留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江经济带典型区域水质目标管理集成技术研究及应用

何斐 李维新 马秋霞 徐斌 晁建颖 刘庄 庄巍

何斐, 李维新, 马秋霞, 徐斌, 晁建颖, 刘庄, 庄巍. 长江经济带典型区域水质目标管理集成技术研究及应用[J]. 环境科学研究, 2021, 34(7): 1523-1531. doi: 10.13198/j.issn.1001-6929.2021.03.02
引用本文: 何斐, 李维新, 马秋霞, 徐斌, 晁建颖, 刘庄, 庄巍. 长江经济带典型区域水质目标管理集成技术研究及应用[J]. 环境科学研究, 2021, 34(7): 1523-1531. doi: 10.13198/j.issn.1001-6929.2021.03.02
HE Fei, LI Weixin, MA Qiuxia, XU Bin, CHAO Jianying, LIU Zhuang, ZHUANG Wei. Research and Application of Integrated Technology of Water Quality Target Management in Typical Areas of Yangtze River Economic Belt[J]. Research of Environmental Sciences, 2021, 34(7): 1523-1531. doi: 10.13198/j.issn.1001-6929.2021.03.02
Citation: HE Fei, LI Weixin, MA Qiuxia, XU Bin, CHAO Jianying, LIU Zhuang, ZHUANG Wei. Research and Application of Integrated Technology of Water Quality Target Management in Typical Areas of Yangtze River Economic Belt[J]. Research of Environmental Sciences, 2021, 34(7): 1523-1531. doi: 10.13198/j.issn.1001-6929.2021.03.02
编者按:
“国家水体污染控制与治理科技重大专项流域水质目标管理技术及应用专题”集中报道了“十三五”国家水体污染控制与治理科技重大专项“流域水质目标管理技术体系集成研究项目”的主要研究成果,该项目旨在构建以流域水生态监测评价、环境基准标准、排污许可管理、污染防治可行技术评估、水环境风险管理等为核心的流域水质目标管理技术体系. 其中一部分研究成果已发表于本刊2020年第11期,现将另一部分研究成果予以发表.

长江经济带典型区域水质目标管理集成技术研究及应用

doi: 10.13198/j.issn.1001-6929.2021.03.02
基金项目: 

国家水体污染控制与治理科技重大专项 2017ZX07301006

详细信息
    作者简介:

    何斐(1983-), 女, 安徽蚌埠人, 副研究员, 硕士, 主要从事流域环境管理研究, hefei@nies.org

    通讯作者:

    李维新(1966-), 男, 江苏徐州人, 研究员, 博士, 博导, 主要从事环境规划、流域水环境管理研究, lwx@nies.org

  • 中图分类号: X522

Research and Application of Integrated Technology of Water Quality Target Management in Typical Areas of Yangtze River Economic Belt

Funds: 

Major Science and Technology Program for Water Pollution Control and Treatment, China 2017ZX07301006

  • 摘要: 为实现长江经济带“共抓大保护,不搞大开发”的目标,亟待实施长江经济带水质目标管理.按照“分类、分区、分级、分期”理念,在流域水质目标管理技术的基础上,构建长江经济带下游典型区域一、二维联解的非稳态水量水质数学模型,以长江岸线长度的10%作为最大排污混合带,且在断面水质达标的基础上根据概化排污口的允许排污量计算结果,对研究区域长江干流90个水环境功能区进行容量总量计算.结果表明:沿江8市中南京市COD、氨氮、TP的区域总量控制值分别为59 537、8 099、1 008 t/a,扬州市分别为26 830、2 668、356 t/a,镇江市分别为44 683、3 344、480 t/a,泰州市分别为36 919、2 598、388 t/a,常州市分别为6 689、538、76 t/a,无锡市分别为831、121、15 t/a,苏州市分别为42 384、4 365、546 t/a,南通市分别为32 893、2 986、382 t/a,其中南京市COD、氨氮和TP的容量总量最大,无锡市COD、氨氮和TP的容量总量最小.该结果可为沿江城市污染负荷削减、污染物入江量管控提供科学决策依据.

     

  • 图  1  长江经济带水质目标管理技术衔接关系

    Figure  1.  Research logical diagram of integrated water quality target management technology

    图  2  长江经济带研究范围

    Figure  2.  Research scope of Yangtze River Economic Belt

    图  3  研究区域(马鞍山—高桥段)水环境数学模型计算范围及水下地形

    Figure  3.  Calculation range of water environment mathematical model and underwater topographic map of the study area (Ma′anshan-Gaoqiao section)

    图  4  研究区域水环境数学模型网格划分(以南京八卦洲段为例)

    Figure  4.  Grid division of water environment mathematical model in the study area (Baguazhou section)

    表  1  生活污染源排污系数

    Table  1.   Discharge coefficients of domestic pollution sources

    类型 污水量排污系数/
    [L/(人·d)]
    COD排污系数/
    [g/(人·d)]
    氨氮排污系数/
    [g/(人·d)]
    TP排污系数/
    [g/(人·d)]
    TN排污系数/
    [g/(人·d)]
    城市 220 70 12 0.9 12
    农村 160 50 5.5 0.45 7
    下载: 导出CSV

    表  2  养殖业污染源排污系数

    Table  2.   Pollutant discharge coefficients of aquaculture pollution sources  kg/(头·a)

    畜禽类型 COD排污系数 氨氮排污系数 TP排污系数
    244 19.7 1.01
    48.8 3.94 1.70
    家禽 0.8 0.24 0.115
    下载: 导出CSV

    表  3  研究区域各市COD、氨氮、TP污染负荷统计

    Table  3.   Statistical results of COD, NH3-N and TP loadings of cities in the study area  t/a

    城市 污染物 工业企业 城镇生活 农村生活 畜禽养殖 农田面源 合计
    COD 5 008.8 140 195.9 10 775.5 5 042.1 12 121.7 173 144.0
    南京市 氨氮 269.7 24 033.6 1 185.3 44.7 2 424.3 27 957.6
    TP 1 009.6 1 802.5 97.0 51.4 303.0 3 263.5
    COD 7 359.4 60 864.2 11 172.7 3 763.2 21 717.9 104 877.4
    扬州市 氨氮 586.6 10 433.9 1 229.0 141.9 4 343.6 16 735.0
    TP 865.0 782.5 100.6 51.6 542.9 2 342.6
    COD 3 080.4 45 914.4 6 862.0 1 350.9 10 014.8 67 222.4
    镇江市 氨氮 258.3 7 871.0 754.8 30.8 2 003.0 10 917.9
    TP 443.1 590.3 61.8 17.0 250.4 1 362.6
    COD 3 448.5 61 739.0 11 909.2 7 490.9 25 477.2 110 064.8
    泰州市 氨氮 330.6 10 583.8 1 310.0 197.5 5 095.4 17 517.4
    TP 871.4 793.8 107.2 88.9 636.9 2 498.1
    COD 6 052.0 101 797.3 11 480.7 1 310.7 8 697.2 129 337.9
    常州市 氨氮 415.2 17 451.0 1 262.9 35.8 1 739.4 20 904.3
    TP 1 063.3 1 308.8 103.3 15.8 217.4 2 708.7
    COD 8 015.2 69 230.3 9 711.2 3 002.2 6 790.5 96 749.4
    无锡市 氨氮 314.7 11 868.0 1 068.2 42.3 1 358.1 14 651.4
    TP 1 604.6 890.1 87.4 29.7 169.8 2 781.5
    COD 21 857.5 165 527.2 18 873.4 11 111.3 10 229.0 227 598.4
    苏州市 氨氮 1 497.4 28 376.1 2 076.1 93.6 2 045.8 34 089.0
    TP 4 684.8 2 128.2 169.9 104.3 255.7 7 342.8
    COD 4 097.3 98 592.3 18 115.0 22 421.7 36 511.7 179 738.0
    南通市 氨氮 295.4 16 901.5 1 992.6 362.8 7 302.3 26 854.8
    TP 686.2 1 267.6 163.0 284.5 912.8 3 314.2
    下载: 导出CSV

    表  4  研究区域污染源构成分析

    Table  4.   Analysis of pollution sources in the study area

    污染源 COD 氨氮 TP
    负荷/(t/a) 占比/% 负荷/(t/a) 占比/% 负荷/(t/a) 占比/%
    工业企业 58 919.1 5.4 3 967.9 2.3 11 228.0 43.8
    城镇生活 743 860.7 68.3 127 519.0 75.2 9 563.9 37.3
    农村生活 98 899.7 9.1 10 879.0 6.4 890.1 3.5
    畜禽养殖 55 493.0 5.1 949.5 0.6 643.1 2.5
    农田面源 131 559.8 12.1 26 312.0 15.5 3 289.0 12.9
    合计 1 088 732.3 100.0 169 627.4 100.0 25 614.1 100.0
    下载: 导出CSV

    表  5  研究区域各地级市容量总量

    Table  5.   Calculation results of total capacity of each city in the study area

    城市 三级功能
    分区个数
    COD容量总量/
    (t/a)
    氨氮容量总量/
    (t/a)
    TP容量总量/
    (t/a)
    南京市 18 59 537 8 099 1 008
    扬州市 9 26 830 2 668 356
    镇江市 15 44 683 3 344 480
    泰州市 13 37 351 2 630 388
    常州市 5 6 689 538 76
    无锡市 3 831 121 15
    苏州市 13 42 384 4 365 546
    南通市 14 32 893 2 986 382
    合计 90 251 198 24 751 3 251
    下载: 导出CSV

    表  6  长江下游南京段干流各三级功能分区基本信息及容量总量

    Table  6.   Basic information and total capacity calculation results of each water function area in Nanjing section of the study area

    编号 三级功能分区名称 城市 起始—终点 长度/
    km
    2020年水质目标1) 2020年容量总量/(t/a)
    COD 氨氮 TP
    1 长江皖苏缓冲区(左岸) 南京市 省界—骚狗山 5.3 3 658 505 63
    2 长江江浦保留区 南京市 骚狗山—江浦与浦口交界
    (七里河口)
    23.7 1 266 69 11
    3 长江南京浦口饮用、
    渔业用水区(左岸)
    南京市 七里桥河入江口(城南
    河口)—长江大桥
    7 114 14 2
    4 长江南京浦口渔业、
    农业用水区(左岸北岸)
    南京市 长江大桥—新化 9.3 6 435 889 110
    5 长江南京大厂工业、
    渔业用水区(左岸)
    南京市 新化—大厂区马汊河口 9.75 6 775 936 116
    6 长江南京大厂扬子
    饮用水源区(左岸)
    南京市 大厂区马汊河口—岳子河闸 2 34 4 1
    7 长江南京六合渔业、
    农业用水区(左岸)
    南京市 岳子河闸—划子口河口 16.15 11 160 1 541 191
    8 长江六合保留区 南京市 划子口河口—仪征市小河口 15.12 249 32 4
    9 长江皖苏缓冲区(右岸) 南京市 省界—铜井河口 4.4 3 036 419 52
    10 长江江宁铜井保留区 南京市 铜井河口—江宁河口 13 257 33 4
    11 长江南京渔业、农业用水区(右岸) 南京市 南京江宁河口—南京秦淮新河口 9.6 6 631 916 114
    12 长江南京夹江饮用、渔业用水区(右岸) 南京市 南京秦淮新河口—南京三汊河口 13.2 231 28 4
    13 长江南京工业、渔业用水区(右岸) 南京市 南京三汊河口—南京长江大桥 4.5 3 105 429 53
    14 长江南京上元门—燕子矶饮用、
    渔业用水区(右岸)
    南京市 南京长江大桥—南京燕子矶镇 7.5 134 16 2
    15 长江南京燕子矶工业、渔业用水区(右岸) 南京市 南京燕子矶镇—南京九乡河口 13.5 9 328 1 288 160
    16 长江南京龙潭饮用、工业用水区(右岸) 南京市 南京九乡河口—南京七乡河口 6.96 124 15 2
    17 长江南京栖霞渔业、农业用水区(右岸) 南京市 南京七乡河口—南京栖霞三江河口 9.74 6 728 929 115
    18 长江南京营防保留区 南京市 三江河口与句容交界(大道河口) 13.8 272 36 5
    小计 59 537 8 099 1 008
    注:1)为《江苏省地表水(环境)功能区划》中的水质目标.
    下载: 导出CSV
  • [1] 习近平. 在深入推动长江经济带发展座谈会上的讲话[EB/OL]. 北京: 求是网, 2018-04-26[2019-08-31]. https://baijiahao.baidu.com/s?id=1643366498524531389&wfr=spider&for=pc.
    [2] 环境保护部, 国家发展和改革委员会, 水利部. 长江经济带生态环境保护规划(环规财[2017] 88号)[R]. 北京: 环境保护部, 2017.
    [3] 周泓, 刘洋, 张雪瑶, 等. 生态优先推动长江经济带绿色发展: 《长江经济带发展规划纲要》初步解读[J]. 环境与可持续发展, 2016(6): 191-192. doi: 10.3969/j.issn.1673-288X.2016.06.059

    ZHOU Hong, LIU Yang, ZHANG Xueyao, et al. Ecological priority to promote the green development of the Yangtze River Economic Belt[J]. Environment and Sustainable Development, 2016(6): 191-192. doi: 10.3969/j.issn.1673-288X.2016.06.059
    [4] 王金南, 王东, 姚瑞华. 把长江经济带建成生态文明先行示范带[N]. 北京: 中国环境报, 2017-01-09(005).
    [5] US Environmental Protection Agency. Overview of current total maximum daily Load-TMDL-Program and Regulations[R]. Washington DC, USA: US Environmental Protection Agency, Office of Water Regulations and Standards, 2000: 1-2.
    [6] GULATI S, STUBBLEFIELD A A, HANLON J S, et al. Use of continuous and grab sample data for calculating Total Maximum Daily Load(TMDL) in agricultural watersheds[J]. Chemosphere, 2014, 99(3): 81-88.
    [7] US Environmental Protection Agency. Guidance for water-quality-based decisions: the TMDL process[R]. Washington DC: US Environmental Protection Agency, Office of Water Regulations and Standards, 1991: 9-11.
    [8] KANG M S, PARK S W, LEE J J. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields[J]. Agricultural Water Management, 2006, 79(2): 72-92. http://www.sciencedirect.com/science/article/pii/S037837740500106X
    [9] DEPINTO J V, FREEDMAN P L, DILKS D M, et al. Models quantify the total maximum daily load process[J]. Journal of Environmental Engineering, 2004, 130(6): 703-713. doi: 10.1061/(ASCE)0733-9372(2004)130:6(703)
    [10] KANG M S, PARK S W, LEE J J, et al. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields[J]. Agricultural Water Management, 2006, 79: 72-92. doi: 10.1016/j.agwat.2005.02.015
    [11] WAGNER R C, DILLAHA T A, YAGOW G. An assessment of the reference watershed approach for TMDLs with biological impairments[J]. Water, Air, & Soil Pollution, 2007, 181: 341-354.
    [12] LEBO M E, PAERL H W, PEIERLS B L. Evaluation of progress in achieving TMDL mandated nitrogen reductions in the Neuse River Basin, North Carolina[J]. Environmental Management, 2012, 49(3): 253-266. http://www.ncbi.nlm.nih.gov/pubmed/22037617
    [13] HE L M, LUB J, SHI W Y. Variability of fecal indicator bacteria in flowing and ponded waters in Southern California: implications for bacterial TMDL development and implementation[J]. Water Research, 2007, 41(5): 3132-3140. http://www.ncbi.nlm.nih.gov/pubmed/17543369
    [14] YAN Fu, URMILA M D. Cost effective environmental control technology for utilities[J]. Advances in Environmental Research, 2004, 8(2): 173-196. doi: 10.1016/S1093-0191(02)00129-6
    [15] OLF A K, FABIO D G, SANJA V, et al. Decision support tool for used oil regeneration technologies assessment and selection[J]. Journal of Hazard Material, 2006, 137(1): 437-442. doi: 10.1016/j.jhazmat.2006.02.035
    [16] MISHRA P K, DENG Z Q. Sediment TMDL development for the Amite River[J]. Water Resourse Management, 2009, 23(5): 839-852. doi: 10.1007/s11269-008-9302-4
    [17] LI Xi, WANG Yigang, ZHANG Suxiang. Numerical simulation of water quality in Yangtze Estuary[J]. Water Science and Engineering, 2009, 2(4): 40-51. http://d.wanfangdata.com.cn/Periodical/skxygc200904004
    [18] 碧水保卫战之污染减排与饮用水安全保障: "流域水体污染控制与治理技术集成及效益评估"课题成果[J]. 环境工程技术学报, 2019, 9(4): 347-348.
    [19] 王雪, 逄勇, 谢蓉蓉, 等. 基于控制断面水质达标的秃尾河流域总量控制[J]. 北京工业大学学报, 2015, 41(1): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201501022.htm

    WANG Xue, PANG Yong, XIE Rongrong, et al. Total amount control of water quality standard at the control section in Tuwei River Basin[J]. Journal of Beijing University of Technology, 2015, 41(1): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201501022.htm
    [20] 许振成, 曾凡棠, 谌建宇, 等. 东江流域水污染控制与水生态系统恢复技术与综合示范[J]. 环境工程技术学报, 2017, 7(4): 393-404. doi: 10.3969/j.issn.1674-991X.2017.04.055

    XU Zhencheng, ZENG Fantang, CHEN Jianyu, et al. Water pollution control and integrated demonstration of water ecosystem recovery technology in Dongjiang River Basin[J]. Journal of Environmental Engineering Technology, 2017, 7(4): 393-404. doi: 10.3969/j.issn.1674-991X.2017.04.055
    [21] 刘璐瑶, 冯民权. 基于水质目标管理的涑水河水环境容量研究[J]. 水资源与水工程学报, 2018, 29(2): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201802008.htm

    LIU Luyao, FENG Minquan. Study on the environmental capacity of Sushui River water quality based on target management[J]. Journal of Water Resources & Water Engineering, 2018, 29(2): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201802008.htm
    [22] 张萍, 黄锦辉, 孙翀, 等. 基于水质目标可达的入太湖湖体污染物削减方案研究[J]. 水利水电技术, 2016, 47(11): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201611021.htm

    ZHANG Ping, HUANG Jinhui, SUN Chong, et al. Water quality target reachability-based study on scheme for reduction of pollutants into Taihu Lake[J]. Water Resources and Hydropower Engineering, 2016, 47(11): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201611021.htm
    [23] 赵艳芳, 项颂, 庞燕. 生态文明背景下洱海流域水环境管理政策评估[J]. 环境工程技术学报, 2019, 9(6): 707-713. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201906013.htm

    ZHAO Yanfang, XIANG Song, PANG Yan. Assessment of water environmental management policy in Lake Erhai Basin under the background of ecological civilization[J]. Journal of Environmental Engineering Technology, 2019, 9(6): 707-713. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201906013.htm
    [24] 陈善荣, 何立环, 林玉钰, 等. 近40年来长江干流水质变化研究[J]. 环境科学研究, 2020, 33(5): 1119-1128. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200507&flag=1

    CHEN Shanrong, HE Lihuan, LIN Lanyu, et al. Change trends of surface water quality in the mainstream of the Yangtze River during the past four decades[J]. Research of Environmental Sciences, 2020, 33(5): 1120-1128. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200507&flag=1
    [25] 娄保锋, 卓海华, 周正, 等. 近18年长江干流水质和污染物通量变化趋势分析[J]. 环境科学研究, 2020, 33(5): 1150-1161. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200510&flag=1

    LOU Baofeng, ZHUO Haihua, ZHOU Zheng, et al. Analysis on alteration of water quality and pollutant fluxes in the Yangtze Mainstem during recently 18 years[J]. Research of Environmental Sciences, 2020, 33(5): 1150-1161. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200510&flag=1
    [26] 刘录三, 黄国鲜, 王璠, 等. 长江流域水生态环境安全主要问题、形势与对策[J]. 环境科学研究, 2020, 33(5): 1081-1090. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200503&flag=1

    LIU Lusan, HUANG Guoxian, WANG Fan, et al. Main problems, situation and countermeasures of water eco-environment security in the Yangtze River Basin[J]. Research of Environmental Sciences, 2020, 33(5): 1081-1090. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200503&flag=1
    [27] 曹国志, 於方, 王金南, 等. 长江经济带突发环境事件风险防控现状、问题与对策[J]. 中国环境管理, 2018, 10(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL201801018.htm

    CAO Guozhi, YU Fang, WANG Jinnan, et al. Situation, problems and countermeasures of risk prevention and control of environmental emergencie in the Yangtze River Economic Belt[J]. Chinese Journal of Environmental Management, 2018, 10(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL201801018.htm
    [28] 开晓莉, 高良敏, 刘宁. 长江流域江苏段饮用水源地水环境安全研究[J]. 安徽农业科学, 2013(14): 334-338. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201314125.htm

    KAI Xiaoli, GAO Liangmin, LIU Ning. Research on the water environment security of drinking water sources in the Yangtze River Basin of Jiangsu Province[J]. Journal of Anhui Agricultural Sciences, 2013(14): 334-338. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201314125.htm
    [29] 钱易. 努力实现生态优先、绿色发展[J]. 环境科学研究, 2020, 33(5): 1069-1074. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200501&flag=1

    QIAN Yi. To realize ecological priority and green development[J]. Research of Environmental Sciences, 2020, 33(5): 1069-1074. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200501&flag=1
    [30] 杨荣金, 孙美莹, 傅伯杰, 等. 长江流域生态系统可持续管理策略[J]. 环境科学研究, 2020, 33(5): 1091-1099. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200504&flag=1

    YANG Rongjin, SUN Meiying, FU Bojie, et al. Sustainable management strategy of ecosystems in the Yangtze River Basin[J]. Research of Environmental Sciences, 2020, 33(5): 1091-1099. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200504&flag=1
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  99
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2021-03-16
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回