留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间歇超声波强化ZVI/PS体系氧化降解磺胺抗生素

崔皓 田禹 张军

崔皓, 田禹, 张军. 间歇超声波强化ZVI/PS体系氧化降解磺胺抗生素[J]. 环境科学研究, 2021, 34(12): 2820-2830. doi: 10.13198/j.issn.1001-6929.2021.06.26
引用本文: 崔皓, 田禹, 张军. 间歇超声波强化ZVI/PS体系氧化降解磺胺抗生素[J]. 环境科学研究, 2021, 34(12): 2820-2830. doi: 10.13198/j.issn.1001-6929.2021.06.26
CUI Hao, TIAN Yu, ZHANG Jun. Degradation of Sulfonamide Antibiotics by Intermittent Ultrasound Enhanced ZVI/PS Process[J]. Research of Environmental Sciences, 2021, 34(12): 2820-2830. doi: 10.13198/j.issn.1001-6929.2021.06.26
Citation: CUI Hao, TIAN Yu, ZHANG Jun. Degradation of Sulfonamide Antibiotics by Intermittent Ultrasound Enhanced ZVI/PS Process[J]. Research of Environmental Sciences, 2021, 34(12): 2820-2830. doi: 10.13198/j.issn.1001-6929.2021.06.26

间歇超声波强化ZVI/PS体系氧化降解磺胺抗生素

doi: 10.13198/j.issn.1001-6929.2021.06.26
基金项目: 

国家重点研发计划项目 2019YFD1100300

国家自然科学基金项目 41877396

详细信息
    作者简介:

    崔皓(1992-), 男, 山东潍坊人, hitcuihao1@163.com

    通讯作者:

    田禹(1968-), 女, 河北唐山人, 长江学者特聘教授, 博士, 博导, 主要从事工业废水处理工艺研究, hit_tianyu@163.com

  • 中图分类号: X703.1

Degradation of Sulfonamide Antibiotics by Intermittent Ultrasound Enhanced ZVI/PS Process

Funds: 

National Key Research and Development Program of China 2019YFD1100300

National Natural Science Foundation of China 41877396

  • 摘要: 磺胺抗生素(SAs)作为最早应用的一类化学合成抗菌药,其大量使用和排放对水环境造成严重污染,引起了人们对于水环境安全的高度关注. 因此,选取了水环境中检出率较高的5种特征SAs作为目标污染物,分别为磺胺甲基嘧啶(SMR)、磺胺二甲基嘧啶(SMT)、磺胺甲恶唑(SMX)、磺胺异恶唑(SIX)和磺胺噻唑(STZ). 利用高效液相色谱质谱联用仪(HPLC-MS-MS)对降解过程产生的中间产物进行检测和分析,深入研究了间歇超声波(US)强化ZVI/PS体系(简称“US-ZVI/PS体系”)降解5种SAs的效能和反应路径. 结果表明:①在US强度、pH、ZVI(零价铁)浓度和PS初始浓度分别为0.25 W/cm3、6.0、0.6 mmol/L和1.4 mmol/L条件下,30 min反应时间内,US-ZVI/PS体系对5种SAs的降解效率均超过95%. ②US-ZVI/PS体系降解5种SAs的过程均符合拟一级反应动力学,5种SAs降解速率常数大小依次为SMR(0.223)> SMT(0.215)>STZ(0.203)>SIX(0.181)> SMX(0.119). ③5种SAs的降解活性位点为苯环上邻位的3号C原子、苯氨基上的7号N原子、磺酰胺基上的8号S原子和11号N原子,US-ZVI/PS体系降解5种SAs的相同反应路径包括S—N键断裂、C—N键断裂、苯环羟基化、苯胺氧化和R取代基氧化过程,与五元环SAs相比,六元环SAs反应路径多一个N—N重排过程. 研究显示,US-ZVI/PS体系能够实现不同结构SAs的快速降解,是一种绿色、高效的高级氧化技术.

     

  • 图  1  US-ZVI/PS、ZVI/PS和PS体系降解SMR、SMT、SMX、SIX和STZ的效能

    Figure  1.  The degradation of SMR, SMT, SMX, SIX, and STZ by US-ZVI/PS, ZVI/PS and PS system

    图  2  US-ZVI/PS体系氧化降解5种特征磺胺抗生素的拟一级动力学曲线

    Figure  2.  The pseudo-first order fitting curves of five SAs degradation by US-ZVI/PS system

    图  3  US-ZVI/PS体系降解5种SAs的反应路径

    Figure  3.  The degradation pathways of SAs by US-ZVI/PS system

    表  1  5种典型SAs的性质

    Table  1.   The properties of five typical SAs

    化合物名称 CAS号 分子式 摩尔质量/(g/mol) 解离常数 分子结构
    磺胺甲基嘧啶(SMR) 127-79-7 C11H12N4O2S 264 pKa1=2.2、
    pKa2=6.8
    磺胺二甲嘧啶(SMT) 57-68-1 C12H14N4O2S 278 pKa1=2.3、
    pKa2=7.4
    磺胺甲恶唑(SMX) 723-46-6 C10H11N3O3S 253 pKa1=1.7、
    pKa2=5.6
    磺胺异恶唑(SIX) 127-69-5 C11H13N3O3S 267 pKa1=1.5、
    pKa2=5.0
    磺胺噻唑(STZ) 72-14-0 C9H9N3O2S2 255 pKa1=2.0、
    pKa2=7.1
    下载: 导出CSV

    表  2  SMR降解的中间产物的分子结构式和质谱碎片离子分布

    Table  2.   The structure of intermediate products of SMR and the MS/MS fragments

    中间产物名称 物质结构 分子式 一级质谱质子化离子
    ([M+H]+)
    二级质谱碎片离子
    (m/z)
    SMR C11H12N4O2S 265 156、110、172
    SMR 294 C11H10N4O4S 295 197、123
    SMR 280 C11H12N4O3S 281 254、236
    SMR 200 C11H12N4 201 201、159
    SMR 173 C6H7NO3S 174 110、92
    SMR 150 C4H6O6 151 106、75
    SMR 139 C5H5N3O2 140 95、59
    SMR 123 C6H5NO2 124 78
    下载: 导出CSV

    表  3  SMT降解中间产物的分子结构式和质谱碎片离子分布

    Table  3.   The structure of intermediate products of SMT and the MS/MS fragments

    中间产物名称 物质结构 分子式 一级质谱质子化离子
    ([M+H] +)
    二级质谱碎片离子
    (m/z)
    SMT C12H14N4O2S 279 156、108、85
    SMT 310 C12H14N4O4S 311 156、91
    SMT 308 C12H12N4O4S 309 150、122、95
    SMT 214 C12H14N4 215 156、95
    SMT 214 C7H10N4O2S 215 157、119
    SMT 188 C6H8N2O3S 189 157、95
    SMT 183 C6H5N3O4 184 118、94
    SMT 173 C6H7NO3S 174 110、92
    SMT 139 C6H5NO3 140 94
    SMT 119 C3H9N3O2 120 104
    下载: 导出CSV

    表  4  SMX降解中间产物的分子结构式和质谱碎片离子分布

    Table  4.   The structure of intermediate products of SMX and the MS/MS fragments

    中间产物名称 物质结构 分子式 一级质谱质子化离子
    ([M+H]+)
    二级质谱碎片离子
    (m/z)
    SMX C10H11N3O3S 254 156、100
    SMX 287 C10H13N3O5S 288 132、94
    SMX 283 C10H9N3O5S 284 156、113、61
    SMX 269 C10H11N3O4S 270 109、98
    SMX 146 C4H6N2O4 147 90、73
    SMX 139 C6H5NO3 140 103、85、57
    SMX 132 C4H8N2O3 133 71
    SMX 100 C4H8N2O 101 57
    SMX 98 C4H6N2O 99 84、68
    下载: 导出CSV

    表  5  SIX降解中间产物的分子结构式和质谱碎片离子分布

    Table  5.   The structure of intermediate products of SIX and the MS/MS fragments

    中间产物名称 物质结构 分子式 一级质谱质子化离子
    ([M+H]+)
    二级质谱碎片离子
    (m/z)
    SIX C11H13N3O3S 268 156、96、80
    SIX 297 C11H11N3O5S 298 252、112、96
    SIX 227 C9H13N3O4 228 166、92
    SIX 200 C7H8N2O3S 201 173、117
    SIX 173 C6H7NO3S 174 110、92
    SIX 112 C5H8N2O 113 93、80、65
    SIX 97 C5H7NO 98 68
    SIX 93 C6H7N 94 77
    下载: 导出CSV

    表  6  STZ降解中间产物的分子结构式和质谱碎片离子分布

    Table  6.   The structure of intermediate products of STZ and the MS/MS fragments

    中间产物名称 物质结构 分子式 一级质谱质子化离子
    ([M+H]+)
    二级质谱碎片离子
    (m/z)
    STZ C9H9N3O2S2 256 156、108、92
    STZ 289 C9H11N3O4S2 290 156、108、92
    STZ 285 C9H7N3O4S2 286 241、162、69
    STZ 218 C7H10N2O2S2 219 156、113、61
    STZ 173 C6H7NO3S 174 110、92
    STZ 139 C6H5NO3 140 110、81、54
    STZ 134 C3H6N2O2S 135 101、86
    STZ 100 C3H4N2S 101 74、59
    下载: 导出CSV
  • [1] CONDE M, ÁLVAREZ C, PARADELO R, et al. Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain)[J]. Journal of Cleaner Production, 2018, 197: 491-500. doi: 10.1016/j.jclepro.2018.06.217
    [2] BU Qingwei, WANG Bin, HUANG Jun, et al. Pharmaceuticals and personal care products in the aquatic environment in China: a review[J]. Journal of Hazardous Materials, 2013, 262(15): 189-211. http://www.sciencedirect.com/science/article/pii/s016041201300130x
    [3] 秦延文, 张雷, 时瑶, 等. 大辽河表层水体典型抗生素污染特征与生态风险评价[J]. 环境科学研究, 2015, 28(3): 361-368. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150305&flag=1

    QIN Yanwen, ZHANG Lei, SHI Yao, et al. Contamination characteristics and ecological risk assessment of typical antibiotics in surface water of the Daliao River, China[J]. Research of Environmental Sciences, 2015, 28(3): 361-368. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20150305&flag=1
    [4] 秦丽婷, 童蕾, 刘慧, 等. 环境中磺胺类抗生素的生物降解及其抗性基因污染现状[J]. 环境化学, 2016, 35(5): 875-883. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201605005.htm

    QIN Liting, TONG Lei, LIU Hui, et al. Biodegradation of sulfonamides and the pollution characteristics of sulfonamide resistance genes in the environment[J]. Environmental Chemistry, 2016, 35(5): 875-883. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201605005.htm
    [5] LITTLEFIELD N A, SHELDON W G, ALLEN R, et al. Chronic toxicity/carcinogenicity studies of sulphamethazine in Fischer 344/N rats: two-generation exposure[J]. Food & Chemical Toxicology, 1990, 28(3): 157-167. http://chromsci.oxfordjournals.org/external-ref?access_num=2344990&link_type=MED
    [6] VALLACK H W, BAKKER D J, BRANDT I, et al. Controlling persistent organic pollutants: what next?[J]. Environmental Toxicology & Pharmacology, 1998, 6(3): 143. http://www.jelena-suran.com/joomla/images/stories/controlling_POPs.pdf
    [7] 王嘉玮, 魏红, 杨小雨, 等. 渭河西安段磺胺类抗生素的分布特征及生态风险评价[J]. 环境化学, 2017, 36(12): 2574-2583. doi: 10.7524/j.issn.0254-6108.2017032402

    WANG Jiawei, WEI Hong, YANG Xiaoyu, et al. Occurrence and ecological risk of sulfonamide antibiotics in the surface water of the Weihe Xi'an section[J]. Environmental Chemistry, 2017, 36(12): 2574-2583. doi: 10.7524/j.issn.0254-6108.2017032402
    [8] RYSZ M, ALVAREZ P. Amplification and attenuation of tetracycline resistance in soil bacteria: aquifer column experiments[J]. Water Research, 2004, 38(17): 3705-3712. doi: 10.1016/j.watres.2004.06.015
    [9] WANG Huijing, ZHANG Jun, WANG Pu, et al. Bifunctional copper modified graphitic carbon nitride catalysts for efficient tetracycline removal: synergy of adsorption and photocatalytic degradation[J]. Chinese Chemical Letters, 2020, 31(10): 2789-2794. doi: 10.1016/j.cclet.2020.07.043
    [10] OH W D, DONG Z, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194(5): 169-201. http://www.sciencedirect.com/science/article/pii/S0926337316302600
    [11] DENG Y, EZYSKE C M. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate[J]. Water Research, 2011, 45(18): 6189-6194. doi: 10.1016/j.watres.2011.09.015
    [12] XIONG Yanghui, PEI Desheng. A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems[J]. Chemosphere, 2021, 277: 130256. doi: 10.1016/j.chemosphere.2021.130256
    [13] 张古承, 张静, 万子谦, 等. 铁锰双金属氧化物对过硫酸氢钾降解酸性橙7的催化效果[J]. 环境科学研究, 2015, 28(12): 1902-1907. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20151212&flag=1

    ZHANG Gucheng, ZHANG Jing, WAN Ziqian, et al. Degradation of acid orange 7 by peroxomonosulfate activated with Fe-MnOx[J]. Research of Environmental Sciences, 2015, 28(12): 1902-1907. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20151212&flag=1
    [14] YANG Jirui, WANG Xiaoqi, SHEN Feng, et al. Base activation of persulfate: an effective pretreatment method to enhance glucose production from lignocellulosic biomass[J]. Cellulose, 2021, 28: 4039-4051. doi: 10.1007/s10570-021-03796-9
    [15] BESSEGATO G G, ZANONI M V B, TREMILIOSI-FILHO G, et al. Evidences of the electrochemical production of sulfate radicals at cathodically polarized TiO2 nanotubes electrodes[J]. Electrocatalysis, 2019, 10: 272-276. doi: 10.1007/s12678-019-00525-6
    [16] PAN Xiaoxue, YAN Liqing, QU Ruijuan, et al. Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light[J]. Chemosphere, 2018, 196: 95-104. doi: 10.1016/j.chemosphere.2017.12.152
    [17] ACERO J L, BENÍTEZ F J, REAL F J, et al. Degradation of selected emerging contaminants by UV-activated persulfate: kinetics and influence of matrix constituents[J]. Separation & Purification Technology, 2018, 201(7): 41-50. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1383586618303988&originContentFamily=serial&_origin=article&_ts=1521139395&md5=d75deee5feb7868327400a8156dbffd7
    [18] FAKHRI A, NAJI M, TAHAMI S. Ultraviolet/ultrasound-activated persulfate for degradation of drug by zinc selenide quantum dots: catalysis and microbiology study[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 170: 304-308. doi: 10.1016/j.jphotobiol.2017.04.024
    [19] GRACA C, FUGITA L, VELOSA A, et al. Amicarbazone degradation promoted by ZVI-activated persulfate: study of relevant variables for practical application[J]. Environmental Science and Pollution Research, 2017, 25: 5474-5483. http://www.onacademic.com/detail/journal_1000040246633410_d8e0.html
    [20] HUSSAIN I, ZHANG Yongqing, HUANG Shaobin, et al. Degradation of p-chloroaniline by persulfate activated with zero-valent iron[J]. Chemical Engineering Journal, 2012, 203(5): 269-276.
    [21] GAO Yuqing, GAO Naiyun, WANG Wei, et al. Ultrasound-assisted heterogeneous activation of persulfate by nano zero-valent iron (nZVI) for the propranolol degradation in water[J]. Ultrasonic Sonochemistry, 2018, 49: 33-40. doi: 10.1016/j.ultsonch.2018.07.001
    [22] 刘娜, 丁吉阳, 于庆民, 等. 超声强化零价铁活化过硫酸盐降解地下水中二恶烷[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1831-1837. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201806020.htm

    LIU Na, DING Jiyang, YU Qingmin, et al. Degradation of 1, 4-dioxane in groundwater by ultrasound enhanced ZVI-activated persulfate oxidation process[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6): 1831-1837. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201806020.htm
    [23] 张良长, 戴友芝, 田凯勋, 等. 超声波/零价铁协同降解三氯甲烷特性研究[J]. 环境科学研究, 2008, 21(6): 4009-4011. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20080641&flag=1

    ZHANG Liangchang, DAI Youzhi, TIAN Kaixun, et al. Characteristics of trichloromethane degradation by ultrasound combined with zero-valent iron[J]. Research of Environmental Sciences, 2008, 21(6): 4009-4011. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20080641&flag=1
    [24] 肖泉, 田凯勋, 付显婷, 等. 超声波强化零价铁/过硫酸钾体系处理柠檬酸镍络合废水研究[J]. 环境科学学报, 2018, 38(10): 4006-4012. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201810025.htm

    XIAO Quan, TIAN Kaixun, FU Xianting, et al. Treatment of nickel citrate complex wastewater by zero-valent iron/potassium persulfate system with ultrasonic enhancement[J]. Acta Scientiae Circumstantiae, 2018, 38(10): 4006-4012. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201810025.htm
    [25] 田凯勋, 杨超, 付显婷. 超声波强化零价铁/过硫酸钾体系降解2, 4, 6-三氯苯酚废水[J]. 中国环境科学, 2017, 37(10): 3729-3734. doi: 10.3969/j.issn.1000-6923.2017.10.014

    TIAN Kaixun, YANG Chao, FU Xianting, et al. Degradation of 2, 4, 6-TCP in an ultrasound-enhanced zero-valent iron/potassium persulfate system[J]. China Environmental Science, 2017, 37(10): 3729-3734. doi: 10.3969/j.issn.1000-6923.2017.10.014
    [26] WANG Xue, WANG Liguo, LI Jiangbo, et al. Degradation of acid orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation[J]. Separation & Purification Technology, 2014, 122(10): 41-46. http://www.researchgate.net/profile/Hui_Zhang67/publication/259159521_Degradation_of_Acid_Orange_7_by_persulfate_activated_with_zero_valent_iron_in_the_presence_of_ultrasonic_irradiation/links/5490caa20cf214269f27d4dd.pdf
    [27] CUI Hao, TIAN Yu, ZHANG Jun, et al. Enhanced oxidation of sulfadiazine by two-stage ultrasound assisted zero-valent iron catalyzed persulfate process: factors and pathways[J]. Chemical Engineering Journal, 2020, 417(16): 128152. http://www.sciencedirect.com/science/article/pii/S1385894720342686
    [28] DENG Fengxia, LI Sixing, ZHOU Minghua, et al. A biochar modified nickel-foam cathode with iron-foam catalyst in electro-Fenton for sulfamerazine degradation[J]. Applied Catalysis B: Environmental, 2019, 256(5): 117796. http://www.sciencedirect.com/science/article/pii/S0926337319305429
    [29] LIU Yuankun, WANG Jianlong. Degradation of sulfamethazine by gamma irradiation in the presence of hydrogen peroxide[J]. Journal of Hazardous Materials, 2013, 250/251: 99-105. doi: 10.1016/j.jhazmat.2013.01.050
    [30] LALAS K, PETALA A, FRONTISTIS Z, et al. Sulfamethoxazole degradation by the CuOx/persulfate system[J]. Catalysis Today, 2020, 361: 139-145. http://www.sciencedirect.com/science/article/pii/S0920586120300511
    [31] LIU LI, LI Yunong, LI Wei, et al. The efficient degradation of sulfisoxazole by singlet oxygen (1O2) derived from activated peroxymonosulfate (PMS) with Co3O4-SnO2/RSBC[J]. Environmental Research, 2020, 187: 109665. doi: 10.1016/j.envres.2020.109665
    [32] SUSLICK K S. The chemical effects of ultrasound[J]. Scientific American, 1989, 260: 80-86.
    [33] DONADELLI J A, CALOS L, ARQUES A, et al. Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways[J]. Applied Catalysis B Environmental, 2018, 231(5): 51-61. http://www.sciencedirect.com/science/article/pii/S0926337318301784
    [34] ADEWUYI Y G. Sonochemistry: science and engineering applications[J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4681-4715.
    [35] THOMPSON L H, DORAISWAMY L K. Sonochemistry: science and engineering[J]. Industrial & Engineering Chemistry Research, 1999, 38: 1215-1249. http://www.onacademic.com/detail/journal_1000038122151510_0bcc.html
    [36] CAO J S, REN Q, CHEN F W, et al. Comparative study on the methods for predicting the reactive site of nucleophilic reaction[J]. Science China, 2015, 58(12): 1845-1852. doi: 10.1007/s11426-015-5494-7
    [37] JI Y, SHI Y, WANG L, et al. Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: formation of SO2 extrusion products and effects of natural organic matter[J]. Science of the Total Environment, 2017, 593/594: 704-712. doi: 10.1016/j.scitotenv.2017.03.192
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  39
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 修回日期:  2021-06-03

目录

    /

    返回文章
    返回