Evaluation of Ecological Security in Hulun Lake Watershed and Its Spatio-Temporal Distribution Trend
-
摘要: 呼伦湖是我国北方第一大湖,具有涵养水源、生物多样性维护、气候调节等重要生态功能,对于维系我国北方生态安全屏障具有重要作用.近年来,随着气候暖干化加剧,呼伦湖面临着湖体面积萎缩、芦苇湿地大面积消失、局部草原区退化严重、土地沙化面积扩大、关键种群缺失等生态安全问题.该研究围绕“水资源-水环境-水生态”三水共生目标,以“山水林田湖草沙”系统观为指导,基于遥感和GIS技术对呼伦湖流域1990—2018年的生态安全时空分布格局进行评价.结果表明:①2018年呼伦湖及其流域的生态安全指数分别为0.495和0.774,分别处于预警和良好状态.②呼伦湖流域生态安全自1990年以来分别经历了骤降期、稳定期和恢复期等3个时期,呈现“一林一草一湖”的生态安全分布格局.③2010年呼伦湖生态安全水平最低,主要分布在新开河入湖口、湖西岸大部分区域、湖中心以及湖东南方向的湾口区域;流域则在2015年的生态安全状况最差,主要位于新左旗中部、海拉尔河流域以及呼伦沟等地,尤其是沿乌尔逊河上游东侧地带表现最为突出.④影响呼伦湖流域生态安全水平的主要因素为入湖径流量、蓝藻水华面积占比和水源涵养量,而长期超载过牧、水体污染物浓缩效应以及湿地面积萎缩是限制生态安全水平进一步提升的重要因素.研究显示,呼伦湖流域生态安全与水资源状况密切相关,湖面面积维持在2 036 km2以上能保障流域较高的生态安全水平.此外,蓝藻水华面积、放牧强度与湿地面积均关系着区域生态安全,建议通过建立蓝藻水华风险防控体系、合理核定载畜量、保护与修复芦苇湿地以改善局部区域生态安全状况.Abstract: As the largest lake in northern China, Hulun Lake has important ecological functions, such as water conservation, biodiversity maintenance and climate regulation, and it plays an important role in maintaining the ecological security barrier in north China. In recent years, with the intensification of the warm and dry climate, Hulun Lake is facing ecological security problems, such as the shrinking of lake area, the disappearance of large reed wetland areas, local grassland degradation, the expansion of land desertification area, and the loss of major populations. The research aimed at water resources, water environment and water ecology. The spatial and temporal distribution pattern and succession of ecological security were evaluated based on remote sensing and GIS technology to call Hulun lake basin from 1990 to 2018. The results showed that the ecological security index of Hulun Lake and its basin was 0.495 and 0.774, respectively, which were in early warning and good state in 2018. Since 1990, the ecological security of the Hulun Lake Basin has experienced three periods of precipitous decline, stable period and recovery period. The ecological security level of Hulun Lake was the lowest, which was mainly distributed in the mouth of Xinkai River, most areas on the west bank of the lake, the center of the lake and the bay mouth area to the southeast of the lake in 2010. The ecological security status of Hulun Lake Basin was the worst in 2015, mainly located in the central part of New Left Banner, the Hailar River Basin and Hulun Valley, especially distributed in the east side of the upper reaches of the Wuerxun River. The main factors affecting the ecological security level of the Hulun Lake Basin were the lake runoff, the proportion of cyanobacteria bloom area and the water resource conservation, while long-term overgrazing, water pollutant concentration and wetland area shrinkage were important factors that limit the further improvement of ecological security. The study revealed that the ecological security of the Hulun Lake Basin is closely related to the water resources, and maintaining the lake surface area of more than 2036 km2 can guarantee the higher ecological security level of the basin. In addition, the regional ecological security was affected by the area of cyanobacteria bloom, grazing intensity and wetland area. It is suggested to establish a risk prevention and control system for cyanobacteria blooms, rationally check the livestock capacity, and protect and restore reed wetland to improve the ecological security of local areas.
-
表 1 呼伦湖流域生态安全评价指标体系及指标权重和标准值
Table 1. Index system, index weight and standard value of ecological security assessment in Hulun Lake Basin
准则层 要素层 指标层 综合权重 标准值 依据 指标属性 压力(0.56) 气象条件(0.15) 年降雨量(mm)(0.61) 0.052 212.42 高强度高频次干旱集中发生年份的平均值 不安全值 + 年平均气温(℃)(0.27) 0.023 1.24 - 年蒸发量(108 m3)(0.12) 0.010 13.79 - 人口(0.05) 人口密度(人/km2)(0.60) 0.017 20 联合国制定的半干旱区人口密度临界值[26] 安全值 - 人口自然增长率(0.40) 0.011 6.4 1985—2017年平均值 - 水资源(0.53) 湖泊面积(km2)(0.75) 0.223 2 036 频率分析法[27] 不安全值 + 入湖径流量(108 m3)(0.25) 0.074 3.1 + 放牧强度(0.27) 草地载畜强度(羊单位/104亩)(1.00) 0.151 372.75 文献[28] 安全值 - 状态(0.32) 水环境(0.39) 化学需氧量浓度(mg/L)(0.17) 0.021 69.9 环境流体动力学模型(EFDC)模拟呼伦湖水质能达到的理想值 安全值 - 总磷浓度(mg/L)(0.39) 0.048 0.121 - 总氮浓度(mg/L)(0.44) 0.055 1.479 - 水生态(0.24) 蓝藻水华面积占比(%)(0.56) 0.043 10 《水华遥感与地面监测评价技术规范(试行)》(HJ 1098—2020) 不安全值 - 水鸟数量(只/a)(0.32) 0.025 46 600 2009—2018年平均值 安全值 + 浮游动物生物量(mg/L)(0.12) 0.010 4.0 1981—2010年平均值 安全值 + 陆域生态(0.18) 土地沙化率(%)(0.45) 0.026 3.30 1990—2018年平均值 不安全值 - 土地盐渍化率(%)(0.32) 0.018 2.10 1990—2018年平均值 不安全值 - 植被覆盖度(%)(0.16) 0.009 0.28 自然间断点分级法[29] 安全值 + 地上部生物量(g/m2)(0.08) 0.005 204 安全值 + 生态系统服务功能与敏感性(0.10) 水源涵养量(104 m3/km2)(0.46) 0.015 34 自然间断点分级法[29] 安全值 + 土壤保持量(t/hm2)(0.05) 0.002 475 安全值 + 生物多样性维护(0.08) 0.002 42 安全值 + 水土流失(0.15) 0.005 0.91 不安全值 - 土地沙化(0.26) 0.008 1.95 不安全值 - 景观格局(0.09) 湿地景观生态安全度(0.64) 0.019 0.085 1990—2018年间最低值 不安全值 + 草地景观生态安全度(0.28) 0.008 0.179 + 林地景观生态安全度(0.07) 0.002 0.356 + 响应(0.12) 生态恢复措施(0.69) 水土流失治理面积(104 hm2)(0.30) 0.024 2.7 2005—2018年间最低值 不安全值 + 引河济湖工程引水量(108 m3)(0.70) 0.057 3.2 工程实施以来(2009—2018年)最低值 不安全值 + 生态治理投入(0.31) 环保投资占GDP比例(%)(1.00) 0.037 1.24 2016年全国平均值[30] 安全值 + 注:括号内数值表示各指标权重. “+”表示正向指标,“-”表示负向指标. 表 2 生态安全综合评估分级标准
Table 2. Classification standard of comprehensive ecological security assessment
等级 生态安全状态 得分区间 特征 Ⅰ级 理想
(很安全)[0.8, 1) 生态系统服务功能完整,生态环境基本没有受到破坏,生态系统结构完整,有很好的调节功能,没有生态问题,可视为可持续发展的理想状态 Ⅱ级 良好
(较安全)[0.6, 0.8) 生态系统服务功能较为完善,生态环境很少受到破坏,生态系统结构尚完整,生态问题基本不大,一般干扰下可恢复 Ⅲ级 预警
(基本安全)[0.4, 0.6) 生态系统服务功能已有退化,生态环境受到一定破坏,生态系统结构有变化,但尚可维持基本功能,生态问题显现,受干扰后易恶化 Ⅳ级 较差
(较不安全)[0.2, 0.4) 生态系统服务功能严重退化,生态环境受到较大破坏,生态系统结构破坏较大,环境污染与资源消耗比较严重,生态问题较大,受外界干扰后恢复困难 Ⅴ级 很差
(很不安全)[0, 0.2) 生态系统服务功能几近崩溃,生态环境受到严重破坏,生态系统结构残缺不全,环境污染与资源消耗严重,生态恢复与重建很困难,生态环境问题严重 -
[1] 郝伟罡, 魏永富, 郭中小, 等. 典型牧区湖泊湿地生态服务价值量化评估[C]//中国环境科学学会, 2010中国环境科学学会学术年会论文集(第一卷). 北京: 中国环境科学学会, 2010: 659-662. [2] 石益丹, 李玉浸, 杨殿林, 等. 呼伦贝尔草地生态系统服务功能价值评估[J]. 农业环境科学学报, 2007, 26(6): 2099-2103. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200706020.htmSHI Yidan, LI Yujin, YANG Dianlin, et al. Evaluation on the service function of Hulunbeier grassland ecosystem[J]. Journal of Agro-Environment Science, 2007, 26(6): 2099-2103. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200706020.htm [3] 孙瑞, 王洪光, 张云涛, 等. 基于多源遥感的呼伦湖动态监测[J]. 地理空间信息, 2019, 17(9): 83-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201909026.htm [4] 王志杰, 李畅游, 张生, 等. 基于水平衡模型的呼伦湖湖泊水量变化[J]. 湖泊科学, 2012, 24(5): 667-674. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201205005.htmWANG Zhijie, LI Changyou, ZHANG Sheng, et al. Hydrological changes in Lake Hulun based on water balance model[J]. Journal of Lake Sciences, 2012, 24(5): 667-674. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201205005.htm [5] 刘东霞, 卢欣石, 李文红. 呼伦贝尔退化草地植被演替特征研究[J]. 干旱区资源与环境, 2008, 22(8): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200808020.htmLIU Dongxia, LU Xinshi, LI Wenhong. A study on vegetation succession of degradation grassland in Hunlunbeier steppe[J]. Journal of Arid Land Resources and Environment, 2008, 22(8): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200808020.htm [6] 苏日古嘎, 苏根成, 杨朝斌. 近25年呼伦贝尔地区草地变化时空分布特征分析[J]. 西部资源, 2017(1): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201701031.htm [7] 张戈丽, 徐兴良, 周才平, 等. 近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J]. 地理学报, 2011, 66(1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201101009.htmZHANG Geli, XU Xingliang, ZHOU Caiping, et al. Responses of vegetation changes to climatic variations in Hulunbuir grassland in past 30 years[J]. Acta Geographica Sinica, 2011, 66(1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201101009.htm [8] 杨久春, 张树文. 近50年呼伦湖水系草地退化时空过程及成因分析[J]. 中国草地学报, 2009, 31(3): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCD200903006.htmYANG Jiuchun, ZHANG Shuwen. The spatial and temporal progess in grassland degradation and causes in Hulun Lake Basin in the past 50 years[J]. Chinese Journal of Grassland, 2009, 31(3): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCD200903006.htm [9] 乌力吉, 李国海, 张娜, 等. 气候变化对呼伦贝尔克氏针茅草原植被的影响[J]. 草地学报, 2013, 21(2): 230-235. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201302006.htmWU Liji, LI Guohai, ZHANG Na, et al. Effect of climate change on the Stipa krylovii grassland vegetation of Hulunbuir[J]. Acta Agrestia Sinica, 2013, 21(2): 230-235. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201302006.htm [10] 杨久春, 张树文. 近50年来呼伦湖水系土地利用/覆被变化及其生态环境效应[J]. 干旱区资源与环境, 2009, 23(2): 41-46.YANG Jiuchun, ZHANG Shuwen. Land use/cover change and its eco-environmental effects in Hulun-lake Basin during the past 50 years[J]. Journal of Arid Land Resources and Environment, 2009, 23(2): 41-46. [11] 王治良, 路春燕. 呼伦贝尔草原区土地利用及景观格局变化特征分析[J]. 干旱区资源与环境, 2015, 29(12): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201512016.htmWANG Zhiliang, LU Chunyan. Dynamic change of land use and landscape pattern in Hulunbuir grassland, China[J]. Journal of Arid Land Resources and Environment, 2015, 29(12): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201512016.htm [12] 李营, 张峰, 王桥. 呼伦贝尔盟草原植被覆盖状况时空演变特征分析[J]. 干旱区资源与环境, 2010, 24(6): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201006026.htmLI Ying, ZHANG Feng, WANG Qiao. Analysis of dynamic change of Hulunbeier grassland vegetation coverage[J]. Journal of Arid Land Resources and Environment, 2010, 24(6): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201006026.htm [13] 毛志刚, 谷孝鸿, 曾庆飞. 呼伦湖鱼类群落结构及其渔业资源变化[J]. 湖泊科学, 2016, 28(2): 387-394. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201602019.htmMAO Zhigang, GU Xiaohong, ZENG Qingfei. The structure of fish community and changes of fishery resources in Lake Hulun[J]. Journal of Lake Sciences, 2016, 28(2): 387-394. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201602019.htm [14] GAUDRY K.Regional co-development and security: a comprehensive approach[J]. Ocean and Coastal Management, 2002, 45(11/12): 761. http://www.sciencedirect.com/science/article/pii/S0964569102001059 [15] ALCAMO J, ENDEJAN M B, KASPAR F, et al. The GLASS model: a strategy for quantifying global environmental security[J]. Environmental Science and Policy, 2001, 4(1): 1-12. doi: 10.1016/S1462-9011(00)00099-X [16] 毛锋, 李晓阳, 张安地, 等. 湖库生态安全综合评估的方法探析[J]. 北京大学学报(自然科学版), 2009, 45(2): 327-332. doi: 10.3321/j.issn:0479-8023.2009.02.022MAO Feng, LI Xiaoyang, ZHANG Andi, et al. Research on comprehensive assessment methods for ecological security of lakes and reseroirs[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(2): 327-332. doi: 10.3321/j.issn:0479-8023.2009.02.022 [17] 刘明, 刘淳, 王克林. 洞庭湖流域生态安全状态变化及其驱动力分析[J]. 生态学杂志, 2007, 26(8): 1271-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200708023.htmLIU Ming, LIU Chun, WANG Kelin. Eco-security in dongting lake watershed: its changes and relevant driving forces[J]. Chinese Journal of Ecology, 2007, 26(8): 1271-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200708023.htm [18] 钟振宇, 柴立元, 刘益贵, 等. 基于层次分析法的洞庭湖生态安全评估[J]. 中国环境科学, 2010, 30(1): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ2010S1012.htmZHONG Zhenyu, CHAI Liyuan, LIU Yigui, et al. Ecological security evaluation based on AHP of Lake Dongting[J]. China Environmental Science, 2010, 30(1): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ2010S1012.htm [19] 田炯, 王振祥, 王翠然. 巢湖流域生态安全评价研究[J]. 生态科学, 2011, 30(6): 650-658. doi: 10.3969/j.issn.1008-8873.2011.06.017TIAN Jiong, WANG Zhenxiang, WANG Cuiran. Study on ecological security evaluation of the Chaohu Lake Basin[J]. Ecological Science, 2011, 30(6): 650-658. doi: 10.3969/j.issn.1008-8873.2011.06.017 [20] 冯宁, 毛锋, 李晓阳, 等. 滇池生态安全综合评估研究[J]. 环境科学, 2010, 31(2): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201002002.htmFENG Ning, MAO Feng, LI Xiaoyang, et al. Research on ecological security assessment of Dianchi Lake[J]. Environmental Science, 2010, 31(2): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201002002.htm [21] 刘丽娜, 马春子, 张靖天, 等. 东北湖区典型流域生态安全评估[J]. 环境科学研究, 2019, 32(7): 1108-1116. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190702&flag=1LIU Lina, MA Chunzi, ZHANG Jingtian, et al. Ecological security assessment of typical watershed in northeast China[J]. Research of Environmental Sciences, 2019, 32(7): 1108-1116. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190702&flag=1 [22] 焦键, 刘江. 新疆博斯腾湖生态安全综合评估[J]. 新疆环境保护, 2018, 40(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XJHB201803002.htmJIAO Jian, LIU Jiang. Comprehensive assessment of ecological security for Bosten lake in Xinjiang[J]. Environmental Protection of Xinjiang, 2018, 40(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XJHB201803002.htm [23] WANG Wenlin, LI Wenjing, YAN Yan, et al. Correction to: organic matter pollution during the spring thaw in Hulun Lake Basin: contribution of multiform human activities[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(2): 181. doi: 10.1007/s00128-020-02933-7 [24] 曹秉帅, 徐德琳, 窦华山, 等. 北方寒冷干旱地区内陆湖泊生态安全评价指标体系研究: 以呼伦湖为例[J]. 生态学报, 2021. doi: 10.5846/stxb202004301059.CAO Bingshuai, XU Delin, DOU Huashan, et al. Index system of ecological security of inland lakes in cold arid region: a case study of Hulun Lake, China[J]. Acta Ecologica Sinica, 2021. doi: 10.5846/stxb202004301059. [25] OECD.Core set of indicators for environmental performance reviews: a synthesis report by the group on the state of the environment[R].Paris, France: OECD, Organisation for Economic Co-Operation and Development, 1993: 83. [26] 王小敏, 赵军, 王建华, 等. 基于农业生态区域模型的黑河流域土地资源承载力[J]. 干旱区研究, 2014, 31(6): 991-997. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201406002.htmWANG Xiaomin, ZHAO Jun, WANG Jianhua, et al. Agro-ecological assessment for land resources and carrying capacity of the Heihe River Basin[J]. Arid Zone Research, 2014, 31(6): 991-997. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201406002.htm [27] 周林飞, 许士国, 李青山, 等. 扎龙湿地生态环境需水量安全阈值的研究[J]. 水利学报, 2007(7): 845-851. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200707014.htmZHOU Linfei, XU Shiguo, LI Qingshan, et al. Safety threshold of eco-environmental water requirement in wetland[J]. Journal of Hydraulic Engineering, 2007(7): 845-851. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200707014.htm [28] 许宏斌. 不同放牧强度对呼伦贝尔草甸草原群落特征及群落生物量分布的影响[D]. 呼和浩特: 内蒙古大学, 2018: 25-27. [29] CHEN Jian, YANG Shengtian, LI Hongwei, et al. Research on geographical environment unit division based on the method of natural breaks (Jenks)[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013. doi: 10.5194/isprsarchives-XL-4-W3-47-2013. [30] 国家统计局, 环境保护部. 中国环境统计年鉴(2017)[M]. 北京: 中国统计出版社, 2018. [31] 曹秉帅, 邹长新, 高吉喜, 等. 生态安全评价方法及其应用[J]. 生态与农村环境学报, 2019, 35(8): 953-963. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201908001.htmCAO Bingshuai, ZOU Changxin, GAO Jixi, et al. Review on methodology and application of ecological security assessment[J]. Journal of Ecology and Rural Environment, 2019, 35(8): 953-963. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201908001.htm [32] 徐方奎, 姜凤友, 梁占武, 等. 呼伦贝尔草原35年干旱统计分析[J]. 内蒙古气象, 2007(6): 22-23. https://www.cnki.com.cn/Article/CJFDTOTAL-NMQX200706009.htm [33] 梁超, 高永, 党晓宏, 等. 呼伦贝尔市季节性干旱演变特征[J]. 内蒙古林业科技, 2018, 44(2): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-NMLK201802002.htmLIANG Chao, GAO Yong, DANG Xiaohong, et al. Evolution characteristics of seasonal drought in Hulunbuir City[J]. Journal of Inner Mongolia Forestry Science and Technology, 2018, 44(2): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-NMLK201802002.htm [34] 秦伯强, 王苏民. 呼伦湖的近期演变及其与气候的关系[J]. 干旱区资源与环境, 1993(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH199302000.htmQIN Boqiang, WANG Sumin. Hulun lake's recent changes and their responses to the climate[J]. Journal of Arid Land Resources and Environment, 1993(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH199302000.htm [35] 章宗涉, 黄祥飞. 淡水浮游生物研究方法[M]. 北京: 科学出版社, 1995. [36] 姜宏, 及永乾, 等. 呼伦贝尔市统计年鉴2020[M]. 呼伦贝尔: 呼伦贝尔市统计局, 2018. [37] 陈昆仑, 齐漫, 王旭, 等. 1995—2015年武汉城市湖泊景观生态安全格局演化[J]. 生态学报, 2019, 39(5): 1725-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201905023.htmCHEN Kunlun, QI Man, WANG Xu, et al. Study of urban lake landscape ecological security pattern evolution in Wuhan[J]. Acta Ecologica Sinica, 2019, 39(5): 1725-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201905023.htm -