Quantification of Ingestion of Microplastics by Marine Medaka (Oryzias melastigma) Using Fluorescence and C-14 Isotope Radiotracer
-
摘要: 微塑料已在多种海洋生物体内检出,造成不同程度的毒性效应,但由于技术限制,关于海洋鱼类对小粒径微塑料摄入和排出过程的定量研究仍比较缺乏.该研究针对生物体内小粒径微塑料定量示踪的技术难题,提出荧光和放射性同位素示踪法,并对比了两种方法的检测限、灵敏度和定性定量的方便程度等;同时以PS(聚苯乙烯,polystyrene)为微塑料代表,采用荧光法和C-14同位素法定量研究了PS微塑料(< 1 μm)在海水青鳉(marine medaka,Oryzias melastigma)成鱼和仔鱼中的摄入和排出情况,以及摄食行为对微塑料赋存状态的影响.结果表明:①荧光法适用于直观观察微塑料在生物体内的分布及高浓度暴露时的荧光定量,而C-14同位素法因具有更低的检测限和高的灵敏度,在复杂介质中的定量检测更具优势.②海水青鳉成鱼和仔鱼摄入微塑料的量随着培养时间而变化,且均在24 h摄入较多微塑料,成鱼(以鱼湿质量计)摄入的微塑料含量[(246.8±38.1)mg/g]显著(P < 0.05)高于仔鱼[(4.32±0.77)mg/g].③微塑料在海水青鳉体内主要分布部位为肠道(99.9%),极少量在鱼鳃(0.07%)和体表(0.03%)中,表明摄食是微塑料进入鱼体的主要途径;在不喂食72 h后,微塑料在肠道内仍有一定量残留[(1.29±0.52)mg/g],鱼鳃中微塑料则完全排出至检测限以下.研究显示,海水青鳉通过对水中悬浮状态微塑料的摄入,将海水中的微塑料由初始悬浮分散态变成粪便团聚体沉入水底,在很大程度上改变了微塑料在环境中的赋存形态,由此对微塑料环境过程和生态效应产生的未知影响值得进一步关注.
-
关键词:
- 海水青鳉(Oryzias melastigma) /
- 微塑料 /
- 定量 /
- 摄食 /
- 排出
Abstract: Microplastics have been detected in various marine organisms and have caused significant toxic effects. Due to the limitations of detection and quantification methods, the dynamics of marine fish ingestion and egestion of microplastics are still not well understood. With the aim to overcome the difficulties of quantifying microplastics in organisms, especially for microplastics of small sizes and low concentrations, this study proposed two methods using fluorescence and C-14 isotope tracer. The advantages of these two methods in terms of detection limit, sensitivity, qualitative and quantitative aspects were compared. Moreover, these two methods were used to quantify PS microplastics (< 1 μm) ingested by marine medaka (Oryzias melastigma) and the influence of ingestion/egestion process on microplastics in seawater. The results showed that fluorescence labeling was suitable for mapping and quantification of high-concentration microplastics in organisms, while the C-14 isotope tracer was more sensitive to microplastics in low-concentrations or complex environmental matrices. Large ingestion was observed during the incubation experiments and reached a maximum amount at 24 h. The microplastics concentration in adult medaka ((246.8±38.1) mg/g in wet weight) was significantly higher than that of juvenile fish ((4.32±0.77) mg/g in wet weight). The distribution of microplastics in adult medaka were detected highest in the gut of marine medaka (99.9%), followed by 0.07% in the gill and 0.03% in the body, indicating food ingestion was the dominant way of microplastic accumulation. After 72 h of egestion, microplastics could still be detected in the gut of marine medaka ((1.29±0.52) mg/g), but no microplastics could be detected in the gill and body, indicating potential ecological risks for marine organisms. It is worth noting that the ingestion of microplastics by marine medaka could significantly change the exiting state of microplastics from dispersion into aggregation, which may change the environmental fate of microplastics in marine systems. The unknown outcomes caused by such alteration on behavior and ecological effects of microplastics deserve more attention.-
Key words:
- marine medaka (Oryzias melastigma) /
- microplastics /
- quantification /
- ingestion /
- egestion
-
表 1 混合消解液成分表
Table 1. Ingredients of the liquid digestion mixture
成分 含量 Tris-HCl 400 mmol/L EDTA-2Na 60 mmol/L NaCl 105 mmol/L SDS 10 g H2O 1 L -
[1] 李道季. 海洋微塑料污染状况及其应对措施建议[J]. 环境科学研究, 2019, 32(2): 197-202. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190203&flag=1LI Daoji. Research advance and countermeasure on marine microplastic pollution[J]. Reseach of Envionmental Sciences, 2019, 32(2): 197-202. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190203&flag=1 [2] GALLOWAY T S, LEWIS C N. Marine microplastics spell big problems for future generations[J]. Proceedings of the National Academy of Sciences, 2016, 113(9): 2331-2333. doi: 10.1073/pnas.1600715113 [3] 刘彬, 侯立安, 王媛, 等. 我国海洋塑料垃圾和微塑料排放现状及对策[J]. 环境科学研究, 2020, 33(1): 174-182. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200121&flag=1LIU Bin, HOU Li'an, WANG Yuan, et al. Emission estimate and countermeasures of marine plastic debris and microplastics in China[J]. Research of Environmental Sciences, 2020, 33(1): 174-182. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200121&flag=1 [4] 马维宇, 韦斯. 环境中的微塑料: 赋存、检测及其危害[J]. 环境监控与预警, 2020(12): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HTJK202005008.htmMA Weiyu, WEI Si. Microplastics in the environment: occurrence, detection and harm[J]. Envionmental Monitoring and Forewarning, 2020(12): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HTJK202005008.htm [5] ZHANG Weiwei, ZHANG Shoufeng, WANG Juying, et al. Microplastic pollution in the surface waters of the Bohai Sea, China[J]. Environmental Pollution, 2017, 231: 541-548. doi: 10.1016/j.envpol.2017.08.058 [6] ZHAO Shiye, ZHU Lixin, LI Daoji. Microplastic in three urban estuaries, China[J]. Environmental Pollution, 2015, 206: 597-604. doi: 10.1016/j.envpol.2015.08.027 [7] KANE I A, CLARE M A, MIRAMONTES E, et al. Seafloor microplastic hotspots controlled by deep-sea circulation[J]. Science, 2020, 368: 6495. http://www.ncbi.nlm.nih.gov/pubmed/32354839?utm_source=research-news&utm_medium=referral&utm_campaign=research-news [8] 赵艳民, 马迎群, 温泉, 等. 基于不确定性的天津市北塘排污河表层沉积物微塑料污染评价[J]. 环境工程技术学报, 2021, 11(3): 554-561. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202103021.htmZHAO Yanmin, MA Yingqun, WEN Quan, et al. Evaluation of microplastics pollution in surface sediments of Beitang Drainage River in Tianjin City based on uncertainty[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 554-561. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202103021.htm [9] ANDRADY A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030 [10] NAJI A, NURI M, VETHAAK A D. Microplastics contamination in molluscs from the northern part of the Persian Gulf[J]. Environmental Pollution, 2018, 235: 113-120. doi: 10.1016/j.envpol.2017.12.046 [11] 朱莹, 曹淼, 罗景阳, 等. 微塑料的环境影响行为及其在我国的分布状况[J]. 环境科学研究, 2019, 32(9): 1437-1447. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190901&flag=1ZHU Ying, CAO Miao, LUO Jingyang, et al. Distribution and potential risks of microplastics in China: a review[J]. Research of Environmental Sciences, 2019, 32(9): 1437-1447. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190901&flag=1 [12] ZHANG Cai, CHEN Xiaohua, WANG Jiangtao, et al. Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae[J]. Environmental Pollution, 2017, 220: 1282-1288. doi: 10.1016/j.envpol.2016.11.005 [13] COLE M, LINDEQUE P, FILEMAN E, et al. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus[J]. Environmental Science & Technology, 2015, 49(2): 1130-1137. http://plymsea.ac.uk/6749/1/Cole%20et%20al%20Env%20Sci%20%26%20Tech%202015.pdf [14] COLE M, LINDEQUE P, FILEMAN E, et al. Microplastic ingestion by zooplankton[J]. Environmental Science & Technology 2013, 47(12): 6646-6655. [15] REDONDO-HASSELERHARM P E, FALAHUDIN D, PEETERS E M, et al. Microplastic effect thresholds for freshwater benthic macroinvertebrates[J]. Environmental Science & Technology, 2018, 52(4): 2278-2286. doi: 10.1021/acs.est.7b05367?src=recsys [16] VON-MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue mussel mytilus edulis L. after an experimental exposure[J]. Environmental Science & Technology, 2012, 46(20): 11327-11335. http://www.mendeley.com/research/validation-dynamic-energy-budget-deb-model-blue-mussel-textitmytilus-edulis/ [17] SUSSARELLU R, SUQUET M, THOMAS Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences, 2016, 113(9): 2430. doi: 10.1073/pnas.1519019113 [18] LU Yifeng, ZHANG Yan, DENG Yongfeng, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7): 4054-4060. http://www.ncbi.nlm.nih.gov/pubmed/26950772?utm_source=research-news&utm_medium=referral&utm_campaign=research-news [19] SONG Y K, HONG S H, JANG M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type[J]. Environmental Science & Technology, 2017, 51: 4368-4376. http://www.researchgate.net/profile/Seung_Won_Jung/publication/323435401_Corrections_to_Combined_Effects_of_UV_Exposure_Duration_and_Mechanical_Abrasion_on_Microplastic_Fragmentation_by_Polymer_Type/links/5b321b890f7e9b0df5cbe802/Corrections-to-Combined-Effects-of-UV-Exposure-Duration-and-Mechanical-Abrasion-on-Microplastic-Fragmentation-by-Polymer-Type.pdf [20] TIAN Lili, CHEN Qianqian, JIANG Wei, et al. A carbon-14 radiotracer-based study on the phototransformation of polystyrene nanoplastics in water versus in air[J]. Environmental Science: Nano, 2019, 6(9): 2907-2917. doi: 10.1039/C9EN00662A [21] ALIMI O S, FARNER B J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. doi: 10.1021/acs.est.7b05559/suppl_file/es7b05559_si_001.pdf [22] RUMMEL C D, JAHNKE A, GOROKHOVA E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science Technology Letters, 2017, 4(7): 258-267. doi: 10.1021/acs.estlett.7b00164 [23] ASSAS M, QIU Xuchun, CHEN Kun, et al. Bioaccumulation and reproductive effects of fluorescent microplastics in medaka fish[J]. Marine Pollution Bulletin, 2020, 158: 111446. doi: 10.1016/j.marpolbul.2020.111446 [24] MIZRAJI R, AHRENDT C, PEREZ-VENEGAS D, et al. Is the feeding type related with the content of microplastics in intertidal fish gut?[J]. Marine Pollution Bulletin, 2017, 116(1/2): 498. http://www.researchgate.net/profile/F_Ojeda/publication/312084642_Is_the_feeding_type_related_with_the_content_of_microplastics_in_intertidal_fish_gut/links/59dd14fda6fdcc276fa275eb/Is-the-feeding-type-related-with-the-content-of-microplastics-in-intertidal-fish-gut.pdf [25] KANG H M, BYEON E, JEONG H, et al. Different effects of nano- and microplastics on oxidative status and gut microbiota in the marine medaka Oryzias melastigma[J]. Journal of Hazardous Materials, 2021, 405: 124207. doi: 10.1016/j.jhazmat.2020.124207 [26] PITT J A, KOZAL J S, JAYASUNDARA N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 194: 185-194. doi: 10.1016/j.aquatox.2017.11.017 [27] LEE W S, CHO H J, KIM E, et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos[J]. Nanoscale, 2019, 11(7): 3173-3185. doi: 10.1039/C8NR09321K [28] CONG Yi, JIN Fei, TIAN Miao, et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma)[J]. Chemosphere, 2019, 228: 93-100. doi: 10.1016/j.chemosphere.2019.04.098 [29] RIST S, BAUN A, HARTMANN N B. Ingestion of micro-and nanoplastics in Daphnia magna: quantification of body burdens and assessment of feeding rates and reproduction[J]. Environmental Pollution, 2017, 228: 398-407. doi: 10.1016/j.envpol.2017.05.048 [30] AL-SID-CHEIKH M, ROWLAND S J, STEVENSON K, et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations[J]. Environmental Science & Technology, 2018, 52(24): 14480-14486. http://www.ncbi.nlm.nih.gov/pubmed/30457844 [31] VAN-DE-MERWE J P, CHANK Y A, LEIN Y E, et al. Bioaccumulation and maternal transfer of PBDE 47 in the marine medaka (Oryzias melastigma) following dietary exposure[J]. Aquatic Toxicology, 2011, 103(3/4): 199-204. doi: 10.1007/s11356-011-0602-5 [32] JIANG Xiangtao, TIAN Lili, MA Yini, et al. Quantifying the bioaccumulation of nanoplastics and PAHs in the clamworm Perinereis aibuhitensis[J]. Science of the Total Environment, 2019, 655: 591-597. doi: 10.1016/j.scitotenv.2018.11.227 [33] KATIJA K, CHOY C A, SHERLOCK R E, et al. From the surface to the seafloor: how giant larvaceans transport microplastics into the deep sea[J]. Science Advance, 2017, 3(8): e1700715. http://www.onacademic.com/detail/journal_1000040049147710_e2e8.html [34] DAWSON A L, KAWAGUCHI S, KING C K, et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill[J]. Nature Communications, 2018, 9(1): 1001. doi: 10.1038/s41467-018-03465-9 -