Meta Regression Analysis of Pathway of Peak Carbon Emissions in China
-
摘要: 尽早实现碳达峰、碳中和是中国推动经济社会全面绿色低碳转型的内在需求,开展碳达峰路径研究对中国合理制定2030年碳达峰目标和措施具有重大现实意义.该文筛选发表于2015—2020年间的18篇文献,采用Meta回归分析方法研究中国碳达峰路径及主要影响因素.结果表明:①多数文献预测中国将于2030年或2030年前实现碳达峰,平均预测峰值水平约10.9 Gt CO2;碳达峰时煤炭占比平均值为51.9%,非化石能源占比平均值为22.4%,经济年增长率平均值为5.4%,碳排放强度下降率平均值为54.0%.②该文筛选的样本对碳达峰路径预测结果与中国2030年前碳达峰目标一致,文献发表时间越晚预测的达峰时间越早且峰值越高.③除碳达峰时碳排放强度下降率(peakCEI)外,其余变量均对碳达峰峰值具有显著性;除文献类型(PTY)、影响因子(IF)、碳达峰时煤炭占比分类(yblcoal)、碳达峰时非化石能源占比(pnf)外,其余变量均对碳达峰时间具有显著性.未来中国应从基于成本效益的最优达峰路径、完善温室气体清单核算方法、大力推动清洁能源技术进步、提高经济发展质量等方面开展深入研究.Abstract: Achieving peak in carbon emissions and carbon neutrality as soon as possible is an internal need for promoting a comprehensive green and low-carbon transformation in China's economic society. Studying the pathway of carbon peaking is of great practical significance for China to reasonably formulate the targets and measures for carbon peaking in 2030. This research selects 18 papers published between 2015 and 2020, and uses Meta regression analysis to study the pathways for peaking carbon emissions and their main influencing factors. The results show: (1) Most papers predict that China will achieve the peak in carbon emissions in 2030 or before 2030, with an average predicted peak carbon emissions of about 10.9 Gt CO2. The average proportion of coal at the peak of carbon emissions would be 51.87%, and the average proportion of non-fossil energy would be 22.4%. The average annual economic growth rate would be 5.39%, and the average reduction rate of carbon emissions intensity would be 54.04%. (2) The results of the samples selected in the research, which predict the pathway of the carbon peaking, are consistent with carbon peaking target of China before 2030. The later the paper is published, the earlier the predicted carbon peak time and the higher the carbon peak. (3) The regression results show that all variables are significant to the peak CO2 emissions, except the variable of the decline rate of carbon emission intensity at the peak of carbon emissions (peakCEI). And all variables are significant to the time of carbon emissions peaking except the variable of paper type (PTY), impact factor (IF), the classification of the proportion of coal at the peak of carbon emissions (yblcoal) and the proportion of coal at the peak of carbon emissions (pnf). In the future, China should conduct in-deep research in these areas, including studying the optimal pathway to the carbon peak based on cost-benefit theory, improving the accounting methods of GHG inventories, vigorously promoting the progress of clean energy technology, and improving the quality of economic development, etc.
-
表 1 筛选获取的文献与样本数据列表
Table 1. List of selected paper and its sample data
发表时间 文献来源 模型设定 碳达峰时间 CO2峰值/(108 t) 样本情景名称 数据来源 2019年 中国环境科学 情景分析+多属性决策模型 2030年 116.18 能源成本+CO2排放成本最小 文献[30] 2023年 108.72 政策约束 2030年 112.82 能源成本+CO2排放成本最小 2022年 109.43 政策约束 2023年 113.65 无约束 2024年 111.74 能源成本+CO2排放成本最小 2015年 中国人口·资源与环境 能源系统跨时段优化和碳排放模型 2030年 93.50 达峰情景 文献[31] 2015年 中国人口·资源与环境 IAMC模型+情景分析 2020年 100.50 深绿(DGS) 文献[32] 2025年 105.30 浅绿(LGS) 2030年 109.20 浅蓝(LBS) 2040年 119.70 深蓝(DBS) 2010年 中国环境科学 MARKAL-MACRO+情景分析 2036年 107.53 能源结构优化 文献[33] 2031年 94.72 气候变化约束 2016年 中国人口·资源与环境 能源系统优化模型+情景分析 2030年 104.00 达峰情景PS1 文献[34] 2020年 Renewable and Sustainable Energy Reviews 情景分析+EKC 2030年 106.90 计划能源结构(PE) 文献[13] 2025年 103.70 低碳能源结构(LE) 2020年 Science of the Total Environment 情景分析+投入产出优化模型 2030年 124.10 — 文献[1] 2020年 Ecological Indicators 情景分析+STIRPAT模型 2028年 117.70 — 文献[35] 2019年 Applied Energy 情景分析+LEAP 2025年 95.90 RFS 文献[36] 2019年 Journal of Cleaner Production 情景分析+IPAT模型 2030年 105.70 A1+B2+C2 文献[37] 2019年 Energy Policy NARX+情景分析 2029年 100.80 低速发展 文献[38] 2031年 107.80 中速发展 2035年 116.30 高速发展 2017年 Journal of Cleaner Production IMEC+投入产出最优模型 2026年 112.00 — 文献[39] 2017年 Resources, Conservation and Recycling 情景分析+CGE模型 2034年 112.00 资源约束情景 文献[40] 2030年 102.00 低碳情景 2016年 Energy Policy 情景分析+Bottom up+ FAIR/TIMER 2030年 125.00 当前政策情景 文献[41] 2030年 119.00 INDC情景 2030年 115.50 强化政策情景 2016年 Energy Economics 情景分析+C-GEM 2030年 101.58 深度努力(AE) 文献[42] 2040年 121.02 持续努力(CE) 2015年 Energy Policy 情景分析+Kaya 2030年 94.72 SA21 文献[23] 2030年 94.39 SB11 2015年 Advances in Climate Change Research Kaya+情景分析 2030年 117.00 — 文献[25] 2015年 Advances in Climate Change Research IAMC模型+情景分析 2030年 120.00 LBS-2030 文献[26] 2025年 116.00 LGS-2025 表 2 变量描述性统计结果
Table 2. Results of variable descriptive statistics
变量名称 样本量/组 平均值 标准差 最小值 最大值 peakCO2 36 109.30 8.82 93.50 125.00 time 36 -0.78 4.40 -10.00 10.00 PT 36 1.83 2.52 -5.00 5.00 PTY 36 0.61 0.49 0.00 1.00 IF 36 4.88 2.57 1.99 12.11 yblcoal 36 1.75 0.65 0.00 3.00 peakcoal 36 51.87 5.86 36.92 62.30 pnf 36 22.40 6.50 15.40 44.09 nf 36 22.82 5.17 15.60 39.00 nonfossil 36 0.36 0.12 0.13 0.63 CEI 36 2.84 0.70 0.84 4.30 peakCEI 36 54.04 16.27 16.63 96.04 yblCEIG 36 0.44 0.50 0.00 1.00 GDP 36 5.39 1.02 2.50 7.50 GDPY 36 2.83 1.03 0.00 4.00 表 3 样本数据异质性检验结果
Table 3. Heterogeneity test results of sample data
项目 异质性检验 统计值 自由度 P值 peakCO2 Q检验 23.69 35 0.927 I2 0.00 time Q检验 16.85 35 0.996 I2 0.00 表 4 MRA模型估计结果
Table 4. The estimation results of MRA model
项目 Y1 Y2 样本特征 PT 0.67*(0.35) -0.32***(0.11) PTY 9.42***(2.21) 1.13(0.83) IF -1.92***(0.45) -0.15(0.17) 样本变量 yblcoal 9.17***(2.84) 1.26(0.82) peakcoal 1.19***(0.32) 0.31***(0.09) pnf -1.27***(0.37) 0.49(0.46) nf -1.68***(0.36) -0.60***(0.15) nonfossil -5.02***(0.82) -8.46***(2.54) CEI -1.38**(0.59) -0.74**(0.28) peakCEI 0.16(0.18) -0.12**(0.04) yblCEIG -5.88**(2.16) -3.49***(1.24) GDP -4.33**(1.81) -1.71***(0.47) GDPY 4.86**(1.95) 1.97***(0.66) 常数项 15.83***(1.75) 20.62***(4.40) 样本量/组 36 36 R2 0.89 0.95 注:括号内数值为标准误;***、**、*分别为0.01、0.05和0.10的显著性水平. 下同. 表 5 稳健性检验结果
Table 5. Result of robustness test
项目 Y1 Y2 样本特征 PT 0.78***(0.22) -0.26**(0.11) PTY 7.93***(2.35) 1.22(0.72) IF -1.62***(0.50) -0.15(0.21) 样本变量 yblcoal 5.23*(2.76) 0.16(0.58) peakcoal 0.90**(-0.42) 0.33***(0.11) pnf -1.01**(0.43) 0.54***(0.12) nf -1.26***(0.44) -0.63***(0.12) nonfossil -4.70***(-1.03) -8.48***(2.63) CEI -0.20(1.85) -0.34(0.29) peakCEI 0.24**(0.11) -0.11***(0.04) yblCEIG -6.24**(2.87) -2.90**(1.26) GDP -4.68**(-1.90) -2.23***(0.45) GDPY 2.13*(1.23) 1.62***(0.42) 常数项 14.42***(2.83) 14.73**(5.43) 样本量/组 36 36 R2 0.86 0.96 -
[1] SU Y, LIU X, JI J, et al. Role of economic structural change in the peaking of China's CO2 emissions: an input-output optimization model[J]. Science of the Total Environment, 2020, 761: 143306. http://www.sciencedirect.com/science/article/pii/S0048969720368376 [2] WANG S, ZHOU C, LI G, et al. CO2, economic growth, and energy consumption in China's provinces: investigating the spatiotemporal and econometric characteristics of China's CO2 emissions[J]. Ecological Indicators, 2016, 69: 184-195. doi: 10.1016/j.ecolind.2016.04.022 [3] ZHANG X, ZHAO X, JIANG Z, et al. How to achieve the 2030 CO2 emission-reduction targets for China's industrial sector: retrospective decomposition and prospective trajectories[J]. Global Environmental Change, 2017, 44: 83-97. doi: 10.1016/j.gloenvcha.2017.03.003 [4] WANG J, RODRIGUES J F D, HU M, et al. The evolution of Chinese industrial CO2 emissions 2000-2050: a review and meta-analysis of historical drivers, projections and policy goals[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109433. doi: 10.1016/j.rser.2019.109433 [5] TAO Y, WEN Z, XU L, et al. Technology options: can Chinese power industry reach the CO2 emission peak before 2030?[J]. Resources, Conservation and Recycling, 2019, 147: 85-94. doi: 10.1016/j.resconrec.2019.04.020 [6] LI B, HAN S, WANG Y, et al. Feasibility assessment of the carbon emissions peak in China's construction industry: factor decomposition and peak forecast[J]. Science of the Total Environment, 2020, 706: 135716. doi: 10.1016/j.scitotenv.2019.135716 [7] HUO T, MA Y, CAI W, et al. Will the urbanization process influence the peak of carbon emissions in the building sector? a dynamic scenario simulation[J]. Energy and Buildings, 2020, 232: 110590. http://www.sciencedirect.com/science/article/pii/S0378778820333764 [8] WANG H, OU X, ZHANG X. Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050[J]. Energy Policy, 2017, 109: 719-733. doi: 10.1016/j.enpol.2017.07.010 [9] XU B, LIN B. Factors affecting CO2 emissions in China's agriculture sector: evidence from geographically weighted regression model[J]. Energy Policy, 2017, 104: 404-414. doi: 10.1016/j.enpol.2017.02.011 [10] CHEN X, SHUAI C, WU Y, et al. Analysis on the carbon emission peaks of China's industrial, building, transport, and agricultural sectors[J]. Science of the Total Environment, 2020, 709: 135768. doi: 10.1016/j.scitotenv.2019.135768 [11] 王勇, 许子易, 张亚新. 中国超大城市碳排放达峰的影响因素及组合情景预测: 基于门限-STIRPAT模型的研究[J]. 环境科学学报, 2019, 39(12): 4284-4292. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201912038.htmWANG Yong, XU Ziyi, ZHANG Yaxin. Influencing factors and combined scenario prediction of carbon emissions peaks in megacities in China: based on Threshold-STIRPAT model[J]. Acta Scientiae Circumstantiae, 2019, 39(12): 4284-4292. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201912038.htm [12] ZHANG Y, LIU C, CHEN L, et al. Energy-related CO2 emission peaking target and pathways for China's city: a case study of Baoding City[J]. Journal of Cleaner Production, 2019, 226: 471-481. doi: 10.1016/j.jclepro.2019.04.051 [13] XU G, SCHWARZ P, YANG H. Adjusting energy consumption structure to achieve China's CO2 emissions peak[J]. Renewable and Sustainable Energy Reviews, 2020, 122: 109737. doi: 10.1016/j.rser.2020.109737 [14] QI Y, STERN N, HE J, et al. The policy-driven peak and reduction of China's carbon emissions[J]. Advances in Climate Change Research, 2020, 11(2): 65-71. doi: 10.1016/j.accre.2020.05.008 [15] ZHANG X, GENG Y, SHAO S, et al. How to achieve China's CO2 emission reduction targets by provincial efforts: an analysis based on generalized divisia index and dynamic scenario simulation[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109892. doi: 10.1016/j.rser.2020.109892 [16] WANG Z, HUANG W, CHEN Z. The peak of CO2 emissions in China: a new approach using survival models[J]. Energy Economics, 2019, 81: 1099-1108. doi: 10.1016/j.eneco.2019.05.027 [17] LI F, XU Z, MA H. Can China achieve its CO2 emissions peak by 2030?[J]. Ecological Indicators, 2018, 84: 337-344. doi: 10.1016/j.ecolind.2017.08.048 [18] YU S, ZHENG S, LI X, et al. China can peak its energy-related carbon emissions before 2025: evidence from industry restructuring[J]. Energy Economics, 2018, 73: 91-107. doi: 10.1016/j.eneco.2018.05.012 [19] GREEN F, STERN N. China's changing economy: implications for its carbon dioxide emissions[J]. Climate Policy, 2016, 17(4): 423-442. http://smartsearch.nstl.gov.cn/paper_detail.html?id=361c217d464da1c7eb7f3d972d7e44c6 [20] DING S, ZHANG M, SONG Y. Exploring China's carbon emissions peak for different carbon tax scenarios[J]. Energy Policy, 2019, 129: 1245-1252. doi: 10.1016/j.enpol.2019.03.037 [21] LI H, QIN Q. Challenges for China's carbon emissions peaking in 2030: a decomposition and decoupling analysis[J]. Journal of Cleaner Production, 2019, 207: 857-865. doi: 10.1016/j.jclepro.2018.10.043 [22] WANG H, LU X, DENG Y, et al. China's CO2 peak before 2030 implied from characteristics and growth of cities[J]. Nature Sustainability, 2019, 2(8): 748-754. doi: 10.1038/s41893-019-0339-6 [23] YUAN J, XU Y, HU Z, et al. Peak energy consumption and CO2 emissions in China[J]. Energy Policy, 2014, 68: 508-523. doi: 10.1016/j.enpol.2014.01.019 [24] WANG Y, ZOU L. The economic impact of emission peaking control policies and China's sustainable development[J]. Advances in Climate Change Research, 2014, 5(4): 162-168. doi: 10.1016/j.accre.2015.05.001 [25] HE J. An analysis of China's CO2 emission peaking target and pathways[J]. Advances in Climate Change Research, 2014, 5(4): 155-161. doi: 10.1016/j.accre.2015.04.002 [26] CHAI Q, XU H. Modeling an emissions peak in China around 2030: synergies or trade-offs between economy, energy and climate security[J]. Advances in Climate Change Research, 2014, 5(4): 169-180. doi: 10.1016/j.accre.2015.06.001 [27] GLASS G V. Primary, secondary, and meta-analysis of research[J]. Educational Researcher, 1976, 5(10): 3-8. doi: 10.3102/0013189X005010003 [28] STANLEY T D J S B. Meta-regression analysis: a quantitative method of literature surveys[J]. Journal of Economic Surveys, 1989, 2(3): 161-170. [29] 彭俞超, 顾雷雷. 经济学中的META回归分析[J]. 经济学动态, 2014(2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JJXD201402015.htm [30] 王勇, 王颖. 中国实现碳减排双控目标的可行性及最优路径: 能源结构优化的视角[J]. 中国环境科学, 2019, 39(10): 4444-4455. doi: 10.3969/j.issn.1000-6923.2019.10.050WANG Yong, WANG Ying. Feasibility and optimal pathway of China's double targets for carbon reduction: the perspective of energy structure optimization[J]. China Environmental Science, 2019, 39(10): 4444-4455. doi: 10.3969/j.issn.1000-6923.2019.10.050 [31] 毕超. 中国能源CO2排放峰值方案及政策建议[J]. 中国人口·资源与环境, 2015, 25(5): 20-27. doi: 10.3969/j.issn.1002-2104.2015.05.003BI Chao. Scheme and policies for peaking energy carbon emissions in China[J]. China Population, Resources and Environment, 2015, 25(5): 20-27. doi: 10.3969/j.issn.1002-2104.2015.05.003 [32] 柴麒敏, 徐华清. 基于IAMC模型的中国碳排放峰值目标实现路径研究[J]. 中国人口·资源与环境, 2015, 25(6): 37-46. doi: 10.3969/j.issn.1002-2104.2015.06.007CHAI Qimin, XU Huaqing. Modeling carbon emissions peaking pathways in China based on integrated assessment model IAMC[J]. China Population, Resources and Environment, 2015, 25(6): 37-46. doi: 10.3969/j.issn.1002-2104.2015.06.007 [33] 周伟, 米红. 中国能源消费排放的CO2测算[J]. 中国环境科学, 2010, 30(8): 1142-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201008040.htmZHOU Wei, MI Hong. Calculation on energy-related CO2 emissions in China[J]. China Environmental Science, 2010, 30(8): 1142-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201008040.htm [34] 马丁, 陈文颖. 中国2030年碳排放峰值水平及达峰路径研究[J]. 中国人口·资源与环境, 2016, 26(S1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ2016S1001.htmMA Ding, CHEN Wenying. Analysis of China's 2030 carbon emissions peak level and peak path[J]. China Population, Resources and Environment, 2016, 26(S1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ2016S1001.htm [35] SU K, LEE C. When will China achieve its carbon emission peak? a scenario analysis based on optimal control and the STIRPAT model[J]. Ecological Indicators, 2020, 112: 106138. doi: 10.1016/j.ecolind.2020.106138 [36] ZHOU N, PRICE L, YANDE D, et al. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030[J]. Applied Energy, 2019, 239: 793-819. doi: 10.1016/j.apenergy.2019.01.154 [37] SUN Z, LIU Y, YU Y. China's carbon emission peak pre-2030: exploring multi-scenario optimal low-carbon behaviors for China's regions[J]. Journal of Cleaner Production, 2019, 231: 963-979. doi: 10.1016/j.jclepro.2019.05.159 [38] XU G, SCHWARZ P, YANG H. Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis[J]. Energy Policy, 2019, 128: 752-762. doi: 10.1016/j.enpol.2019.01.058 [39] MI Z, WEI Y, WANG B, et al. Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030[J]. Journal of Cleaner Production, 2017, 142: 2227-2236. doi: 10.1016/j.jclepro.2016.11.055 [40] LI N, ZHANG X, SHI M, et al. The prospects of China's long-term economic development and CO2 emissions under fossil fuel supply constraints[J]. Resources, Conservation and Recycling, 2017, 121: 11-22. doi: 10.1016/j.resconrec.2016.03.016 [41] ELZEN M D, FEKETE H, HÖHNE N, et al. Greenhouse gas emissions from current and enhanced policies of China until 2030: can emissions peak before 2030?[J]. Energy Policy, 2016, 89: 224-236. doi: 10.1016/j.enpol.2015.11.030 [42] ZHANG X, KARPLUS V J, QI T, et al. Carbon emissions in China: how far can new efforts bend the curve?[J]. Energy Economics, 2016, 54: 388-395. doi: 10.1016/j.eneco.2015.12.002 [43] STANLEY T D, DOUCOULIAGOS H. Meta-regression analysis in economics and business[M]. London: Routledge, 2012. [44] WANG D, HE W, SHI R. How to achieve the dual-control targets of China's CO2 emission reduction in 2030? future trends and prospective decomposition[J]. Journal of Cleaner Production, 2019, 213: 1251-1263. doi: 10.1016/j.jclepro.2018.12.178 [45] 杨顺顺. 中国碳排放轨迹特征、驱动因素及减排策略[J]. 环境科学与技术, 2020, 43(1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202001015.htmYang Shunshun. Analysis of China's carbon emissions trajectory, driving factors and reduction measures[J]. Environmental Science & Technology (China), 2020, 43(1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202001015.htm [46] ESPEY M, ESPEY J, SHAW W D. Price elasticity of residential demand for water: a meta-analysis[J]. Water Resources Research, 1997, 33(6): 1369-1374. doi: 10.1029/97WR00571 [47] 何寒青, 陈坤. Meta分析中的异质性检验方法[J]. 中国卫生统计, 2006(6): 486-487. doi: 10.3969/j.issn.1002-3674.2006.06.002HE Hanqing, CHEN Kun. Methods for measuring heterogeneity in a Meta-analysis[J]. Chinese Journal of Health Statistics, 2006(6): 486-487. doi: 10.3969/j.issn.1002-3674.2006.06.002 [48] NELSON J P, KENNEDY P E. The use (and abuse) of meta-analysis in environmental and natural resource economics: an assessment[J]. Environmental and Resource Economics, 2009, 42(3): 345-377. doi: 10.1007/s10640-008-9253-5 -

计量
- 文章访问数: 193
- HTML全文浏览量: 51
- PDF下载量: 88
- 被引次数: 0