Variation of Lake Area of Hulun Lake during 1961-2018 and Its Response to Climate Change
-
摘要: 为揭示近60年来呼伦湖水面面积的变化规律,确定影响呼伦湖水面面积变化的主要因素,采用曼-肯德尔检验(Mann-Kendall tests)、一元线性回归和小波分析法解析1961—2018年呼伦湖水面面积及其所在区域气温、降水量、蒸发量和相对湿度的变化趋势、突变特征和周期性变化规律,采用皮尔逊相关性分析(Pearson correlation analysis)和灰色关联分析研究水面面积与气象要素的相关性.结果表明:1961—2018年呼伦湖水面面积在1 739~2 360 km2之间,总体以72.84 km2/(10 a)的速率显著减小,2009年人工调水实施以后水面面积逐渐恢复并稳定在2 030 km2左右.近60年来呼伦湖区域气候暖干化明显,表现为气温显著升高、蒸发量显著增大、相对湿度显著降低、降水量非显著减少.1961—2018年,呼伦湖水面面积对气候突变及其周期波动存在相应的响应,水面面积与区域蒸发量呈显著负相关,Pearson相关系数为-0.546,与区域蒸发量和降水量的灰色关联度为0.938~0.960,人工调水实施前(1961—2008年)水面面积与气象要素的相关性强于1961—2018年.研究显示,气候变化引起的蒸发量增大是呼伦湖水面面积减小的重要原因,人工调水严重干扰了2009—2018年呼伦湖水面面积对气候变化的响应.
-
关键词:
- 气候变化 /
- Mann-Kendall检验 /
- 小波分析 /
- 灰色关联分析 /
- 人工调水
Abstract: In order to reveal the variation characteristics of Hulun Lake area and identify its primary influencing factors in the past 60 years, the Hulun Lake area from 1961 to 2018 and the annual temperature, precipitation, evaporation and relative humidity of the surrounding area were analyzed using Mann-Kendall tests, linear regression and wavelet analysis. The correlation between the lake area and the meteorological elements was analyzed using Pearson correlation and grey relational analysis. The results showed that the Hulun Lake area (1739-2360 km2) decreased significantly during 1961-2018 at a rate of 72.84 km2/(10 a). Since the implementation of the water diversion project in 2009, it increased gradually and stabilized at 2030 km2 in recent several years. The climate of the Hulun Lake area tended to be warmer and drier in the past 60 years, which manifested that the temperature and evaporation increased significantly, the relative humidity decreased significantly, and the precipitation decreased insignificantly. The Hulun Lake area during 1961-2018 showed a corresponding response to the abrupt and periodic changes of the climate. Moreover, the lake area was negatively correlated with the evaporation with a Pearson correlation coefficient of -0.546, and the grey relational coefficients between the lake area and the evaporation and precipitation were as high as 0.938-0.960. The correlation between the lake area and the meteorological elements during the period before the implementation of the water diversion project (1961-2008) was stronger than that during 1961-2018. The increase in evaporation caused by the climate change is the main reason for the decrease in the Hulun Lake area. The water diversion project started in 2009 has a strong impact on the response of the Hulun Lake area to the climate change during 2009-2018. -
表 1 1961—2018年呼伦湖水面面积及区域气象要素变化倾向率和M-K趋势检验值(Z值)
Table 1. Tendency rates and M-K Z statistics of lake area of Hulun Lake and the meteorological elements during 1961-2018
参数 水面面积/km2 气温/℃ 降水量/mm 蒸发量/mm 相对湿度/% 变化倾向率/(10 a) -72.84 0.33 -3.25 50.44 -1.07 Z值 -5.35** 4.51** -1.10 3.43** -4.88** 注:**代表通过0.01水平显著性检验. 表 2 呼伦湖水面面积与气象要素的Pearson相关系数及灰色关联度
Table 2. Pearson correlation and grey relational coefficients of lake area of Hulun Lake and the meteorological elements
参数 时段 气温 降水量 蒸发量 Pearson相关系数 1961—2018年 -0.245 0.114 -0.546** 1961—2008年 -0.363* 0.090 -0.553** 2009—2018年 0.703* 0.116 0.344 1961—2018年 0.645 0.938 0.960 灰色关联度 1961—2008年 0.640 0.947 0.973 2009—2018年 0.524 0.815 0.934 注:*和**分别代表在0.05和0.01水平上显著相关. -
[1] 杨杰, 田城, 布特根, 等. 呼伦湖的生态地位、生态现状及生态保护和修复[J]. 内蒙古科技与经济, 2015, 2: 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201502027.htm [2] CAI Zuansi, JIN Taoyong, LI Changyou, et al. Is China's fifth-largest inland lake to dry-up? incorporated hydrological and satellite-based methods for forecasting Hulun Lake water levels[J]. Advances in Water Resources, 2016, 94: 185-199. doi: 10.1016/j.advwatres.2016.05.010 [3] ZHANG Yanfei, LIANG Wentao, LIAO Zilong, et al. Effects of climate change on lake area and vegetation cover over the past 55 years in northeast Inner Mongolia grassland, China[J]. Theoretical and Applied Climatology, 2019, 138(1/2): 13-25. doi: 10.1007/s00704-019-02802-2 [4] LI Xinyu, PENG Shushi, DENG Xuwei, et al. Attribution of lake warming in four shallow lakes in the middle and lower Yangtze River Basin[J]. Environmental Science & Technology, 2019, 53(21): 12548-12555. doi: 10.1021/acs.est.9b03098 [5] LIU Hongyan, YIN Yi, PIAO Shilong, et al. Disappearing lakes in semiarid northern China: drivers and environmental impact[J]. Environmental Science & Technology, 2013, 47(21): 12107-12114. doi: 10.1021/es305298q [6] 管玉莹, 虞功亮, 韩睿明, 等. 近30年来高邮湖(含邵伯湖)自然水域面积变化及其影响因素[J]. 环境科学研究, 2019, 32(12): 2057-2064. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191213&flag=1GUAN Yuying, YU Gongliang, HAN Ruiming, et al. Changes in water area of Gaoyou Lake(including Shaobo Lake)and the influencing factors in the past 30 years[J]. Research of Environmental Sciences, 2019, 32(12): 2057-2064. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191213&flag=1 [7] CHEN Xiaofeng, CHUAI Xiaoming, YANG Liuyan, et al. Climatic warming and overgrazing induced the high concentration of organic matter in Lake Hulun, a large shallow eutrophic steppe lake in northern China[J]. Science of the Total Environment, 2012, 431: 332-338. doi: 10.1016/j.scitotenv.2012.05.052 [8] KUEFNER W, HOFMANN A, OSSYSSEK S, et al. Composition of highly diverse diatom community shifts as response to climate change: a down-core study of 23 central European mountain lakes[J]. Ecological Indicators, 2020, 117: 106590. doi: 10.1016/j.ecolind.2020.106590 [9] ROZEMEIJER J, NOORDHUIS R, OUWERKERK K, et al. Climate variability effects on eutrophication of groundwater, lakes, rivers, and coastal waters in the Netherlands[J]. Science of the Total Environment, 2021, 771: 145366. doi: 10.1016/j.scitotenv.2021.145366 [10] TAO Yuqiang, ZHANG Ya, CAO Jicheng, et al. Climate change has weakened the ability of Chinese lakes to bury polycyclic aromatic hydrocarbons[J]. Environmental Pollution, 2019, 255: 113288. doi: 10.1016/j.envpol.2019.113288 [11] MAO Zhigang, GU Xiaohong, CAO Yong, et al. How does fish functional diversity respond to environmental changes in two large shallow lakes?[J]. Science of the Total Environment, 2021, 753: 142158. doi: 10.1016/j.scitotenv.2020.142158 [12] LIOUBIMTSEVA E, HENEBRY G M.Climate and environmental change in arid Central Asia: impacts, vulnerability, and sdaptations[J]. Journal of Arid Environments, 2009, 73(11): 963-977. doi: 10.1016/j.jaridenv.2009.04.022 [13] 赵慧颖, 乌力吉, 郝文俊. 气候变化对呼伦湖湿地及其周边地区生态环境演变的影响[J]. 生态学报, 2008, 28(3): 1064-1071. doi: 10.3321/j.issn:1000-0933.2008.03.020ZHAO Huiying, WU Liji, HAO Wenjun. Influences of climate change to ecological and environmental evolvement in the Hulun Lake wetland and its surrounding areas[J]. Acta Ecologica Sinica, 2008, 28(3): 1064-1071. doi: 10.3321/j.issn:1000-0933.2008.03.020 [14] 王彦平, 赵慧颖, 李翀, 等. 呼伦湖湿地与气候变化关系研究综述[J]. 中国农学通报, 2012, 28(8): 300-305. doi: 10.3969/j.issn.1000-6850.2012.08.056WANG Yanping, ZHAO Huiying, LI Chong, et al. The review of the relationship with climate change and Hulun Lake Wetland[J]. Chinese Agricultural Science Bulletin, 2012, 28(8): 300-305. doi: 10.3969/j.issn.1000-6850.2012.08.056 [15] BAI Jie, CHEN Xi, LI Junli, et al. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years[J]. Environmental Monitoring and Assessment, 2011, 178: 247-256. doi: 10.1007/s10661-010-1686-y [16] TAO Shengli, FANG Jingyun, ZHAO Xia, et al. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 2281-2286. doi: 10.1073/pnas.1411748112 [17] ZHANG Guoqing, YAO Tandong, XIE Hongjie, et al. Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms[J]. Earth-Science Reviews, 2020, 208: 103269. doi: 10.1016/j.earscirev.2020.103269 [18] 高永刚, 赵慧颖, 李翀, 等. 呼伦湖湿地消长对气象水文因子变化的响应[J]. 应用气象学报, 2012, 23(4): 459-466. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201204012.htmGAO Yonggang, ZHAO Huiying, LI Chong, et al. Response of rise and fall in Hulun Lake wetland to meteorological and hydrological factor change[J]. Journal of Applied Meteorological Science, 2012, 23(4): 459-466. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201204012.htm [19] 张娜, 乌力吉, 刘松涛, 等. 呼伦湖地区气候变化特征及其对湖泊面积的影响[J]. 干旱区资源与环境, 2015, 29(7): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201507034.htmZHANG Na, WU Liji, LIU Songtao, et al. The characteristics of climate change and its influence on water area of Hulun lake[J]. Journal of Arid Land Resources and Environment, 2015, 29(7): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201507034.htm [20] XIAO Jule, CHANG Zhigang, Wen Ruilin, et al. Holoccnc weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China[J]. Holocene, 2009, 19(6): 899-908. doi: 10.1177/0959683609336574 [21] 王靖. 内蒙古呼伦湖面积5年扩大288平方公里[EB/OL]. 北京: 新华网, 2017-12-02[2020-11-08]. http://www.xinhuanet.com/local/2017-12/02/c_1122047350.htm. [22] 张玮. 中国第四大淡水湖面积增至2036.2平方公里[EB/OL]. 北京: 中国新闻网, 2020-05-09[2020-11-08]. https://baijiahao.baidu.com/s?id=1666210484488434057&wfr=spider&for=pc. [23] MASROOR M, REHMAN S, AVTAR R, et al. Exploring climate variability and its impact on drought occurrence: evidence from Godavari Middle Sub-Basin, India[J]. Weather and Climate Extremes, 2020, 30: 100277. doi: 10.1016/j.wace.2020.100277 [24] DU Shiqiang, GU Honghuan, WEN Jiahong, et al. Detecting flood variations in Shanghai over 1949-2009 with Mann-Kendall tests and a newspaper-based database[J]. Water, 2015, 7(5): 1808-1824. doi: 10.3390/w7051808 [25] XU Changchun, CHEN Yaning, LI Weihong, et al. Climate change and hydrologic process response in the Tarim River Basin over the past 50 years[J]. Chinese Science Bulletin, 2006, 51: 25-36. [26] HEIL C, WALNUT D F.Continuous and discrete wavelet transforms[J]. SIAM Review, 1989, 31(4): 628-666. doi: 10.1137/1031129 [27] LABAT D.Recent advances in wavelet analyses: Part 1. a review of concepts[J]. Journal of Hydrology, 2005, 314(1/2/3/4): 275-288. [28] LI Qiongfang, HE Pengfei, HE Yongchang, et al. Investigation to the relation between meteorological drought and hydrological drought in the upper Shaying River Basin using wavelet analysis[J]. Atmospheric Research, 2020, 234: 104743. doi: 10.1016/j.atmosres.2019.104743 [29] HUANG Shengzhi, LI Pei, HUANG Qiang, et al. The propagation from meteorological to hydrological drought and its potential influence factors[J]. Journal of Hydrology, 2017, 547: 184-195. doi: 10.1016/j.jhydrol.2017.01.041 [30] 黄坤, 马龙, 吉力力·阿布都外力. 基于小波分析的巴尔喀什湖水位变化特征及其影响因素[J]. 干旱区研究, 2020, 37(3): 570-579. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202003004.htmHUANG Kun, MA Long, JILILI Abuduwaili. A study of the water level variation of Lake Balkhash: its influencing factors based on wavelet analysis[J]. Arid Zone Research, 2020, 37(3): 570-579. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202003004.htm [31] 王涛, 霍艳峰, 罗艳. 近300 a来天山中西部降水与太阳活动的小波分析[J]. 干旱区研究, 2016, 33(4): 708-717. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201604004.htmWANG Tao, HUO Yanfeng, LUO Yan. Precipitation and sunspots in the central-west Tianshan Mountains in recent 300 years[J]. Arid Zone Research, 2016, 33(4): 708-717. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201604004.htm [32] 李海霞, 韩丽花, 蔚青, 等. 基于灰色关联分析法的辽河保护区河流水生态健康评价[J]. 环境工程技术学报, 2020, 10(4): 553-561. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202004005.htmLI Haixia, HAN Lihua, YU Qing, et al. Assessment on river water ecological health based on grey relation analysis in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 553-561. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202004005.htm [33] HUANG Yuansheng, SHEN Lei, LIU Hui. Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China[J]. Journal of Cleaner Production, 2019, 209: 415-423. doi: 10.1016/j.jclepro.2018.10.128 [34] 刘炳麟, 汪欢, 胡晴, 等. 基于生态效率的区域循环经济发展实证研究: 以江苏省为例[J]. 环境工程技术学报, 2017, 7(2): 216-224. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201702014.htmLIU Binglin, WANG Huan, HU Qing, et al. An empirical study on development of regional circular economy based on eco-efficiency: a case study of Jiangsu Province[J]. Journal of Environmental Engineering Technology, 2017, 7(2): 216-224. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201702014.htm [35] BRUTSAERT W, SUGITA M.Is Mongolia's groundwater increasing or decreasing? the case of the Kherlen River Basin[J]. Hydrological Sciences Journal, 2008, 53: 1221-1229. doi: 10.1623/hysj.53.6.1221 [36] 王培玉, 巨天珍, 刘文君, 等. 甘肃省植被与对流层甲醛关系及影响因素分析[J]. 环境科学研究, 2019, 32(9): 1556-1566. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190914&flag=1WANG Peiyu, JU Tianzhen, LIU Wenjun, et al. Relationship between NDVI and troposphere HCHO in Gansu Province and its influencing factors[J]. Research of Environmental Sciences, 2019, 32(9): 1556-1566. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190914&flag=1 [37] 王志杰, 李畅游, 贾克力, 等. 呼伦湖水面蒸发量计算及变化特征分析[J]. 干旱区资源与环境, 2012, 26(3): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201203016.htmWANG Zhijie, LI Changyou, JIA Keli, et al. Calculation and characteristics of Hulun lake surface evaporation[J]. Journal of Arid Land Resources and Environment, 2012, 26(3): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201203016.htm [38] 李翀, 马巍, 叶柏生, 等. 呼伦湖水面蒸发及水量平衡估计[J]. 水文, 2006, 26(5): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200605012.htmLI Chong, MA Wei, YE Baisheng, et al. Estimation of water evaporation and water balance in ungauged Hulun Lake[J]. Journal of China Hydrology, 2006, 26(5): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200605012.htm [39] 吴勇. 呼伦湖越来越丰盈("绿水青山就是金山银山")[EB/OL]. 北京: 人民日报, 2018-03-21[2020-11-08]. http://society.people.com.cn/n1/2018/0321/c1008-29879406.html. -