留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

京津冀地区高空间分辨率土壤扬尘清单构建及动态化方法

宋立来 李廷昆 毕晓辉 王雪涵 张文慧 张裕芬 吴建会 冯银厂

宋立来, 李廷昆, 毕晓辉, 王雪涵, 张文慧, 张裕芬, 吴建会, 冯银厂. 京津冀地区高空间分辨率土壤扬尘清单构建及动态化方法[J]. 环境科学研究, 2021, 34(8): 1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03
引用本文: 宋立来, 李廷昆, 毕晓辉, 王雪涵, 张文慧, 张裕芬, 吴建会, 冯银厂. 京津冀地区高空间分辨率土壤扬尘清单构建及动态化方法[J]. 环境科学研究, 2021, 34(8): 1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03
SONG Lilai, LI Tingkun, BI Xiaohui, WANG Xuehan, ZHANG Wenhui, ZHANG Yufen, WU Jianhui, FENG Yinchang. Construction and Dynamic Method of Soil Fugitive Dust Emission Inventory with High Spatial Resolution in Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2021, 34(8): 1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03
Citation: SONG Lilai, LI Tingkun, BI Xiaohui, WANG Xuehan, ZHANG Wenhui, ZHANG Yufen, WU Jianhui, FENG Yinchang. Construction and Dynamic Method of Soil Fugitive Dust Emission Inventory with High Spatial Resolution in Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2021, 34(8): 1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03

京津冀地区高空间分辨率土壤扬尘清单构建及动态化方法

doi: 10.13198/j.issn.1001-6929.2021.05.03
基金项目: 

国家重点研发计划项目 2016YFC0208501

详细信息
    作者简介:

    宋立来(1997-), 男, 辽宁抚顺人, songll@mail.nankai.edu.cn

    通讯作者:

    毕晓辉(1980-), 男, 山东商河人, 教授, 博士, 博导, 主要从事大气污染成因与来源解析研究, bixh@nankai.edu.cn

  • 中图分类号: X51

Construction and Dynamic Method of Soil Fugitive Dust Emission Inventory with High Spatial Resolution in Beijing-Tianjin-Hebei Region

Funds: 

National Key Research and Development Program of China 2016YFC0208501

  • 摘要: 土壤扬尘是我国北方地区广泛存在的颗粒物污染来源,由于其分布广、数量大,活动水平获取困难,难以系统构建区域层面的高时空分辨率排放清单,不利于土壤扬尘源的影响评估与管控策略的制定.以2017年为基准年,通过对Landsat 8卫星的30 m分辨率遥感影像解译获取高空间分辨率的土壤扬尘源活动水平,结合空间差异化的土壤质地与气象资料,构建了京津冀地区2017年各季节高空间分辨率土壤扬尘排放清单,结合气象参数,将各季节清单结果合理分配至逐月,并与环境受体观测数据印证了结果的可靠性.结果表明:①京津冀地区土壤扬尘排放源面积比例呈冬季>春季>秋季>夏季的特征,分别为65%、59%、57%与33%.就全年平均而言,张家口市和承德市较高,分别为64%与58%;北京市和天津市较低,分别为42%与43%;其余城市差异不显著.②京津冀地区2017年土壤扬尘排放PM2.5、PM10和TSP分别为6.5×104、31.0×104和103.4×104 t.③季节尺度上,土壤扬尘排放量呈春季>冬季>秋季>夏季的特征;城市尺度上,邢台市、邯郸市、张家口市及承德市的全年排放较高,廊坊市和秦皇岛市全年排放较低.全年单位面积排放较高值出现在张家口市以及邯郸市和邢台市的西部地区.研究显示,京津冀土壤扬尘排放具有较大时空分布差异,逐月分配清单可为扬尘重点管控月份提供数据支撑,土壤扬尘清单较高的空间分辨率也为城市重点区域差异化管理提供基础.

     

  • 图  1  京津冀地区各城市面积及土壤扬尘排放源面积占比

    Figure  1.  The urban area and the proportion of soil fugitive dust emission sources in Beijing-Tianjin-Hebei Region

    图  2  京津冀地区土壤风蚀指数分布

    Figure  2.  Distribution of soil wind erosion index in Beijing-Tianjin-Hebei Region

    图  3  京津冀地区植被覆盖指数不同区间占比及植被覆盖因子

    Figure  3.  The percentage of different intervals of the vegetation coverage index and vegetation coverage factor in Beijing-Tianjin-Hebei Region

    图  4  2017年京津冀地区全年土壤扬尘PM2.5排放量分布情况

    Figure  4.  Distribution of annual PM2.5 emission of soil fugitive dust in Beijing-Tianjin-Hebei Region in 2017

    图  5  2017年京津冀地区各季节土壤扬尘PM2.5排放量分布情况

    Figure  5.  Distribution of PM2.5 emissions of soil fugitive dust in each season in Beijing-Tianjin-Hebei Region in 2017

    图  6  京津冀地区各城市逐月土壤扬尘PM2.5排放量情况

    Figure  6.  Monthly PM2.5 emissions of soil fugitive dust in Beijing-Tianjin-Hebei Region

    图  7  不同城市、不同季节PM2.5~10浓度与土壤扬尘PM2.5排放强度散点图

    Figure  7.  Scatter plot of PM2.5-10 concentrations and PM2.5 emission intensity of soil fugitive dust in different cities and seasons

    表  1  京津冀地区各季节气候因子值

    Table  1.   Seasonal climate factors in the Beijing-Tianjin-Hebei Region  10-6

    城市 春季 夏季 秋季 冬季 全年
    天津市 43 501 937 1 881 4 191 50 510
    北京市 14 930 184 1 083 1 949 18 147
    唐山市 31 044 620 2 089 1 815 35 568
    秦皇岛市 6 299 160 1 259 1 497 9 215
    承德市 9 421 134 1 229 842 11 627
    张家口市 33 434 1 664 1 381 8 429 44 908
    廊坊市 19 368 775 495 1 236 21 874
    保定市 12 972 231 366 884 14 453
    邢台市 35 334 3 551 14 965 32 432 86 282
    沧州市 64 213 1 417 3 238 5 476 74 344
    衡水市 19 548 693 404 1 272 21 917
    石家庄市 11 053 389 394 2 132 13 968
    邯郸市 33 633 2 332 11 118 25 522 72 605
    京津冀地区 25 750 1 007 3 069 6 744 36 571
    下载: 导出CSV

    表  2  基于气象因素的季度排放量分配系数

    Table  2.   Distribution coefficient of quarterly emissions based on meteorological factors

    城市 春季 夏季 秋季 冬季
    3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 1月 2月
    天津市 0.26 0.40 0.34 0.92 0.05 0.03 0.42 0.01 0.58 0.34 0.35 0.31
    北京市 0.46 0.46 0.08 0.49 0.44 0.07 0.38 0.01 0.61 0.30 0.30 0.40
    唐山市 0.27 0.42 0.31 0.56 0.41 0.03 0.42 0.01 0.57 0.42 0.19 0.39
    秦皇岛市 0.42 0.55 0.03 0.89 0.04 0.07 0.29 0.03 0.68 0.34 0.36 0.30
    承德市 0.32 0.56 0.11 0.46 0.37 0.17 0.37 0.03 0.60 0.30 0.26 0.44
    张家口市 0.41 0.54 0.05 0.41 0.27 0.32 0.01 0.01 0.98 0.40 0.29 0.31
    廊坊市 0.39 0.42 0.20 0.62 0.10 0.28 0.29 0.01 0.70 0.25 0.27 0.48
    保定市 0.18 0.39 0.43 0.83 0.13 0.04 0.35 0.01 0.64 0.39 0.24 0.37
    邢台市 0.86 0.09 0.06 0.49 0.07 0.44 0.52 0.01 0.47 0.40 0.20 0.40
    沧州市 0.33 0.52 0.15 0.93 0.06 0.01 0.48 0.01 0.51 0.32 0.25 0.43
    衡水市 0.35 0.43 0.22 0.70 0.24 0.06 0.40 0.00 0.60 0.43 0.22 0.35
    石家庄市 0.59 0.15 0.27 0.87 0.10 0.03 0.56 0.00 0.44 0.45 0.26 0.29
    邯郸市 0.87 0.08 0.05 0.45 0.07 0.49 0.34 0.01 0.66 0.36 0.26 0.38
    下载: 导出CSV

    表  3  京津冀地区各季节土壤扬尘PM2.5排放强度

    Table  3.   Emission intensity of each city and season in Beijing-Tianjin-Hebei Region

    城市 土壤扬尘PM2.5排放强度/(t/km2)
    春季 夏季 秋季 冬季 平均值
    保定市 0.212 0.001 0.008 0.011 0.058
    沧州市 0.642 0.011 0.033 0.048 0.183
    承德市 0.198 0.001 0.062 0.017 0.069
    邯郸市 0.414 0.016 0.186 0.258 0.218
    衡水市 0.179 0.003 0.008 0.013 0.051
    廊坊市 0.165 0.004 0.007 0.010 0.046
    秦皇岛市 0.087 0.001 0.029 0.019 0.034
    石家庄市 0.152 0.002 0.006 0.025 0.046
    邢台市 0.457 0.018 0.200 0.323 0.250
    张家口市 0.700 0.012 0.069 0.163 0.236
    北京市 0.261 0.001 0.042 0.029 0.083
    天津市 0.384 0.005 0.021 0.035 0.111
    唐山市 0.307 0.000 0.028 0.016 0.088
    京津冀地区 0.320 0.006 0.054 0.074 0.113
    下载: 导出CSV
  • [1] GENG Ningbo, WANG Jia, XU Yifei, et al. PM2.5 in an industrial district of Zhengzhou, China: chemical composition and source apportionment[J]. Particuology, 2013, 11(1): 99-109. doi: 10.1016/j.partic.2012.08.004
    [2] 肖致美, 徐虹, 李立伟, 等. 基于在线观测的天津市PM2.5污染特征及来源解析[J]. 环境科学, 2020, 41(10): 4355-4363. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202010002.htm

    XIAO Zhimei, XU Hong, LI Liwei, et al. Characterization and source apportionment of PM2.5 based on the online observation in Tianjin[J]. Environmental Science, 2020, 41(10): 4355-4363. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202010002.htm
    [3] 韩力慧, 张鹏, 张海亮, 等. 北京市大气细颗粒物污染与来源解析研究[J]. 中国环境科学, 2016, 36(11): 3203-3210. doi: 10.3969/j.issn.1000-6923.2016.11.001

    HAN Lihui, ZHANG Peng, ZHANG Hailiang, et al. Pollution and source apportionment of atmospheric fine particles in Beijing[J]. China Environmental Science, 2016, 36(11): 3203-3210. doi: 10.3969/j.issn.1000-6923.2016.11.001
    [4] CHEN Guolei, ZHOU Ying, CHENG Shuiyuan. Air pollutant emission inventory and impact of typical industries on PM2.5 in Chengde[J]. Environmental Science, 2016, 37(11): 4069-4079. http://www.ncbi.nlm.nih.gov/pubmed/29964654
    [5] HAO Yufang, MENG Xiangpeng, YU Xuepu, et al. Quantification of primary and secondary sources to PM2.5 using an improved source regional apportionment method in an industrial city, China[J]. Science of the Total Environment, 2020, 706(12): 135715.
    [6] 环境保护部. 扬尘源颗粒物排放清单编制技术指南[EB/OL]. 北京: 环境保护部, 2014-12-31[2021-04-17]http://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594588131490.pdf.
    [7] 方小珍, 孙列, 毕晓辉, 等. 宁波城市扬尘化学组成特征及其来源解析[J]. 环境污染与防治, 2014, 36(1): 55-59. doi: 10.3969/j.issn.1001-3865.2014.01.012

    FANG Xiaozhen, SUN Lie, BI Xiaohui, et al. The chemical composition and sources apportionment of re-suspended dust in Ningbo[J]. Environmental Pollution and Prevention, 2014, 36(1): 55-59. doi: 10.3969/j.issn.1001-3865.2014.01.012
    [8] 张琦. 基于卫星遥感的河南省中原城市群扬尘源颗粒物排放及空间分异研究[D]. 郑州: 郑州大学, 2019.
    [9] 黄宇, 虎彩娇, 成海容, 等. 武汉市扬尘源颗粒物排放清单及空间分布特征[J]. 武汉大学学报(理学版), 2018, 64(4): 354-362. https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY201804011.htm

    HUANG Yu, HU Caijiao, CHENG Hairong, et al. Emission inventory and spatial characteristics of particulate matter from dust source in Wuhan, China[J]. Journal of Wuhan University (Science Edition), 2018, 64(4): 354-362. https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY201804011.htm
    [10] PARK S H, GONG S L, GONG W, et al. Relative impact of windblown dust versus anthropogenic fugitive dust in PM2.5 on air quality in North America[J]. Journal of Geophysical Research: Atmospheres, 2010. doi: 10.1029/2009jd013144.
    [11] LOPEZ-APARICIO S, GUEVARA M, THUNIS P, et al. Assessment of discrepancies between bottom-up and regional emission inventories in Norwegian urban areas[J]. Atmospheric Environment, 2017, 154: 285-296. doi: 10.1016/j.atmosenv.2017.02.004
    [12] 薛志钢, 杜谨宏, 任岩军, 等. 我国大气污染源排放清单发展历程和对策建议[J]. 环境科学研究, 2019, 32(10): 1678-1686. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191007&flag=1

    XUE Zhigang, DU Jinhong, REN Yanjun, et al. Development course and suggestion of air pollutant emission inventory in China[J]. Research of Environmental Sciences, 2019, 32(10): 1678-1686. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191007&flag=1
    [13] 陶士康, 张清爽, 安静宇, 等. 基于地基观测及源清单的2017-2019年德州市秋冬季大气污染防治效果评估[J]. 环境科学研究, 2019, 32(10): 1739-1746. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191014&flag=1

    TAO Shikang, ZHANG Qingshuang, AN Jingyu, et al. Assessment of air pollution control effect from ground-based observation and emission inventory for the prevention and control of air pollution in autumn and winter of Dezhou City from 2017 to 2019[J]. Research of Environmental Sciences, 2019, 32(10): 1739-1746. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191014&flag=1
    [14] XUAN Jie. Dust emission factors for environment of northern China[J]. Atmospheric Environment, 1999, 33(11): 1767-1776. doi: 10.1016/S1352-2310(98)00339-2
    [15] TRIANTAFYLLOU A, MOUSSIOPOULOS N, KRESTOU A, et al. Application of inverse dispersion modelling for the determination of PM emission factors from fugitive dust sources in open-pit lignite mines[J]. Journal of Environment and Pollution, 2017, 62(2/3/4): 274-290. doi: 10.1504/IJEP.2017.089412
    [16] RONEY J A, WHITE B R. Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel[J]. Atmospheric Environment, 2006, 40: 7668-7685. doi: 10.1016/j.atmosenv.2006.08.015
    [17] 王士宝, 姬亚芹, 张伟, 等. 乌鲁木齐道路扬尘PM2.5粒度乘数特征[J]. 环境科学研究, 2018, 31(7): 1201-1206. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180705&flag=1

    WANG Shibao, JI Yaqin, ZHANG Wei, et al. PM2. 5 Particle size multiplier feature of road dust in Urumqi City[J]. Research of Environmental Sciences, 2018, 31(7): 1201-1206. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180705&flag=1
    [18] LI Tingkun, BI Xiaohui, DAI Qili, et al. Improving spatial resolution of soil fugitive dust emission inventory using RS-GIS technology: an application case in Tianjin, China[J]. Atmospheric Environment, 2018, 191: 46-54. doi: 10.1016/j.atmosenv.2018.07.051
    [19] PIANALTO F S, YOOL S R. Monitoring fugitive dust emission sources arising from construction: a remote-sensing approach[J]. GIScience and Remote Sensing, 2013, 50(3): 251-270. doi: 10.1080/15481603.2013.808517
    [20] PIANALTO F S. A remote sensing model of construction-related soil disturbance in southern Arizona[M]. Toulouse: Sensors, Systems, and Next Generatin Sateuites, ⅩⅣ, 2010: 61-64.
    [21] 李贝贝, 黄玉虎, 毕晓辉, 等. 北京市土壤扬尘排放因子本地化[J]. 环境科学, 2020, 41(6): 2609-2616. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006013.htm

    LI Beibei, HUANG Yuhu, BI Xiaohui, et al. Localization of soil wind erosion dust emission factor in Beijing[J]. Environmental Science, 2020, 41(6): 2609-2616. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006013.htm
    [22] LIU Aobo, WU Qizhong, CHENG Xiao. Using the Google Earth Engine to estimate a 10 m resolution monthly inventory of soil fugitive dust emissions in Beijing, China[J]. Science of the Total Environment, 2020. doi: 10.1016/j.scitotenv.2020.139174.
    [23] 王社扣, 王体健, 石睿, 等. 南京市不同类型扬尘源排放清单估计[J]. 中国科学院大学学报, 2014, 31(3): 351-359. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201403009.htm

    WANG Shekou, WANG Tijian, SHI Rui, et al. Estimation of different fugitive dust emission inventory in Nanjing[J]. Journal of University of Chinese Academy of Science, 2014, 31(3): 351-359. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201403009.htm
    [24] 李莉莉. 哈尔滨市高分辨率扬尘源排放清单及控制对策的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    [25] 杨卫芬, 程钟, 张洁, 等. 常州市裸露地面风蚀扬尘排放清单及分布特征研究[J]. 环境监测管理与技术, 2020, 32(2): 56-60. doi: 10.3969/j.issn.1006-2009.2020.02.014

    YANG Weifen, CHENG Zhong, ZHANG Jie, et al. Research on emission inventory and distribution characteristics of wind erosion dust from bare ground in Changzhou[J]. Administration and Technique of Environmental Monitoring, 2020, 32(2): 56-60. doi: 10.3969/j.issn.1006-2009.2020.02.014
    [26] 张玉君. Landsat 8简介[J]. 国土资源遥感, 2013, 25(1): 176-177. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201301033.htm

    ZHANG Yujun. Introduction of Landsat 8[J]. Remote Sensing of Land and Resources, 2013, 25(1): 176-177. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201301033.htm
    [27] LAMBIN E F, STRAHLER A H. Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales[J]. Remote Sensing of Environment, 1994, 15(10): 2099-2119. doi: 10.1080/01431169408954230
    [28] GITELSON A A, KAUFMAN Y J, STARK R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80(1): 76-87. doi: 10.1016/S0034-4257(01)00289-9
    [29] 阳小琼, 朱文泉, 潘耀忠, 等. 基于修正的亚像元模型的植被覆盖度估算[J]. 应用生态学报, 2008, 19(8): 1860-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200808035.htm

    YANG Xiaoqiong, ZHU Wenquan, PAN Yaozhong, et al. Estimation of vegetation coverage based on an improved sub-pixel model[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1860-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200808035.htm
    [30] 赵永来. 利用移动式风洞测试评估植被盖度对土壤风蚀的影响[D]. 呼和浩特: 内蒙古农业大学, 2006.
    [31] 符名引, 张杏清, 周叙, 等. 影像镶嵌重采样算法的选择[J]. 地理空间信息, 2007(4): 28-30. doi: 10.3969/j.issn.1672-4623.2007.04.010

    FU Mingyin, ZHANG Xingqing, ZHOU Xu, et al. Method for resampling in image mosaic[J]. Geospatial Information, 2007(4): 28-30. doi: 10.3969/j.issn.1672-4623.2007.04.010
    [32] 李媚, 倪爽英, 雷永从, 等. 石家庄市土壤扬尘排放量估算及分布特征[J]. 环境工程学报, 2017, 11(11): 5993-5999. doi: 10.12030/j.cjee.201608026

    LI Mei, NI Shuangying, LEI Yongcong, et al. Estimation and spatial distribution characteristics of soil dust emission in Shijiazhuang[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 5993-5999. doi: 10.12030/j.cjee.201608026
    [33] 徐媛倩, 姜楠, 燕启社, 等. 郑州市裸露地面风蚀扬尘排放清单研究[J]. 环境污染与防治, 2016, 38(4): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201604005.htm

    XU Yuanqian, JIANG Nan, YAN Qishe, et al. Research on emission inventory of bareness wind erosion dust in Zhengzhou[J]. Environmental Pollution and Prevention, 2016, 38(4): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201604005.htm
    [34] 郭祥, 冯海波, 陆雅静. 河北省土壤扬尘源PM2.5排放量估算[J]. 河北工业科技, 2017, 34(6): 477-482. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGY201706015.htm

    GUO Xiang, FENG Haibo, LU Yajing. Estimation of emissions of PM2.5 from soil dust in Hebei Province[J]. Hebei Journal of Industrial Science and Technology, 2017, 34(6): 477-482. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGY201706015.htm
    [35] YANG Huan, SONG Xuan, ZHANG Qi. RS & GIS based PM emission inventories of dust sources over a provincial scale: a case study of Henan Province, Central China[J]. Atmospheric Environment, 2020, 225: 117361. doi: 10.1016/j.atmosenv.2020.117361
    [36] KOTHAI P, SARADHI I V, PRATHIBHA P, et al. Source apportionment of coarse and fine particulate matter at Navi Mumbai, India[J]. Aerosol and Air Quality Research, 2008, 8(4): 423-436. doi: 10.4209/aaqr.2008.07.0027
    [37] 吴琳, 沈建东, 冯银厂, 等. 杭州市灰霾与非灰霾日不同粒径大气颗粒物来源解析[J]. 环境科学研究, 2014, 27(4): 373-381. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20140406&flag=1

    WU Lin, SHEN Jiandong, FENG Yinchang, et al. Source apportionment of particulate matters in different size bins during hazy and non-hazy episodes in Hangzhou City[J]. Research of Environmental Sciences, 2014, 27(4): 373-381. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20140406&flag=1
    [38] HE Jijun, CAI Qiangguo, CAO Wenqing. Wind tunnel study of multiple factors affecting wind erosion from cropland in agro-pastoral area of Inner Mongolia, China[J]. Journal of Mountain Science, 2013, 10(1): 68-74. doi: 10.1007/s11629-013-2433-y
    [39] WANG L, SHI Z H, WU G L, et al. Freeze/thaw and soil moisture effects on wind erosion[J]. Geomorphology, 2014, 207: 141-148. doi: 10.1016/j.geomorph.2013.10.032
    [40] 田刚, 樊守彬, 黄玉虎, 等. 风速对人为扬尘源PM10排放浓度和强度的影响[J]. 环境科学, 2008, 29(10): 2983-2986. doi: 10.3321/j.issn:0250-3301.2008.10.050

    TIAN Gang, FAN Shoubin, HUANG Yuhu, et al. Relationship between wind velocity and PM10 concentration & emission flux of fugitive dust source[J]. Environmental Science, 2008, 29(10): 2983-2986. doi: 10.3321/j.issn:0250-3301.2008.10.050
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1001
  • HTML全文浏览量:  218
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2021-04-17
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回