Spatial Distribution Characteristics of Environmental Variables and Response to Land Use Patterns in Different Aquatic Ecological Functional Regions of Hun-Tai River Basin
-
摘要: 为深入分析不同水生态功能区土地利用方式对环境要素空间分布特征的影响,于2009—2016年对浑太河流域300个样点的407组数据进行野外监测(包括26种水环境要素数据以及2010年和2015年的Landsat TM遥感影像数据),采用主成分分析、Spearman相关性分析和多元线性回归分析,筛选主要水环境因子,分析流域水质指数(WQI)的空间变化规律,结合水生态功能分区和各样点的土地利用数据,探究了不同水生态功能区土地利用方式对河流主要环境要素的影响.结果表明:①电导率(EC)、溶解氧(DO)、悬浮物(SS)、5日生化需氧量(BOD5)、化学需氧量(CODCr)和铵态氮(NH4+)是影响浑太河流域水质状况的主要环境要素.②水生态Ⅰ区和Ⅱ区WQI较高,水质状况较好,平均值分别为86.80±6.47和85.57±6.69,其中等级为好的样点占比分别为30.41%和21.70%;水生态Ⅲ区水质较差,WQI平均值为72.92±13.75,其中建设用地和林地是影响WQI的主要土地利用类型;随着林地面积减少,建设用地面积增加,WQI逐渐降低(Radj2=0.25),其中等级为好的样点占比仅为0.94%,而等级为差的样点占比超过50%.研究显示,土地利用对河流主要环境要素的影响在3个水生态功能区有显著差异,建设用地面积的快速增加和林地面积的大幅降低是影响浑太河流域水生态Ⅲ区水质状况的主要驱动因子.Abstract: In order to analyze the impact of land use patterns on the spatial distribution characteristics of environmental variables in different aquatic ecological functional areas, a field survey was conducted in the Hun-Tai River Basin from 2009 to 2016. A total of 407 paired data were collected from 300 sampling sites, including 26 environmental variables and the Landsat TM remote-sensing image data in 2010 and 2015. Principal component analysis, Spearman correlation analysis and multiple linear regression analysis were used to select the main environmental factors and analyze the spatial variations of water quality index (WQI) of the basin. Combined with the land use types from different aquatic ecological functional regions and sampling sites, the impacts of land use patterns on the main environmental variables of river were explored. The results showed that electrical conductivity (EC), dissolved oxygen (DO), suspended solids (SS), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (CODCr) and ammonium nitrogen (NH4+) were the main environmental variables affecting the water quality of the Hun-Tai River Basin. The WQI in aquatic eco-region andⅡ was higher and the water quality was better with average values of 86.80±6.47 and 85.57±6.69, respectively. The proportions of sampling sites with good grades were 30.41% and 21.70%, respectively. The water quality in the aquatic eco-region Ⅲ was poor with an average value of 72.92±13.75. Among the 6 land use types, construction and forest land were the driving factors that affect the values of WQI. With the decrease in forest land and the increase in the construction land, the WQI gradually decreased (Radj2=0.25). In the aquatic eco-region Ⅲ, the proportions of sampling sites with good grades were 0.94%, whereas the proportions of sampling sites with poor grades exceeded 50%. The present study shows that the impact of land use on the main environmental variables of the river is significantly different in the three aquatic ecological functional areas. The rapid increase of construction land and the substantial decrease of forest land are main driving factors affecting the water quality in aquatic eco-region Ⅲ of the Hun-Tai River Basin.
-
表 1 各水质参数的权重以及基于GB 3838—2012《地表水环境质量标准》的标准化因子
Table 1. Weights and normalization factors based on the Environmental Quality Standards for Surface Water (GB 3838-2012) of each water quality parameter
参数 权重 标准化因子(Ci) 100 90 80 70 60 50 40 30 20 10 0 NH4+浓度 0.17 < 0.01 < 0.05 < 0.1 < 0.2 < 0.3 < 0.4 < 0.5 < 0.75 < 1.0 ≤1.25 >1.25 BOD5浓度 0.16 < 0.5 < 2 < 3 < 4 < 5 < 6 < 8 < 10 < 12 ≤15 >15 EC 0.22 < 0.75 < 1.00 < 1.25 < 1.50 < 2.00 < 2.50 < 3.00 < 5.00 < 8.00 ≤12.00 >12.00 CODCr浓度 0.12 < 5 < 10 < 20 < 30 < 40 < 50 < 60 < 80 < 100 ≤150 >150 DO浓度 0.17 ≥7.5 >7.0 >6.5 >6.0 >5.0 >4.0 >3.5 >3.0 >2.0 ≥1.0 < 1.0 SS浓度 0.16 < 0.25 < 0.75 < 1.005 < 1.50 < 2.00 < 3.00 < 5.00 < 8.00 < 12.00 ≤20.00 >20.00 注:加粗数值为原始数值除以1 000. 表 2 16个环境要素的Spearman相关性系数
Table 2. Spearman correlation coefficients of 16 environmental variables
环境要素 D EC TDS浓度 DO浓度 SS浓度 K+浓度 Na+浓度 Ca2+浓度 Mg2+浓度 D 1.00 EC 0.07 1.00 TDS浓度 0.15** 0.78** 1.00 DO浓度 -0.17** -0.35** -0.44** 1.00 SS浓度 -0.02 0.37** 0.45** -0.40** 1.00 K+浓度 -0.14** 0.58** 0.40** -0.21** 0.40** 1.00 Na+浓度 -0.00 0.48** 0.42** -0.24** 0.41** 0.58** 1.00 Ca2+浓度 0.10* 0.57** 0.55** -0.38** 0.36 0.61** 0.52** 1.00 Mg2+浓度 -0.01 0.60** 0.43** 0.05 0.17** 0.45** 0.41** 0.38** 1.00 Cl-浓度 0.25** 0.47** 0.52** -0.36** 0.32** 0.38** 0.31** 0.54** 0.28** SO42-浓度 0.09 0.70** 0.68** -0.32** 0.41** 0.56** 0.46** 0.53** 0.48** HCO3-浓度 -0.09 0.43** 0.26** 0.28** 0.04 0.26** 0.19** 0.13** 0.56** BOD5浓度 0.04 0.41** 0.32** -0.40** 0.31** 0.42** 0.28** 0.34** 0.28** CODCr浓度 0.04 0.21** 0.20** -0.32** 0.26** 0.20** 0.10* 0.14** 0.08 NH4+浓度 0.20** 0.37** 0.46** -0.26** 0.11** 0.08 0.10* 0.29** 0.15** NO2-浓度 0.17** 0.25** 0.26** 0.08 -0.03 0.06 0.01 0.09 0.19** TP浓度 0.15** 0.30** 0.41** -0.43** 0.28** 0.11* 0.11* 0.16** 0.03 Si浓度 -0.00 0.31** 0.34** -0.51** 0.28** 0.19** 0.14** 0.25** 0.05 环境要素 Cl-浓度 SO42-浓度 HCO3-浓度 BOD5浓度 CODCr浓度 NH4+浓度 NO2-浓度 TP浓度 Si浓度 Cl-浓度 1.00 SO42-浓度 0.64** 1.00 HCO3-浓度 -0.01 0.23** 1.00 BOD5浓度 0.30** 0.37** 0.10* 1.00 CODCr浓度 0.26** 0.16** -0.04 0.45** 1.00 NH4+浓度 0.45** 0.35** 0.06 0.04 0.23** 1.00 NO2-浓度 0.18** 0.27** 0.17** 0.01 0.11* 0.27** 1.00 TP浓度 0.37** 0.26** -0.06 0.21** 0.33** 0.39** 0.06 1.00 Si浓度 0.20** 0.23** -0.05 0.27** 0.16** 0.22** -0.04 0.29** 1.00 注:*和**分别表示在0.05和0.01水平显著相关. 表 3 土地利用类型与主要环境要素的多元逐步回归分析
Table 3. Stepwise multiple regression analysis for land-use types and main environmental variables
水生态功能区 环境要素(y) 变量 回归方程 Radj2 p 水生态Ⅰ区 EC 林地面积 y=353.29-2.087FOR 0.08 < 0.01 SS浓度 未利用土地面积 y=39.008+14.237BAR 0.04 < 0.01 BOD5浓度 水域、林地面积 y=1.141+0.651WAT+0.037FOR 0.12 < 0.01 CODCr浓度 林地面积 y=12.04+0.133FOR 0.02 < 0.05 水生态Ⅱ区 EC 建设用地、农田面积 y=120.778+9.792BUI+1.861FAR 0.29 < 0.01 DO浓度 林地、未利用土地、水域面积 y=9.903+0.024FOR-0.119BAR-0.006 9WAT 0.19 < 0.01 BOD5浓度 建设用地面积 y=2.477+0.149BUI 0.11 < 0.01 NH4+浓度 水域面积 y=0.628-0.014WAT 0.04 < 0.05 水生态Ⅲ区 EC 林地、建设用地面积 y=428.119+6.903BUI-4.097FOR 0.34 < 0.01 DO浓度 林地、农田面积 y=4.877+0.077FOR+0.036FAR 0.17 < 0.01 BOD5浓度 林地面积 y=7.646-0.119FOR 0.05 < 0.05 CODCr浓度 建设用地面积 y=20.630+0.789BUI 0.11 < 0.01 NH4+浓度 水域、建设用地面积 y=0.413+0.104BUI+0.030WAT 0.21 < 0.01 WQI浓度 城镇、林地面积 y=76.554-0.304BUI+0.186FOR 0.25 < 0.01 注:表中AGR、FOR、GRA、WAT、BUI和BAR分别代表农业用地、林地、草地、水域、建设用地和未利用地的面积. 表 4 浑太河流域不同水生态功能区土地利用类型的组成
Table 4. Composition of land-use types in different aquatic ecological functional regions in the Hun-Tai River Basin
项目 面积占比/% 农田 林地 草地 水域 建设用地 未利用土地 水生态Ⅰ区 流域 15.26 81.75 1.10 0.51 1.36 0.02 1 km河岸缓冲区 38.75 55.88 0.73 0.84 3.50 0.16 水生态Ⅱ区 流域 17.87 76.55 1.05 2.75 1.69 0.09 1 km河岸缓冲区 43.34 45.30 1.03 4.41 3.60 1.13 水生态Ⅲ区 流域 72.19 2.81 1.02 3.97 18.12 1.88 1 km河岸缓冲区 54.79 9.49 0.82 15.74 17.98 1.17 -
[1] WU Zhaoshi, WANG Xiaolong, CHEN Yuwei, et al. Assessing river water quality using water quality index in Lake Taihu Basin, China[J]. Science of the Total Environment, 2018, 612: 914-922. doi: 10.1016/j.scitotenv.2017.08.293 [2] BU Hongmei, MENG Wei, ZHANG Yuan, et al. Relationships between land use patterns and water quality in the Taizi River basin, China[J]. Ecological Indicators, 2014, 41: 187-197. doi: 10.1016/j.ecolind.2014.02.003 [3] WILSON C O. Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality[J]. Environmental Monitoring and Assessment, 2015, 187(7): 424. doi: 10.1007/s10661-015-4666-4 [4] 曹灿, 张飞, 阿依尼格尔·亚力坤, 等. 艾比湖区域景观格局与河流水质关系探讨[J]. 环境科学, 2018, 39(4): 1568-1577. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201804016.htmCAO Can, ZHANG Fei, AYINIGEER·Yalikun, et al. Relationship between landscape pattern and water quality in the Ebinur Lake Region[J]. Environmental Science, 2018, 39(4): 1568-1577. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201804016.htm [5] 方娜, 刘玲玲, 游清徽, 等. 不同尺度土地利用方式对鄱阳湖湿地水质的影响[J]. 环境科学, 2019, 40(12): 5348-5357. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201912018.htmFANG Nan, LIU Lingling, YOU Qinghui, et al. Effects of land use types at different spatial scales on water quality in Poyang Lake wetland[J]. Environmental Science, 2019, 40(12): 5348-5357. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201912018.htm [6] MIRHOSSEINI M, FARSHCHI P, NOROOZI A A, et al. Changing land use a threat to surface water quality: a vulnerability assessment approach in Zanjanroud watershed, Central Iran[J]. Water Resources, 2018, 45(2): 268-279. doi: 10.1134/S0097807818020100 [7] 徐启渝, 王鹏, 王涛, 等. 土地利用结构与景观格局对鄱阳湖流域赣江水质的影响[J]. 湖泊科学, 2020, 32(4): 1008-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202004010.htmXU Qiyu, WANG Peng, WANG Tao, et al. Investigation of the impacts of land use structure and landscape pattern on water quality in the Ganjiang River, Lake Poyang Basin[J]. Journal of Lake Sciences, 2020, 32(4): 1008-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202004010.htm [8] XU Liting, CHEN S S, XU Yu, et al. Impacts of land-use change on habitat quality during 1985-2015 in the Taihu Lake Basin[J]. Sustainability, 2019, 11(13): 3513. doi: 10.3390/su11133513 [9] BAHAR M M, OHMORI H, YAMAMURO M. Relationship between river water quality and land use in a small river basin running through the urbanizing area of Central Japan[J]. Limnology, 2008, 9: 19-26. doi: 10.1007/s10201-007-0227-z [10] 范志平, 刘建治, 赵悦. 蒲河水质空间异质性特征及其对流域土地利用方式的响应[J]. 生态学杂志, 2018, 37(4): 1144-1151. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201804024.htmFAN Zhiping, LIU Jianzhi, ZHAO Yue, et al. Spatial heterogeneity of water quality and its response to land use in Puhe River Basin[J]. Chinese Journal of Ecology, 2018, 37(4): 1144-1151. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201804024.htm [11] AHEARN D S, SHEIBLEY R W, DAHLGREN R A, et al. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California[J]. Journal of Hydrology, 2005, 313(3/4): 234-247. [12] OMERNIK J M. Ecoregions of the conterminous United States[J]. Annals of the Association of American geographers, 1987, 77(1): 118-125. doi: 10.1111/j.1467-8306.1987.tb00149.x [13] 王琼, 卢聪, 范志平, 等. 辽河流域太子河流域N、P和叶绿素a浓度空间分布及富营养化[J]. 湖泊科学, 2017, 29(2): 297-307. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201702005.htmWANG Qiong, LU Cong, FAN Zhiping, et al. Eutrophication and spatial distribution of N, P and chlorophyll-a in the Taizihe River Basin, Liaohe River Catchment[J]. Journal of Lake Sciences, 2017, 29(2): 297-307. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201702005.htm [14] 张宝锋, 陈峰, 田晓庆, 等. 2005—2017年中国七大水系水质变化趋势分析[J]. 人民长江, 2020, 51(7): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202007006.htmZHANG Baofeng, CHEN Feng, TIAN Xiaoqing, et al. Research on water quality variation of seven major water systems in China from 2005 to 2017[J]. Yangtze River, 2020, 51(7): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202007006.htm [15] ZHANG Yuan, GUO Fen, MENG Wei, et al. Water quality assessment and source identification of Daliao River Basin using multivariate statistical methods[J]. Environmental Monitoring and Assessment, 2009, 152(1/2/3/4): 105-121. http://www.cabdirect.org/abstracts/20093140254.html [16] 张楠, 张远, 孔维静, 等. 太子河流域水生态功能Ⅱ级区的划分[J]. 环境科学研究, 2013, 26(5): 472-479. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20130502&flag=1ZHANG Nan, ZHANG Yuan, KONG Weijing, et al. Technique for freshwater ecosystem functional management level Ⅱ region in Taizi River Basin[J]. Research of Environmental Sciences, 2013, 26(5): 472-479. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20130502&flag=1 [17] 孟云飞, 李晨, 张吉, 等. 浑太河春季不同水生态区大型底栖动物群落结构及其与环境因子的关系[J]. 大连海洋大学学报, 2018, 33(1): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DLSC201801013.htmMENG Yunfei, LI Chen, ZHANG Ji, et al. Community structure of macroinvertebrates and its relationship with environmental factors in different freshwater ecosystem function regions of Huntai River, China[J]. Journal of Dalian Ocean University, 2018, 33(1): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DLSC201801013.htm [18] 张莉, 林佳宁, 张远, 等. 浑太河不同水生态区营养盐对底栖硅藻的影响及阈值[J]. 环境科学, 2017, 38(11): 4570-4579. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201711016.htmZHANG Li, LIN Jianing, ZHANG Yuan, et al. Responses of the benthic diatom community to nutrients and the identification of nutrient thresholds in three aquatic ecoregions of the Huntai River, northeast China[J]. Environmental Science, 2017, 38(11): 4570-4579. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201711016.htm [19] KONG Weijing, ZHANG Yuan, et al. A freshwater ecoregion delineation approach based on freshwater macroinvertebrate community features and spatial environmental data in Taizi River Basin, northeastern China[J]. Ecological Research, 2013, 28(4): 581-592. doi: 10.1007/s11284-013-1048-7 [20] 宋永会. 辽河流域水污染防治"十二五"规划研究[M]. 北京: 中国环境出版社, 2015. [21] BU Hongmei, ZHANG Yuan. Spatial and seasonal characteristics of river water chemistry in the Taizi River in northeastern China[J]. Environmental Monitoring and Assessment, 2014, 186(6): 3619-3632. doi: 10.1007/s10661-014-3644-6 [22] 渠晓东, 张远, 马淑芹, 等. 太子河流域大型底栖动物群落结构空间分布特征[J]. 环境科学研究, 2013, 26(5): 509-515. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20130507&flag=1QU Xiaodong, ZHANG Yuan, MA Shuqin, et al. Spatial distribution characteristics of macroinvertebrate communities in Taizi River basin[J]. Research of Environmental Sciences, 2013, 26(5): 509-515. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20130507&flag=1 [23] 薛浩, 王业耀, 孟凡生, 等. 汤旺河着生硅藻群落及其与环境因子的关系[J]. 环境科学, 2019. doi: 10.13227/j.hjkx.201907182.XUE Hao, WANG Yeyao, MENG Fansheng, et al. Community of benthic diatoms and their relationship with aquatic environmental factors in the Tangwang River, China[J]. Environmental Science, 2019. doi: 10.13227/j.hjkx.201907182. [24] 曹蕾, 徐霞君. 水质指数法在原水水质评价中的应用[J]. 中国农村水利水电, 2006(4): 8-9. doi: 10.3969/j.issn.1007-2284.2006.04.004 [25] HAN Quan, TONG Runze, SUN Wenchao, et al. Anthropogenic influences on the water quality of the Baiyangdian Lake in North China over the last decade[J]. Science of the Total Environment, 2020, 701: 134929. doi: 10.1016/j.scitotenv.2019.134929 [26] 林佳宁, 高欣, 贾晓波, 等. 基于PSFR评估框架的太子河流域水生态安全评估[J]. 环境科学研究, 2016, 29(10): 1440-1450. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20161007&flag=1LIN Jianing, GAO Xin, JIA Xiaobo, et al. Assessment of riverine ecological security for Taizi River Basin based on PSFR evaluation framework[J]. Research of Environmental Sciences, 2016, 29(10): 1440-1450. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20161007&flag=1 [27] PESCE S F, WUNDERLIN D A. Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquía River[J]. Water Research, 2000, 34: 2915-2926. doi: 10.1016/S0043-1354(00)00036-1 [28] SUTADIAN A D, MUTTIL N, YILMAZ A G, et al. Using the analytic hierarchy process to identify parameter weights for developing a water quality index[J]. Ecological Indicators, 2017, 75: 220-233. doi: 10.1016/j.ecolind.2016.12.043 [29] ZHANG Z, LU W X, ZHAO Y, et al. Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin Province in China based on system dynamics and analytic hierarchy process[J]. Ecological Modelling, 2014, 275: 9-21. doi: 10.1016/j.ecolmodel.2013.11.031 [30] BAILEY P, BOON P, MORRIS K. Australian biodiversity-salt sensitivity database[M]. Canberra ACT: Land and Water Australia, 2002. [31] MATTIKALLI N M, RICHARDS K S. Estimation of surface water quality changes in respone to land use change: application of the export coefficient model using remote sensing and geographical information system[J]. Environmental Management, 1996, 48: 263-282. http://www.sciencedirect.com/science/article/pii/S0301479796900778 [32] 王云涛, 张远, 高欣, 等. 太子河流域不同水生态区鱼类群落与多样性对土地利用类型的相应. [J]. 环境科学研究, 2016, 29(2): 192-201. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160205&flag=1WANG Yuntao, ZHANG Yuan, GAO Xin, et al. Analysis of fish community distribution and its relationship with environmental factors in different freshwater eco-regions of Taizi River Basin[J]. Research of Environmental Sciences, 2016, 29(2): 192-201. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160205&flag=1 [33] 李艳利, 李艳粉, 李科, 等. 不同尺度下人类活动对浑太河流域鱼类和大型底栖动物群落特征的影响[J]. 环境科学研究, 2016, 29(8): 1145-1153. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160806&flag=1LI Yanli, LI Yanfen, LI Ke, et al. Relative influence of anthropogenic stressors on fish and macroinvertebrate communities at different scales in Huntai rivers[J]. Research of Environmental Sciences, 2016, 29(8): 1145-1153. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160806&flag=1 [34] NAKAGAWA Y, IWATSUBO G. Water chemistry in a number of mountainous streams of East Asia[J]. Journal of Hydrology, 2000, 240: 118-130. doi: 10.1016/S0022-1694(00)00333-4 [35] PIATEK K B, CHRISTOPHER S F, MITCHELL M J. Spatial and temporal dynamics of stream chemistry in a forested watershed[J]. Hydrology And Earth System Sciences, 2009, 13: 423-439. doi: 10.5194/hess-13-423-2009 [36] YU Deyong, SHI Peijun, LIU Yupeng, et al. Detecting land use-water quality relationships from the viewpoint of ecological restoration in an urban area[J]. Ecological Engineering, 2013, 53: 205-216. doi: 10.1016/j.ecoleng.2012.12.045 [37] 项颂, 万玲, 庞燕. 土地利用驱动下洱海流域入湖河流水质时空分布规律[J]. 农业环境科学学报, 2020, 39(1): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202001020.htmXIANG Song, WAN Ling, PANG Yan. Spatial-temporal variation of inflow river water quality under land use effect[J]. Journal of Agro-Environment Science, 2020, 39(1): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202001020.htm [38] SCHOONOVER J E, LOCKABY B G. Land cover impacts on stream nutrients and fecal coliform in the lower Piedmont of West Georgia[J]. Journal of Hydrology, 2006, 331(3/4): 371-382. http://www.sciencedirect.com/science/article/pii/S0022169406002927 [39] BU Hongmei, MENG Wei, ZHANG Yuan. Nitrogen pollution and source identification in the Haicheng River basin in northeast China[J]. Science of the Total Environment, 2011, 409(18): 3394-3402. doi: 10.1016/j.scitotenv.2011.05.030 [40] WOLI K P, NAGUMO T, KURAMOCHI K, et al. Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas[J]. Science of the Total Environment, 2004, 329: 61-74. doi: 10.1016/j.scitotenv.2004.03.006 [41] LEE S W, HWANG S J, LEE S B, et al. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics[J]. Landscape And Urban Planning, 2009, 92: 80-89. doi: 10.1016/j.landurbplan.2009.02.008 [42] 高欣, 丁森, 张远, 等. 鱼类生物群落对太子河流域土地利用、河岸带栖息地质量的响应[J]. 生态学报, 2015, 35(21): 7198-7206. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201521030.htmGAO Xin, DING Sen, ZHANG Yuan, et al. Exploring the relationship among land-use, riparian habitat quality, and biological integrity of a fish community[J]. Acta Ecologica Sinica, 2015, 35(21): 7198-7206. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201521030.htm -