Environment, 2018, 640/641: 442-453. doi: 10.1016/j.scitotenv.2018.05.361 [19] RAPPORT D J, COSTANZA R, MCMICHAEL A J.Assessing ecosystem health[J]. Trends in Ecology & Evolution, 1999, 13(10): 397-402. [20] BEYNEN P V, TOWNSEND K.A disturbance index for karst environments[J]. Environmental Management, 2005, 36(1): 101-116. doi: 10.1007/s00267-004-0265-9 [21] CUI B S.Development of an integrated stress index to determine multiple anthropogenic stresses on macrophyte biomass and richness in ponds[J]. Ecological Engineering: the Journal of Ecotechnology, 2016, 90: 151-162. doi: 10.1016/j.ecoleng.2016.01.051 [22] 项颂, 庞燕, 侯泽英, 等. 基于熵值法的云南高原浅水湖泊水生态健康评价[J]. 环境科学研究, 2020, 33(10): 2272-2282. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201005&flag=1XIANG Song, PANG Yan, HOU Zeying, et al. Health evaluation of shallow lake aquatic ecosystem in Yunnan Plateau based on entropy method[J]. Research of Environmental Sciences, 2020, 33(10): 2272-2282. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201005&flag=1 [23] 陈桃, 包安明, 郭浩, 等. 中亚跨境流域生态脆弱性评价及其时空特征分析: 以阿姆河流域为例[J]. 自然资源学报, 2019, 34(12): 2643-2657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201912013.htmCHEN Tao, BAO Anming, GUO Hao, et al. Ecological vulnerability assessment for a transboundary basin in Central Asia and its spatiotemporal characteristics analysis: taking Amu Darya River Basin as an example[J]. Journal of Natural Resources, 2019, 34(12): 2643-2657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201912013.htm [24] 黄舟. 基于GIS与RS的楠溪江流域生态健康评估[D]. 杭州: 浙江大学, 2017: 32-35. [25] 张娜, 乌力吉, 刘松涛, 等. 呼伦湖地区气候变化特征及其对湖泊面积的影响[J]. 干旱区资源与环境, 2015, 29(7): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201507034.htmZHANG Na, WU Liji, LIU Songtao, et al. The characteristics of climate change and its influence on water area of Hulun lake[J]. Journal of Arid Land Resources and Environment, 2015, 29(7): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201507034.htm [26] LI S, CHEN J, XIANG J, et al. Water level changes of Hulun Lake in Inner Mongolia derived from Jason satellite data[J]. Journal of Visual Communication and Image Representation, 2019, 58: 565-575. doi: 10.1016/j.jvcir.2018.12.031 [27] ZHANG S, XIAO J, XU Q, et al. Contrasting impacts of the 8.2-and 4.2-ka abrupt climatic events on the regional vegetation of the Hulun Lake region in north-astern China[J]. Journal of Quaternary Science, 2020, 35(6): 831-840. doi: 10.1002/jqs.3231 [28] LI C, WANG J, HU R, et al. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Frontiers of Earth Science, 2018, 12(2): 420-430. doi: 10.1007/s11707-017-0666-8 [29] 赵颢瑾, 付正辉, 陆文涛, 等. 河流陆域环境交互区域风险评估方法研究[J]. 环境科学学报, 2017, 38(1): 372-379. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201801044.htmZHAO Haojin, FU Zhenghui, LU Wentao, et al. A risk analysis of interactive region of river and land area environmental systems[J]. Acta Scientiae Circumstantiae, 2017, 38(1): 372-379. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201801044.htm [30] 徐新良. 中国GDP空间分布公里网格数据集[J]. 中国科学院资源环境科学数据中心数据注册与出版系统(http://www.resdc.cn/DOI), 2017. doi: 10.12078/2017121102. [31] 徐新良. 中国人口空间分布公里网格数据集[J]. 中国科学院资源环境科学数据中心数据注册与出版系统(http://www.resdc.cn/DOI), 2017. doi: 10.12078/2017121101. -