Rural Household Carbon-Peak Path and Countermeasures
-
摘要: 全国碳达峰目标已经明确,农村居民生活能源消费是碳排放增长的重要来源,亟待得到有效控制.为研究农村居民生活碳达峰路径,基于农村居民生活能源消费现状分析,采用碳排放系数法对2000—2018年农村居民生活的碳排放进行核算,基于情景分析法,从能源消费结构调整的角度,设定不同情景分析农村居民生活的碳达峰时间及峰值.结果表明:①2000—2018年,农村居民生活碳排放量、人均碳排放量均呈快速上升趋势,其中农村居民生活碳排放量占国家碳排放总量的3.0%~4.0%.②在2030年国家碳排放强度下降65%的目标下,农村居民生活同步碳达峰目标约为3.64×108 t;农村居民煤炭消费的碳排放已在2017年达峰,总量达峰则依托于能源结构调整情景实现目标.③基准情景下,2030年前无法实现碳达峰;政策情景下,将在2027—2028年达到峰值,峰值约为3.66×108 t;优化情景下,将在2024年达到峰值,峰值约为3.44×108 t.④基于能源结构调整的碳达峰路径主要表现为煤炭消费占比降至18.0%左右,天然气、电力、其他能源消费占比分别提至1.5%、35.0%、30.0%左右.研究显示,促进碳达峰的措施可重点从完善顶层设计、制定农村能源发展战略规划、推动分布式能源系统建设、加强节能减排技术保障、创新资金支持、普及绿色低碳生活方式等几个方面加强实施,从而推动农村的能源变革与节能减排.Abstract: The target of China's carbon emission peak has been determined, and the substantial growth of rural household energy consumption has become an important source of carbon emissions growth, which needs to be controlled urgently. This research is based on the analysis of the current energy consumption in rural residents. In order to study the rural household carbon peak path, the carbon emission coefficient method is used to calculate the carbon emissions of rural residents from 2000 to 2018. The peak path of rural household carbon emissions is analyzed under the national carbon emission peak goal and different scenarios. The scenarios are set under the perspective of energy consumption structure adjustment. The results showed that: (1) Both the total carbon emissions and per capita carbon emissions of rural households show a rapid upward trend from 2000 to 2018. Among them, the total rural household carbon emissions account for about 3.0%-4.0% of the national carbon emissions. (2) Under the national target of reducing carbon intensity by 65% in 2030, the synchronous peak target of rural household carbon emissions should be 364 million tons. The rural household carbon emissions from coal consumption reached a peak in 2017, and the total amount could reach the peak depending on the energy structure adjustment scenarios to achieve the target. (3) In the baseline scenario, the carbon emissions peak will not be achieved before 2030. Under the policy scenario, rural household carbon emissions will reach the peak in 2027-2028, with a value of about 366 million tons. Under the optimized scenario, the peak will appear in 2024, with a value of about 344 million tons. (4) According to the energy structure adjustment target, the carbon peak path of rural energy emissions can be presented as follows: the proportion of coal consumption should be reduced to about 18.0%, and the proportion of natural gas, electricity and other energy consumption should be increased to about 1.5%, 35.0% and 30.0%, respectively. The supporting measures can be strongly taken from aspects including improving the top-level design, formulating rural energy development strategic planning, promoting the development of distributed energy system, strengthening technical support for energy conservation and emission reduction, innovating financial support, and popularizing green and low-carbon lifestyles, so as to promote rural energy reform, energy conservation and emission reduction.
-
Key words:
- rural /
- household /
- energy consumption /
- carbon emissions /
- peak path
-
化石能源种类 燃料含碳量(以C计)/(t/TJ) 平均低位发热量/[PJ/(104 t)] 碳排放系数(以CO2计)/[104 t/(104 t)] 原煤 26.32 0.21 2.017 8 型煤 26.32 0.16 1.535 4 焦炉煤气 21.49 1.61 12.686 3 其他洗煤 26.32 0.08 0.807 1 焦炭 29.5 0.28 3.075 7 其他煤气 12.1 0.16 0.723 5 汽油 18.9 0.43 2.984 8 煤油 19.6 0.43 3.095 3 柴油 20.2 0.43 3.157 1 液化石油气 17.2 0.47 2.983 1 天然气1) 15.3 3.89 21.840 3 注:1) 天然气的平均低位发热量和碳排放系数单位均为108 m3. 表 2 不同年份电力碳排放系数
Table 2. Carbon emission coefficient of electricity in different years
时间 碳排放系数/[kg/(kW·h)] 时间 碳排放系数/[kg/(kW·h)] 2000—2005年 1.02 2011年 0.92 2006年 1.01 2012年 0.95 2007年 0.96 2013年 0.92 2008年 0.97 2014年 0.87 2009年 0.97 2015年 0.85 2010年 0.93 2016—2018年 0.84 表 3 2030年农村居民生活能源消费结构情景
Table 3. The energy consumption structure scenarios of rural residents in 2030
项目 年份 能源需求总量(以标煤计)/[108 t] 能源结构/% 煤炭 石油 天然气 电力 其他 现状 2018 — 30.0 21.0 0.3 33.0 15.0 基准情景 2025 2.06 25.0 19.0 0.5 35.5 20.0 2030 2.32 20.0 14.0 1.0 40.0 25.0 政策情景 2025 2.06 20.0 19.0 1.0 35.0 25.0 2030 2.32 15.0 8.0 2.0 40.0 35.0 优化情景 2025 2.06 15.0 18.0 2.0 35.0 30.0 2030 2.32 10.0 7.0 3.0 40.0 40.0 -
[1] 支国瑞, 杨俊超, 张涛, 等. 我国北方农村生活燃煤情况调查、排放估算及政策启示[J]. 环境科学研究, 2015, 28(8): 1179-1185. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150801&flag=1ZHI Guorui, YANG Junchao, ZHANG Tao, et al. Rural household coal use survey, emission estimation and policy implications[J]. Research of Environmental Sciences, 2015, 28(8): 1179-1185. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150801&flag=1 [2] 王俊能, 赵学涛, 蔡楠, 等. 我国农村生活污水污染排放及环境治理效率[J]. 环境科学研究, 2020, 33(12): 2665-2674. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201203&flag=1WANG Junneng, ZHAO Xuetao, CAI Nan, et al. Pollution discharge and environmental treatment efficiency of rural domestic sewage in China[J]. Research of Environmental Sciences, 2020, 33(12): 2665-2674. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201203&flag=1 [3] 陈盛, 刘平, 王琛, 等. 关于"十四五"农村生态环境治理的思考[J]. 环境保护, 2021, 49(1): 12-15. doi: 10.3969/j.issn.1006-4362.2021.01.002CHEN Sheng, LIU Ping, WANG Chen, et al. Thoughts on rural ecological environment governance in the period of the '14th Five-Year' plan[J]. Environmental Protection, 2021, 49(1): 12-15. doi: 10.3969/j.issn.1006-4362.2021.01.002 [4] 汝醒君, 汪臻. 中国农村居民生活用能碳排放影响因素研究[J]. 生态经济, 2017, 33(1): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201701015.htmRU Xingjun, WANG Zhen. Study on influence factors of rural residents CO2 emission in China[J]. Ecological Economy, 2017, 33(1): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201701015.htm [5] DONG Hanmin, XUE Minggao, XIAO Yujia, et al. Do carbon emissions impact the health of residents?considering China's industrialization and urbanization[J]. Science of the Total Environment, 2021, 758: 143688. doi: 10.1016/j.scitotenv.2020.143688 [6] YAO Chunsheng, CHEN Chongying, LI Ming. Analysis of rural residential energy consumption and corresponding carbon emissions in China[J]. Energy Policy, 2012, 41: 445-450. doi: 10.1016/j.enpol.2011.11.005 [7] FAN Jingli, YU Hao, WEI Yiming. Residential energy-related carbon emissions in urban and rural China during 1996-2012: from the perspective of five end-use activities[J]. Energy and Buildings, 2015, 96: 201-209. doi: 10.1016/j.enbuild.2015.03.026 [8] 万文玉, 赵雪雁, 王伟军, 等. 我国农村居民生活能源碳排放的时空特征分析[J]. 生态学报, 2017, 37(19): 6390-6401. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201719010.htmWAN Wenyu, Zhao Xueyan, WANG Weijun, et al. Analysis of spatio-temporal patterns of carbon emission from energy consumption by rural residents in China[J]. Acta Ecologica Sinica, 2017, 37(19): 6390-6401. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201719010.htm [9] 龚琼, 韩建华, 师荣光, 等. 中国农村能源碳排放生态压力研究[J]. 中国农学通报, 2018, 34(7): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201807014.htmGONG Qiong, HAN Jianhua, SHI Rongguang, et al. Ecological stress of China's rural energy carbon emissions[J]. Chinese Agricultural Science Bulletin, 2018, 34(7): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201807014.htm [10] 陈艳, 朱雅丽. 中国农村居民可再生能源生活消费的碳排放评估[J]. 中国人口·资源与环境, 2011, 21(9): 88-92. doi: 10.3969/j.issn.1002-2104.2011.09.015CHEN Yan, ZHU Yali. Evaluation of carbon emissions from renewable energy consumption by rural residents in China[J]. China Population, Resources and Environment, 2011, 21(9): 88-92. doi: 10.3969/j.issn.1002-2104.2011.09.015 [11] LIU Wenling, GERT S, NICO H, et al. Energy consumption practices of rural households in North China: basic characteristics and potential for low carbon development[J]. Energy Policy, 2013, 55: 128-138. doi: 10.1016/j.enpol.2012.11.031 [12] CHEN Caocao, LIU Gengyuan, MENG Fanxin, et al. Energy consumption and carbon footprint accounting of urban and rural residents in Beijing through consumer lifestyle approach[J]. Ecological Indicators, 2019, 98: 575-586. doi: 10.1016/j.ecolind.2018.11.049 [13] DING Suiting, ZHANG Ming, SONG Yan. Exploring China's carbon emissions peak for different carbon tax scenarios[J]. Energy Policy, 2019, 129: 1245-1252. doi: 10.1016/j.enpol.2019.03.037 [14] QI Ye, NICHOLAS S, HE Jiankun, et al. The policy-driven peak and reduction of China's carbon emissions[J]. Advances in Climate Change Research, 2020, 11: 65-71. http://www.sciencedirect.com/science/article/pii/S1674927820300265 [15] SU K, LEE C M. When will China achieve its carbon emission peak? a scenario analysis based on optimal control and the STIRPAT model[J]. Ecological Indicators, 2020, 112: 106-138. http://www.sciencedirect.com/science/article/pii/S1470160X20300753 [16] ZHANG Xiaoyu, CHEN Yihui, JIANG Ping. Sectoral peak CO2 emission measurements and a long-term alternative CO2 mitigation roadmap: a case study of Yunnan, China[J]. Journal of Cleaner Production, 2020, 247: 119171. doi: 10.1016/j.jclepro.2019.119171 [17] 邓小乐, 孙慧. 基于STIRPAT模型的西北五省区碳排放峰值预测研究[J]. 生态经济, 2016, 32(9): 36-41. doi: 10.3969/j.issn.1671-4407.2016.09.009DENG Xiaole, SUN Hui. Forecast of the northwest five provinces' carbon emissions based on STIRPAT model[J]. Ecological Economy, 2016, 32(9): 36-41. doi: 10.3969/j.issn.1671-4407.2016.09.009 [18] 王勇, 许子易, 张亚新. 中国超大城市碳排放达峰的影响因素及组合情景预测: 基于门限-STIRPAT模型的研究[J]. 环境科学学报, 2019, 39(12): 4284-4292. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201912038.htmWANG Yong, XU Ziyi, ZHANG Yaxin. Influencing factors and combined scenario prediction of carbon emission peaks in megacities in China: based on Threshold-STIRPAT model[J]. Acta Scientiae Circumstantiae, 2019, 39(12): 4284-4292. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201912038.htm [19] 齐晔, 刘天乐, 宋祺佼, 等. 低碳城市试点"十四五"期间需助力碳排放达峰[J]. 环境保护, 2020, 48(5): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202005005.htmQI Ye, LIU Tianle, SONG Qijiao, et al. Low-carbon city pilot: leading the carbon emissions peak in the '14th Five-Year' plan period[J]. Environmental Protection, 2020, 48(5): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202005005.htm [20] 李惠民, 张西, 张哲瑜, 等. 北京市碳排放达峰路径及政策启示[J]. 环境保护, 2020, 48(5): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202005008.htmLI Huimin, ZHANG Xi, ZHANG Zheyu, et al. The pathway and policy implication of reaching peak of carbon emission in Beijing[J]. Environmental Protection, 2020, 48(5): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202005008.htm [21] 曹颖, 李晓梅, 刘强, 等. 推动部分区域碳排放率先达峰现状分析[J]. 环境保护, 2019, 47(8): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU201908011.htmCAO Ying, LI Xiaomei, LIU Qiang, et al. Analysis of the current situation of CO2 emissions peak in some regions[J]. Environmental Protection, 2019, 47(8): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU201908011.htm [22] TANG Baojun, LI Ru, YU Biying, et al. How to peak carbon emissions in China's power sector: a regional perspective[J]. Energy Policy, 2018, 120: 365-381. doi: 10.1016/j.enpol.2018.04.067 [23] LU Can, LI Wei, GAO Shubin. Driving determinants and prospective prediction simulations on carbon emissions peak for China's heavy chemical industry[J]. Journal of Cleaner Production, 2020, 251: 119642. doi: 10.1016/j.jclepro.2019.119642 [24] LI Bo, HAN Shuwan, WANG Yafei, et al. Feasibility assessment of the carbon emissions peak in China's construction industry: factor decomposition and peak forecast[J]. Science of the Total Environment, 2020, 706: 135716. doi: 10.1016/j.scitotenv.2019.135716 [25] CHEN Xi, SHUAI Chenyang, WU Ya, et al. Analysis on the carbon emission peaks of China's industrial, building, transport, and agricultural sectors[J]. Science of the Total Environment, 2020, 709: 135768. doi: 10.1016/j.scitotenv.2019.135768 [26] LI Huanan, QIN Quande. Challenges for China's carbon emissions peaking in 2030: a decomposition and decoupling analysis[J]. Journal of Cleaner Production, 2019, 207: 857-865. doi: 10.1016/j.jclepro.2018.10.043 [27] LIU Shangwei, TIAN Xin, XIONG Yiling, et al. Challenges towards carbon dioxide emissions peak under in-depth socioeconomic transition in China: insights from Shanghai[J]. Journal of Cleaner Production, 2020, 247: 119083. doi: 10.1016/j.jclepro.2019.119083 [28] SUN Zuoren, LIU Yandi, YU Yanni. China's carbon emission peak pre-2030: exploring multi-scenario optimal low-carbon behaviors for China's regions[J]. Journal of Cleaner Production, 2019, 231: 963-979. doi: 10.1016/j.jclepro.2019.05.159 [29] CHEN Jinhang. An empirical study on China's energy supply-and-demand model considering carbon emission peak constraints in 2030[J]. Engineering, 2017, 3: 512-517. doi: 10.1016/J.ENG.2017.04.019 [30] WU Chuanbao, HUANG Gordon, XIN Baogui, et al. Scenario analysis of carbon emissions 'anti-driving effect on Qingdao' senergy structure adjustment with an optimization model. Part Ⅰ: carbon emissions peak value prediction[J]. Journal of Cleaner Production, 2018, 172: 466-474. doi: 10.1016/j.jclepro.2017.10.216 [31] ZHOU Xiaoyu, GU Alun. Impacts of household living consumption on energy use and carbon emissions in China based on the input-output model[J]. Advances in Climate Change Research, 2020, 11: 118-130. doi: 10.1016/j.accre.2020.06.004 [32] CAO Qingren, KANG Wei, XU Shichun, et al. Estimation and decomposition analysis of carbon emissions from the entire production cycle for Chinese household consumption[J]. Journal of Environmental Management, 2019, 247: 525-537. http://www.sciencedirect.com/science/article/pii/S0301479719308394 [33] IPCC. 2006 IPCC guidelines for national greenhouse gas inventories: volume Ⅱ[R]. Japan: Institute for Global Environmental Strategies, 2008. [34] SHAN Yuli, HUANG Qi, GUAN Dabo, et al. China CO2 emission accounts 2016-2017[J]. Scientific Data, 2020, 7: 54. doi: 10.1038/s41597-020-0393-y [35] SHAN Yuli, GUAN Dabo, ZHENG Heran, et al. Data descriptor: China CO2 emission accounts 1997-2015[J]. Scientific Data, 2018, 5: 170201. doi: 10.1038/sdata.2017.201 [36] 王烨, 顾圣平. 2006-2015年中国电力碳足迹及其生态压力分析[J]. 环境科学学报, 2018, 38(12): 4873-4878. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201812038.htmWANG Ye, GU Shengping. Analysis of electricity carbon footprint and its ecological stress in China from 2006 to 2015[J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4873-4878. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201812038.htm [37] 刘世锦. 中国经济明年或将从中高速增长转为中速增长[J]. 农村金融研究, 2019(9): 77. https://www.cnki.com.cn/Article/CJFDTOTAL-NCJR201909020.htm [38] 陈昌盛, 许伟, 兰宗敏, 等. "十四五"时期我国发展内外部环境研究[J]. 管理世界, 2020, 36(10): 1-14. doi: 10.3969/j.issn.1002-5502.2020.10.001CHEN Changsheng, XU Wei, LAN Zongmin, et al. A study on the internal and external environment of China's development in the '14th Five-Year' plan period[J]. Management World, 2020, 36(10): 1-14. doi: 10.3969/j.issn.1002-5502.2020.10.001 [39] International Monetary Fund. World economic outlook[R]. Washington DC: International Monetary Fund, 2020: 4-6. [40] YANG Ruiliang, HE Jiangmin, LI Sha, et al. Different effects of main influence factors on household energy consumption in three typical rural villages of China[J]. Energy Reports, 2018, 4: 603-618. doi: 10.1016/j.egyr.2018.09.006 [41] ZHAO Chunsheng, NIU Shuwen, ZHANG Xin. Effects of household energy consumption on environment and its influence factors in rural and urban areas[J]. Energy Procedia, 2012, 14: 805-811. doi: 10.1016/j.egypro.2011.12.1015 [42] LU Bin, BLAKERS A, STOCKS M, et al. A zero-carbon, reliable and affordable energy future in Australia[J]. Energy, 2021, 220: 119678. doi: 10.1016/j.energy.2020.119678 [43] 张彩庆, 龚运. 农村最优能源消费结构及测算方法研究: 以京津冀地区为例[J]. 江苏农业科学, 2018, 46(16): 359-362. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201816083.htm [44] 华贲. 天然气在中国向低碳能源过渡时期的关键作用[J]. 天然气工业, 2011, 31(12): 94-98. doi: 10.3787/j.issn.1000-0976.2011.12.017HUA Ben. The key role of natural gas at China's historical period of transition toward a low carbon era[J]. Natural Gas Industry, 2011, 31(12): 94-98. doi: 10.3787/j.issn.1000-0976.2011.12.017 [45] CHENG Yaohua, ZHANG Ning, KANG Chongqing. Carbon emission flow: from electricity network to multiple energy systems[J]. Global Energy Interconnection, 2018, 1(4): 500-506. http://www.cnki.com.cn/Article/CJFDTotal-ZNDW201804014.htm [46] LIU Qiang, ZHENG Xiaoqi, ZHAO Xuchen, et al. Carbon emission scenarios of China's power sector: impact of controlling measures and carbon pricing mechanism[J]. Advances in Climate Change Research, 2018, 9: 27-33. doi: 10.1016/j.accre.2018.01.002 -