Multi Objective Programming Model of Low-Cost Path for China's Peaking Carbon Dioxide Emissions and Carbon Neutrality
-
摘要: 为探寻我国低成本碳达峰、碳中和路径,以我国主要耗煤产业、电力、供热、交通以及森林碳汇量为研究对象,构建基于低成本碳达峰、碳中和路径的多目标模型.以成本最小、二氧化碳排放量最少以及大气污染物排放量最少为模型的多目标,以我国2030年前碳达峰以及2060年前碳中和为研究目标设置相应约束条件,并设置产业需求、电力需求、供暖需求、交通需求、各行业新能源比例、污染物控制等约束条件,其中产业考虑煤炭消耗量较大的钢铁、化工、建材以及其他行业,电力考虑火电、核电、风电、太阳能.此外,模型除考虑森林碳汇外,还考虑了碳捕获与封存(CCS)作为实现碳达峰、碳中和的技术手段.结果表明:①我国碳达峰、碳中和实现的可行性较高,2030年及2060年的时间节点设定科学,碳达峰当年的各行业成本约为17.54×1012元,代表行业碳达峰、碳中和时的二氧化碳排放量分别为68.63×108和34.50×108 t.②以钢铁、化工、建材等为代表的工业转型可行性较低,且对于碳达峰、碳中和目标实现的贡献较小;电力、供热以及交通转型可行性较高,且对碳达峰、碳中和目标实现的贡献较大,电力二氧化碳排放量占比在2030年与2060年将分别达72.86%和43.34%.③煤电装机容量将在规划期内持续减少,需取消部分已规划的煤电项目并改造和提前淘汰部分已有煤电设备;相对风力发电与太阳能发电装机容量持续增加,二者装机容量总和于2030年达12×108 kW,于2060年达24×108 kW.④CCS将为碳达峰、碳中和目标实现提供助力.研究显示,未来我国碳减排工作将重点聚焦于电力系统,其次为供热与交通,建议根据行业特征制定不同省份、不同经济圈的绿色发展模式.Abstract: In this study, industry, electric power, heating, transportation and forest carbon sequestration are considered as the objects of study to explore the low-cost path of China's peaking carbon dioxide emissions and carbon neutrality. A low-cost path multi objective programming model for China's peaking carbon dioxide emissions and carbon neutrality is formulated with the minimum total system cost, emission of carbon dioxide and air pollutants as objective function, and peaking carbon dioxide emissions before 2030, carbon neutralization before 2060, industry supply, power supply, heating supply, transportation supply, proportion of green energy in various industries, and emission controls as constraints. Steel industry, chemical industry, building materials industry and other industries with large coal consumption are considered. Coal power, nuclear power, wind power and solar energy are considered for electric power. Forest carbon sink and carbon capture and storage (CCS) were considered as technical means to achieve peaking carbon dioxide emissions and carbon neutrality in this model. The result shows that: (1) The feasibility of China's peaking carbon dioxide emissions and carbon neutrality is high, and the time nodes were set scientifically. The annual cost of various industries is about 17.54 trillion RMB when carbon dioxide emissions peaks. The carbon dioxide emissions of representative industries at peaking carbon dioxide emissions and carbon neutrality was about 68.63×108 t and 34.50×108 t, respectively. (2) Industrial transformation represented by iron and steel industry, chemical industry and construction material industry have lower feasibility and less contribution to the realization of peaking carbon dioxide emissions and carbon neutrality, while the transformation of electric power, heating and transportation has higher feasibility and greater contribution to the realization of peaking carbon dioxide emissions and carbon neutrality. Carbon dioxide emissions from electric power system will reach 72.86% and 43.34% in 2030 and 2060, respectively. (3) Installed capacity of coal-fired power will decrease continuously. It is necessary to cancel some planned coal-fired power projects, phase out and reform some existing coal-fired power equipment in advance. On the other hand, the capacity of wind power and solar power would increase. In 2030 and 2060, the total installed capacity of wind power and solar power will reach 12×108 kW and 24×108 kW, respectively. (4) CCS will provide the assist force for China achieve its peaking carbon dioxide emission and carbon neutrality goals. In the future, China's carbon emission reduction will focus on the power system, followed by heating and transportation. The results of this study suggest that the green development model of different provinces and different economic circles should be formulated according to the characteristics of the industry.
-
Key words:
- peak carbon dioxide emissions /
- carbon neutrality /
- multi objective /
- programming model /
- low-cost path
-
表 1 我国不同发电方式的发电量与装机容量
Table 1. Electric power generation and installed capacity by different technologies in China
项目 2016年 2017年 2018年 2019年 燃煤发电 发电量/(108 kW·h) 39 457 41 498 49 795 51 654 装机容量/(104 kW) 94 624 98 130 101 037 119 055 核电 发电量/(108 kW·h) 2 132 2 481 2 944 3 484 装机容量/(104 kW) 3 364 3 582 4 466 4 874 风电 发电量/(108 kW·h) 2 409 3 034 3 253 3 577 装机容量/(104 kW) 14 747 16 325 18 426 21 005 太阳能发电 发电量/(108 kW·h) 665 1 166 894 1 172 装机容量/(104 kW) 7 631 12 942 17 463 20 468 -
[1] 习近平. 继往开来, 开启全球应对气候变化新征程: 在气候雄心峰会上的讲话[N]. 北京: 人民日报, 2020-12-13(1). [2] LI X, DAMARTZIS T, STADLER Z, et al. Decarbonization in complex energy systems: a study on the feasibility of carbon neutrality for switzerland in 2050[J]. Frontiers in Energy Research, 2020, 8: 549615. doi: 10.3389/fenrg.2020.549615 [3] HUANAN L, QIN Q Q. Challenges for China's carbon emissions peaking in 2030: a decomposition and decoupling analysis[J]. Journal of Cleaner Production, 2019, 207(10): 857-865. http://www.onacademic.com/detail/journal_1000040881398710_063f.html [4] CHI Y, LIU Z, WANG X, et al. Provincial CO2 emission measurement and analysis of the construction industry under China's carbon neutrality target[J]. Sustainability, 2021, 13(4): 1876. doi: 10.3390/su13041876 [5] SALVIA M, RECKIEN D, PIETRAPERTOSA F, et al. Will climate mitigation ambitions lead to carbon neutrality? an analysis of the local-level plans of 327 cities in the EU[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110253. doi: 10.1016/j.rser.2020.110253 [6] 王燕军, 何巍楠, 宋国华, 等. 北京市2017年典型日机动车动态排放特征研究[J]. 环境科学研究, 2021, 34(1): 141-148. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210115&flag=1WANG Yanjun, HE Weinan, SONG Guohua. Vehicular dynamic emission characteristics of typical days in Beijing in 2017[J]. Research of Environmental Sciences, 2021, 34(1): 141-148. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210115&flag=1 [7] 余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(2): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-BLDS202102003.htmYU Biying, ZHAO Guangpu, AN Runying. Research on China's CO2 emission pathway under carbon neutral target[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(2): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-BLDS202102003.htm [8] 赵明轩, 吕连宏, 张保留, 等. 中国能源消费、经济增长与碳排放之间的动态关系[J]. 环境科学研究, 2021, 34(6): 1509-1522. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210626&flag=1ZHAO Mingxuan, LÜ Lianhong, ZHANG Baoliu et al. The dynamic relationship among energy consumption, economic growth and carbon emissions in China[J]. Research of Environmental Sciences, 2021, 34(6): 1509-1522. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210626&flag=1 [9] BELBUTE J, PEREIRA A. Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal[J]. Energy Policy, 2020. doi: 10.1016/j.enpol.2020.111642. [10] DUAN Z, YANG Y, WANG L, et al. Temporal characteristics of carbon dioxide and ozone over a rural-cropland area in the Yangtze River Delta of eastern China[J]. Science of the Total Environment, 2020, 757: 143750. http://www.sciencedirect.com/science/article/pii/S0048969720372818 [11] PATRICK F, SYLVIE B, RÉMI M C, et al. Achieving carbon neutrality for a future large greenhouse gas emitter in Quebec, Canada: a case study[J]. Atmosphere, 2020, 11(8): 810. doi: 10.3390/atmos11080810 [12] 魏一鸣, 廖华, 余碧莹, 等. 中国能源报告(2018): 能源密集型部门绿色转型研究[M]. 北京: 科学出版社, 2018. [13] 刘燕华, 孟赤兵. 中国低碳年鉴(2017)[M]. 北京: 冶金工业出版社, 2018. [14] 国家能源局. 中国电力年鉴(2018)[M]. 北京: 中国电力出版社, 2019. [15] 国家统计局能源司. 中国能源统计年鉴(2018)[M]. 北京: 中国统计出版社有限公司, 2019. [16] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-BGYS202103001.htmHU Angang. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-BGYS202103001.htm [17] AN R, YU B, LI R, et al. Potential of energy savings and CO2 emission reduction in China's iron and steel industry[J]. Applied Energy, 2018, 226: 862-880. doi: 10.1016/j.apenergy.2018.06.044 [18] LI X, YU B. Peaking CO2 emissions for China's urban passenger transport sector[J]. Energy Policy, 2019, 133: 110913. doi: 10.1016/j.enpol.2019.110913 [19] TANG B, LI R, YU B, et al. How to peak carbon emissions in China's power sector: a regional perspective[J]. Energy Policy, 2018, 120: 365-381. doi: 10.1016/j.enpol.2018.04.067 [20] LIN B, DU K. Energy and CO2 emissions performance in China's regional economies: do market-oriented reforms matter?[J]. Energy Policy, 2015, 78: 113-124. doi: 10.1016/j.enpol.2014.12.025 [21] ZHANG C, YU B, CHEN J, et al. Green transition pathways for cement industry in China[J]. Resources, Conservation & Recycling, 2021, 166: 105355. http://www.sciencedirect.com/science/article/pii/S0959652621029802 [22] 陈怡, 田川, 曹颖, 等. 中国电力行业碳排放达峰及减排潜力分析[J]. 气候变化研究进展, 2020, 16(5): 632-640. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202005012.htmCHEN Yi, TIAN Chuan, CAO Ying, et al. Research on peaking carbon emissions of power sector in China and the emissions mitigation analysis[J]. Climate Change Research, 2020, 16(5): 632-640. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202005012.htm [23] WANG S, XIE Y L, HUANG G H, et al. A structural adjustment optimization model for electric-power system management under multiple uncertainties: a case study of Urumqi City, China[J]. Energy Policy, 2021, 149: 112056. doi: 10.1016/j.enpol.2020.112056 [24] WU P, GUO F, CAI B, et al. Co-benefits of peaking carbon dioxide emissions on air quality and health, a case of Guangzhou, China[J]. Journal of Environmental Management, 2021, 282: 111796. doi: 10.1016/j.jenvman.2020.111796 [25] LI X, YU B. Peaking CO2 emissions for China's urban passenger transport sector[J]. Energy Policy, 2019, 133: 110913. doi: 10.1016/j.enpol.2019.110913 [26] LIU D, XIAO B. Can China achieve its carbon emission peaking? a scenario analysis based on STIRPAT and system dynamics model[J]. Ecological Indicators, 2018, 93: 647-657. doi: 10.1016/j.ecolind.2018.05.049 [27] 李慧, 王淑兰, 张文杰. 京津冀及周边地区"2+26"城市空气质量特征及其影响因素[J]. 环境科学研究, 2021, 34(1): 172-184. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210118&flag=1LI Hui, WANG Shulan, ZHANG Wenjie. Characteristics and influencing factors of urban air quality in Beijing-Tianjin-Hebei and its surrounding areas ('2+26' cities)[J]. Research of Environmental Sciences, 2021, 34(1): 172-184. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210118&flag=1 [28] WU D, GENGY, PAN H. Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110635. doi: 10.1016/j.rser.2020.110635 [29] WU P, GUO F, CAI B, et al. Co-benefits of peaking carbon dioxide emissions on air quality and health, a case of Guangzhou, China[J]. Journal of Environmental Management, 2021, 282: 111796. doi: 10.1016/j.jenvman.2020.111796 [30] WANG M, FENG C. How will the greening policy contribute to China's greenhouse gas emission mitigation? a non-parametric forecast[J]. Environmental Research, 2021, 195: 110779. doi: 10.1016/j.envres.2021.110779 [31] JIANG Q, KHATTAK S, RAHMAN Z. Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: new evidence from an EKC-based assessment[J]. Energy, 2021, 229: 120616. doi: 10.1016/j.energy.2021.120616 -