Classification of Effluent Discharge Limits of Municipal Sewage Treatment Plant and Cost of Upgrading Standard
-
摘要: 为了解城镇污水处理厂不同提标改造要求对成本的影响程度,围绕水环境质量改善目标,提出城镇污水处理厂排放限值的分级体系设计.在排放浓度分级方面,梳理现行国家和地方城镇污水处理厂排放标准,将其主要水污染物的排放浓度限值分为四级,按照从宽到严的顺序,分别为GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准(四级)、GB 3838—2002《地表水环境质量标准》中准Ⅴ类水质标准(三级)、准Ⅳ类水质标准(二级)和准Ⅲ类水质标准(一级)的浓度水平,并对从四级分别提高到三级、二级和一级排放限值进行技术经济评估.结果表明:对于一座设计规模为10×104 t/d的城镇污水处理厂,由四级分别提高到三级、二级和一级,需增加的成本和占地面积逐步提高.当排放限值从四级提高到一级时,成本与占地面积增加最多,其中投资成本增加1.1×108~1.4×108元,运行成本增加1.6~1.8元/t,土地占用面积增加2 000 m2.以某中等城市为例,提标到最严格的一级限值最高需要增加投资成本24.4×108~31.1×108元,新增运行成本13.0×108~14.6×108元/a,增加占地面积6.8×104 m2.研究显示,城镇污水处理厂出水可直接与水质改善目标相衔接,且将大幅度增加污水处理厂的成本.Abstract: In order to understand the impact of the requirements of upgrading the effluent quality standards on the cost, we proposed a system to classify the effluent discharge limits of municipal sewage treatment plants. We synthesized current national and local discharge standards of municipal sewage treatment plants, and classified the discharge limits of major contaminants present in wastewater into four levels, namely grade 1-A of Discharge Standard of Pollutants for Municipal Waste (GB 18918-2002) (level 4), quasi grade V of Environmental Quality Standards for Surface Water (GB 3838-2002) (level 3), quasi grade Ⅳ (level 2) and quasi gradeⅢ (level 1). Then, we assessed the technical and economic feasibility of upgrading the effluent discharge level from level 4 to level 3, 2, and 1, respectively. We found that the cost and floor area were greater from (level 4→level 1) > (level 4→level 2) > (level 4→level 3) when the discharge concentration limits were upgraded for a 10×104 t/d municipal sewage treatment plan. When upgrading discharge quality from level 4 to level 1, the investment cost increased by 1.1×108-1.4×108 RMB, operating cost increased from 1.6 to 1.8 RMB per ton, and the floor area increased by 2000 m2. Taking a medium-sized city in China as an example, the maximum investment cost increased by 24.4×108-31.1×108 RMB, operating cost increased by 13.0×108-14.6×108 RMB per year, and the floor area increased by 6.8×104 m2. Our results indicate that the effluent of municipal sewage treatment plants can be directly linked to the goal of improving water quality, which will drive the costs of treatment up substantially.
-
表 1 许可排放限值分级体系设计
Table 1. Design of grading system for permitted discharge limits for municipal wastewater treatment plants
分级 许可排放限值 适用范围 限值水平宽严程度 许可排放浓度限值 许可排放量限值 四级 国家行业排放标准 基于排放标准计算 全国全行业 宽 三级 地方行业排放标准 基于排放标准计算 地方全行业 中 二级 地方流域排放标准 基于排放标准计算 流域全行业 较严 一级 地方流域排放标准 基于水环境质量
改善目标计算单个污染源 最严 表 2 城镇污水处理厂主要污染物排放标准及限值比较[6-13]
Table 2. Comparison of discharge standards and limits for major pollutants in municipal wastewater treatment plants[6-13]
标准类别 标准编号 分级 COD浓度/
(mg/L)氨氮浓度/
(mg/L)总氮浓度/
(mg/L)总磷浓度/
(mg/L)国家标准 GB 3838—2002 Ⅲ类 20 1.0 1.0 0.2 Ⅳ类 30 1.5 1.5 0.3 Ⅴ类 40 2.0 2.0 0.4 GB 18918—2002 一级A 50 5(8) 15 0.5 地方标准 北京市DB 11/890—2012 A标准 20 1.0(1.5) 10 0.2 B标准 30 1.5(2.5) 15 0.3 天津市DB 12/599—2015 A标准 30 1.5(3.0) 10 0.3 B标准 40 2.0(3.5) 15 0.4 C标准 50 5.0(8.0) 15 0.5 浙江省DB 33/2169—2018 新建 30 1.5(3.0) 10(12) 0.3 现有 40 2.0(4.0) 12(15) 0.3 江苏省DB 32/1072—2018 太湖流域内一级、二级保护区 40 3.0(5.0) 10(12) 0.3 安徽省DB 34/2710—2016 工业废水占比小于50% 40 2.0(3.0) 10(12) 0.3 工业废水占比大于50% 50 5.0 15 0.5 重庆市DB 50/963—2020 重点控制区 30 1.5(3.0) 15 0.3 一般控制区 50 5.0(8.0) 15 0.5 昆明市DB 5301/T 43—2020 A级 20 1.0(1.5) 5(10) 0.05 B级 30 1.5(3.0) 10(15) 0.3 C级 40 3.0(5.0) 15 0.4 D级 40 5.0(8.0) 15 0.5 河北省DB 13/2795—2018 核心控制区 20 1.0(1.5) 10 0.2 重点控制区 30 1.5(2.5) 15 0.3 一般控制区 40 2.0(3.5) 15 0.4 注:括号内数值为水温小于12 ℃时的排放限值. 表 3 城镇污水处理厂排放限值分级设计
Table 3. Grading design of discharge limits for municipal wastewater treatment plants
序号 污染物项目 一级
(准Ⅲ类)二级
(准Ⅳ类)三级
(准Ⅴ类)四级
(一级A)1 COD浓度/(mg/L) 20 30 40 50 2 氨氮浓度/(mg/L) 1.0(1.5) 1.5(3) 3(5) 5(8) 3 总氮浓度/(mg/L) 10 10 15 15 4 总磷浓度/(mg/L) 0.2 0.3 0.4 0.5 注:括号内数值为水温小于12 ℃时的排放限值. 表 4 城镇污水处理厂排放限值分级与成本分析
Table 4. Grading of discharge limits and cost assessment for municipal wastewater treatment plants
序号 项目 排放限值分级 一级 二级 三级 四级 1 COD浓度/(mg/L) 20 30 40 50 2 氨氮浓度/(mg/L) 1.0(1.5) 1.5(3) 3(5) 5(8) 3 总氮浓度/(mg/L) 10 10 15 15 4 总磷浓度/(mg/L) 0.2 0.3 0.4 0.5 5 推荐的达标技术路线 A2/O+MBR+臭氧接触池+活性炭滤池+消毒 A2/O+反硝化滤池+高效沉淀池+活性砂滤池+消毒 A2/O+高效沉淀池+活性砂滤池+消毒 A2/O+高效沉淀池+纤维转盘滤池+消毒 6 增加占地面积/m2 2 000 1 500 1 000 0 7 增加投资成本 膜组件/(104元) 7 000~10 000 0 0 0 反硝化滤池/(104元) 0 5 000 0 0 臭氧接触池/(104元) 1 000 0 0 0 高效沉淀池/(104元) 0 0 0 0 纤维转盘滤池/(104元) 0 3 000 3 000 0 活性炭吸附池/(104元) 3 000 0 0 0 小计/(108元) 1.1~1.4 0.8 0.3 0 8 增加运行成本/(元/t) 1.6~1.8 0.8~1.0 0.4~0.5 0 表 5 某中等城市所有城镇污水处理厂技术改造成本估算
Table 5. Cost assessment of technology upgrading for all municipal wastewater treatment plants in a medium-sized city
序号 提标情形 增加投资成本/(108元) 增加运行成本/(108元/a) 增加占地面积/m2 1 限值由四级提标至三级 6.7 3.2~4.1 34 000 2 限值由四级提标至二级 17.8 6.4~8.1 51 000 3 限值由四级提标至一级 24.4~31.1 13.0~14.6 68 000 -
[1] WANG Siyu, LIU Hang, GU Jun. Technology feasibility and economic viability of an innovative integrated ceramic membrane bioreactor and reverse osmosis process for producing ultrapure water from municipal wastewater[J]. Chemical Engineering Journal, 2019, 375: 122078. doi: 10.1016/j.cej.2019.122078 [2] LU Jiayuan, WANG Xuemeng, LIU Houqi, et al. Optimizing operation of municipal wastewater treatment plants in China: the remaining barriers and future implications[J]. Environment International, 2019, 129: 273-278. doi: 10.1016/j.envint.2019.05.057 [3] ZENG Siyu, CHEN Xing, DONG Xin, et al. Efficiency assessment of urban wastewater treatment plants in China: considering greenhouse gas emissions[J]. Resources, Conservation and Recycling, 2017, 120: 157-165. doi: 10.1016/j.resconrec.2016.12.005 [4] BA-ALAWIA A H, IFAEIA P, LI Qian. Process assessment of a full-scale wastewater treatment plant using reliability, resilience, and econo-socio-environmental analyses(R2ESE)[J]. Process Safety and Environmental Protection, 2020, 133: 259-274. doi: 10.1016/j.psep.2019.11.018 [5] 刘向荣, 简德武, 简爽. 高排放标准下城镇污水处理厂的提标改造探讨[J]. 中国给水排水, 2019, 35(20): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201920013.htmLIU Xiangrong, JIAN Dewu, JIAN Shuang. Discussion on the upgrading of municipal wastewater treatment plant under high emission standard[J]. China Water & Wastewater, 2019, 35(20): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201920013.htm [6] 北京市环境保护局, 北京市质量技术监督局. DB 11/890-2012北京市城镇污水处理厂水污染物排放标准[S]. 北京: 北京市环境保护局, 2012. [7] 浙江省人民政府. DB 33/2169-2018城镇污水处理厂主要水污染物排放标准[S]. 杭州: 浙江省人民政府, 2018. [8] 江苏省环境保护厅, 江苏省质量技术监督局. DB 32/1072-2018太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值[S]. 南京: 江苏省环境保护厅, 2018. [9] 河北省环境保护厅, 河北省质量技术监督局. DB 13/2795-2018大清河流域水污染物排放标准[S]. 石家庄: 河北省环境保护厅, 2018. [10] 天津市环境保护局, 天津市市场和质量监督管理委员会. DB 12/599-2015天津市城镇污水处理厂污染物排放标准[S]. 天津: 天津市环境保护局, 2015. [11] 安徽省环境保护厅, 安徽省质量技术监督局. DB 34/2710-2016巢湖流域城镇污水处理厂和工业行业主要水污染物排放限值[S]. 合肥: 安徽省环境保护厅, 2016. [12] 重庆市生态环境局, 重庆市市场监督管理局. DB 50/963-2020梁滩河流域城镇污水处理厂主要水污染物排放标准[S]. 重庆: 重庆市生态环境局, 2020. [13] 昆明市市场监督管理局. DB 5301T 43-2020城镇污水处理厂主要水污染物排放限值[S]. 昆明: 昆明市市场监督管理局, 2020. [14] 邓义祥, 郝晨林, 李子成, 等. 基于技术和水质相结合的排污许可限值核定技术研究[J]. 环境科学研究, 2020, 33(11): 2515-2522. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201109&flag=1DENG Yixiang, HAO Chenlin, LI Zicheng, et al. Revision and determination of wastewater discharge permit limit based on technology and water quality target[J]. Research of Environmental Sciences, 2020, 33(11): 2515-2522. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201109&flag=1 [15] 李兴, 钟毓, 苏文越. 城镇污水处理厂国家地表Ⅳ类水提标工程设计[J]. 广东化工, 2018, 45(7): 202-203. doi: 10.3969/j.issn.1007-1865.2018.07.088LI Xing, ZHONG Yu, SU Wenyue. Upgrading design of municipal wastewater treatment plant for class Ⅳ of the national surface water standard[J]. Guangdong Chemical Industry, 2018, 45(7): 202-203. doi: 10.3969/j.issn.1007-1865.2018.07.088 [16] 宋浩亮, 林楷, 钟毓, 等. A/A/O污水处理厂深度处理工艺设计[J]. 广东化工, 2019, 46(6): 157. doi: 10.3969/j.issn.1007-1865.2019.06.068SONG Haoliang, LIN Kai, ZHONG Yu, et al. Upgrading and reconstruction of WWTP by A/A/O-MBBR technology[J]. Guangdong Chemical Industry, 2019, 46(6): 157. doi: 10.3969/j.issn.1007-1865.2019.06.068 [17] 李舒扬. 城镇污水处理厂准Ⅳ类提标改造工艺探讨[J]. 四川建材, 2020, 46(5): 18-19. doi: 10.3969/j.issn.1672-4011.2020.05.011 [18] 吴军. 城镇污水处理厂排放标准由一级A提标至地表水Ⅳ类水工艺研究[J]. 河南科技, 2019, 864(22): 148-150. doi: 10.3969/j.issn.1003-5168.2019.22.052WU Jun. Study on class Ⅳ water technology from level A to surface water for discharge standard of urban sewage treatment plant[J]. Henan Science and Technology, 2019, 864(22): 148-150. doi: 10.3969/j.issn.1003-5168.2019.22.052 [19] 杨敏, 郭兴芳, 孙永利, 等. 某高排放标准污水处理厂精细化运行措施研究[J]. 住宅产业, 2019(11): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZCY201911030.htm [20] 孙晓杰, 王嘉捷, 赵孝芹, 等. 我国城市污水厂推行一级A标提标改造探讨[J]. 环境工程, 2013, 31(6): 12-15. doi: 10.3969/j.issn.1671-1556.2013.06.003SUN Xiaojie, WANG Jiajie, ZHAO Xiaoqin, et al. Discussion on upgrading reconstruction of municipal wastewater treatment plant in China[J]. Environmental Engineering, 2013, 31(6): 12-15. doi: 10.3969/j.issn.1671-1556.2013.06.003 [21] 彭标, 周律. 污水处理厂升级改造方案的价值分析方法[J]. 价值工程, 2013(27): 19-20. doi: 10.3969/j.issn.1006-4311.2013.27.008PENG Biao, ZHOU Lv. Approach based on value analysis for wastewater treatment plant upgrading[J]. Value Engineering, 2013(27): 19-20. doi: 10.3969/j.issn.1006-4311.2013.27.008 [22] 原培胜. 城镇污水处理厂处理成本分析[J]. 舰船防化, 2007(6): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS201505008.htmYUAN Peisheng. The treating cost analysis of town sewage treatment plant[J]. Chemical Defence on Ships, 2007(6): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS201505008.htm [23] YENKIE K M. Integrating the three E's in wastewater treatment: efficient design, economic viability, and environmental sustainability[J]. Current Opinion in Chemical Engineering, 2019, 26: 131-138. http://www.sciencedirect.com/science/article/pii/S2211339819300371 [24] XU Jin, LUO Pengzhou, LU Bowen, et al. Energy-water nexus analysis of wastewater treatment plants (WWTPs) in China based on statistical methodologies[J]. Energy Procedia, 2018, 152: 259-264. doi: 10.1016/j.egypro.2018.09.116 [25] MORRIS L, COLOMBO V, HASSELL K. Municipal wastewater effluent licensing: a global perspective and recommendations for best practice[J]. Science of the Total Environment, 2017, 580: 1327-1339. doi: 10.1016/j.scitotenv.2016.12.096 [26] BROK N B, MUNK-NIELSEN T, MADSEN H, et al. Flexible control of wastewater aeration for cost-efficient, sustainable treatment[J]. IFAC Papers On Line, 2019, 52(4): 494-499. http://www.sciencedirect.com/science/article/pii/S2405896319305968 [27] GU Yifan, LI Yue, LI Xuyao, et al. Energy self-sufficient wastewater treatment plants: feasibilities and challenges[J]. Energy Procedia, 2017, 105: 3741-3751. [28] LIU Changqing, LI Shuai, ZHANG Feng. The oxygen transfer efficiency and economic cost analysis of aeration system in municipal wastewater treatment plant[J]. Energy Procedia, 2011(5): 2437-2443. http://www.sciencedirect.com/science/article/pii/S1876610211013555 [29] NOOR I, MARTIN A, DAHL O. Techno-economic system analysis of membrane distillation process for treatment of chemical mechanical planarization wastewater in nano-electronics industries[J]. Separation and Purification Technology, 2020, 248: 117013. http://www.sciencedirect.com/science/article/pii/S1383586620314878 [30] NOOR I, COENEN J, MARTIN A, et al. Experimental investigation and techno-economic analysis of tetramethylammonium hydroxide removal from wastewater in nano-electronics manufacturing via membrane distillation[J]. Journal of Membrane Science, 2019, 579: 283-293. http://www.sciencedirect.com/science/article/pii/s0376738818332290 [31] VINEYARD D, HICKS A, KARTHIKEYAN K G, et al. Economic analysis of electrodialysis, denitrification, and anammox for nitrogen removal in municipal wastewater treatment[J]. Journal of Cleaner Production, 2020, 262: 121145. http://www.sciencedirect.com/science/article/pii/S0959652620311926 [32] XU Jin, LI Yue, WANG Hongtao, et al. Exploring the feasibility of energy self-sufficient wastewater treatment plants: a case study in eastern China[J]. Energy Procedia, 2017, 142: 3055-3061. http://www.sciencedirect.com/science/article/pii/S1876610217361994 [33] STENTOFT P A, GUERICKE D, MUNK-NIELSEN T, et al. Model predictive control of stochastic wastewater treatment process for smart power, cost-effective aeration[J]. IFAC Papers On Line, 2019, 52(1): 622-627. http://www.sciencedirect.com/science/article/pii/S2405896319302198 [34] QI Miao, YANG Yongkui, ZHANG Xiaoyan, et al. Pollution reduction and operating cost analysis of municipal wastewater treatment in China and implication for future wastewater management[J]. Journal of Cleaner Production, 2020, 253: 120003. http://www.sciencedirect.com/science/article/pii/S0959652620300500 [35] JIANG Hui, HUA Ming, ZHANG Jin. Sustainability efficiency assessment of wastewater treatment plants in China: a data envelopment analysis based on cluster benchmarking[J]. Journal of Cleaner Production, 2020, 244: 118729. http://www.sciencedirect.com/science/article/pii/S0959652619335991 [36] VINARDELL S, ASTALS S, MATA-ALVAREZ J. Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal wastewater treatment and water production[J]. Bioresource Technology, 2020, 297: 122395. -