Influence of Microplastics on Nitrogen Cycle in Different Environments
-
摘要: 微塑料作为一种新污染物,在全球范围内引发了广泛关注.微塑料在威胁生物体健康的同时,也会通过定殖微生物等途径影响氮素正常的循环过程,但相关研究仍相对匮乏.本文在简述当前微塑料污染现状的基础上,介绍了微塑料对污泥、水、沉积物和土壤4种环境介质中氮循环的影响研究进展,并重点分析了微塑料作用下不同环境介质中氮转化过程的响应及作用机制.结果表明:当前微塑料影响氮循环的研究主要集中于污泥和土壤,对水环境和沉积物中的研究相对较少;环境介质和微塑料的聚合物类型、浓度、粒径等因素都会导致微塑料对氮循环的影响产生明显差异.进一步分析发现,微塑料主要通过影响氮转化相关的微生物、酶活性和功能基因以及改变氧通量等来影响硝化和反硝化等过程,其中,微生物受塑料添加剂释放的影响较大,微塑料自身也可能作为有机底物促进相关功能菌的生长;硝化和反硝化过程中关键酶及功能基因也会对微塑料的影响产生响应,进而影响氮循环过程.此外,微塑料能够通过改变沉积物的孔隙度增加氧通量,增强硝化作用.在后续研究中应重点关注微塑料参与氮循环的环境驱动机制,阐述其在潜流带等地球关键带中的作用路径,为全面评估微塑料对生态环境健康的影响提供支持.Abstract: Microplastic, as an emerging pollutant, has received increasing concerns worldwide. In addition to threatening the health of organisms, microplastics may also affect the nitrogen cycles by altering the colonized biofilms. However, the relevant research is relatively scarce. Based on the microplastic pollution status in different environments, the impact of microplastics on nitrogen transformation in different environmental media (e.g., sludge, water, sediment, and soil) was introduced. Then, the response and transformation mechanism were analyzed in detail. It is found that previous studies mainly focused on the influence impact of microplastics on the nitrogen cycle in sludge and soil, while few of them were conducted in water and sediment. Many influencing factors, including environmental media, polymers, concentration, and size of microplastics, can significantly change the impact of microplastics on the nitrogen cycle. Generally, microplastics can affect the processes of nitrification and denitrification in the environments by affecting the microbial community, enzyme activities, and functional genes related to nitrogen transformation, as well as changing the oxygen flux. The microbial community was mainly affected by the additives released from the microplastics. In addition, microplastics may also promote the growth of the related microbial communities as an organic substrate. Furthermore, microplastics can increase oxygen flux by changing the porosity of the sediment, thereby enhancing nitrification. In the future, more attention should be paid to the impact of microplastics on the nitrogen cycle under different environmental factors or in the critical zones of the earth, such as the hyporheic zone. These results are useful to comprehensively assess the impact of microplastics on ecological and environmental health.
-
Key words:
- microplastic /
- nitrogen transformation /
- microorganism /
- environmental media
-
表 1 微塑料对不同环境介质中氮转化的影响
Table 1. Effects of microplastics on nitrogen transformation in different environments
环境介质 微塑料类型 粒径 浓度 影响 数据来源 好氧颗粒污泥 PVC — 0、0.5、5、50 mg/L PVC微塑料降低反硝化细菌的含量,抑制氮的去除 文献[29] 活性污泥 PVC、PP、PE、PS、PES — 0、1 000、5 000、10 000 particles/L 微塑料轻微抑制活性污泥的硝化作用,促进反硝化作用;PVC微塑料在硝化过程中轻微抑制N2O的排放,在反硝化过程中促进N2O的排放 文献[30] 好氧颗粒污泥 PES 0.25 mm 0、0.1、0.2、0.5 g/L PES微塑料导致亚硝酸盐氧化酶活性,细胞色素c亚基Ⅱ和细胞色素b亚基Ⅰ的丰度降低,硝酸还原酶丰度增加,亚硝酸盐氮积累,影响氮代谢过程 文献[31] 反硝化污泥 PS、PA PS,60 nm;PA,37~74 μm 250 μg/L PS、PA微塑料抑制好氧反硝化菌群的脱氮性能,产生一定量亚硝酸盐氮的积累;微生物群落多样性提高,napA和nirS基因丰度降低 文献[32] 淡水 PP 5mm×5 mm×0.3 mm正方形薄片 25 items/L 微塑料生物膜促进氨氮和亚硝酸盐的氧化和反硝化;成熟生物膜的解体将氮重新释放到水中 文献[28] 淡水 PS 100 nm~9 μm 5~100 mg/L 高浓度的PS微珠(100 nm,100 mg/L)显著降低叶绿素a的含量以及β-葡萄糖苷酶和亮氨酸-氨基肽酶的功能酶活性,不利于淡水生物膜的氮循环 文献[25] 沉积物 PE、PVC、PUF、PLA 53~300 μm 0.5% PUF和PLA微塑料可促进硝化和反硝化作用,PVC微塑料抑制这两个过程;微塑料可作为微生物群落的有机碳底物,显著影响沉积物中的氮循环过程 文献[41] 沉积物 PE 37.1 μm 0、0.1%、1% 添加微塑料促进反硝化细菌和厌氧氨氧化菌的生长,提高总氮去除率;1% PE的微塑料对大型无脊椎动物介导的生物脱氮有不利影响 文献[42] 沉积物 PLA、HDPE、PVC (235.7±14.8)μm、(102.6±10.3)μm、(130.6±12.9)μm 0.02%、0.2%、2% 高浓度微塑料影响底栖生物Arenicola marina的健康和生物活性及其介导的沉积物氮循环过程 文献[43] 沉积物 PET — 0~0.5 g/kg 纤维微塑料浓度的增加会影响近海沉积物底栖生物的生态功能,进而影响氮的生物地球化学过程 文献[44] 土壤 PS (32.6±11.9)nm 10、100、1 000 ng/g PS微塑料降低关键氮循环酶亮氨酸-氨基肽酶活性,土壤中氮的潜在利用潜力受到影响 文献[50] 土壤 LDPE 80~450 μm 0、0.1%、0.5%、1%、3%、6%、18% LDPE微塑料降低了土壤氨氧化细菌和亚硝酸盐还原酶的丰度,对氨氧化古菌、亚硝酸盐还原酶和氧化亚氮还原酶的功能基因影响较小;对微生物群落具有明显的影响,可能影响全球氮循环 文献[51] 土壤 PE 2 mm×2 mm×0.01 mm 200 items/(100 g) PE微塑料影响有机氮的水解,PE存在下更高的脲酶活性表明其对氮循环产生作用 文献[52] 土壤 塑料薄膜 — — 减少土壤无机氮含量,降低与氮转化相关的基因表达和酶活性;与固氮相关的功能基因(nifH)、与N2O还原有关的基因(nosZ)以及反硝化有关功能基因(nirS)的丰度升高,反硝化基因(nirK)降低 文献[53] 土壤 PLA 20~50 μm 2% PLA微塑料改性的土壤氨转化速率更快 文献[55] -
[1] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [2] WANG Chunhui, ZHAO Jian, XING Baoshan. Environmental source, fate, and toxicity of microplastics[J]. Journal of Hazardous Materials, 2021, 407: 124357. doi: 10.1016/j.jhazmat.2020.124357 [3] CARPENTER E J, SMITH K L. Plastics on the Sargasso Sea surface[J]. Science, 1972, 175(4027): 1240-1241. doi: 10.1126/science.175.4027.1240 [4] JIAN Minfei, ZHANG Ying, YANG Wenjing, et al. Occurrence and distribution of microplastics in China's largest freshwater lake system[J]. Chemosphere, 2020, 261: 128186. doi: 10.1016/j.chemosphere.2020.128186 [5] ZHOU Bianying, WANG Jiaqing, ZHANG Haibo, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388: 121814. doi: 10.1016/j.jhazmat.2019.121814 [6] 徐舟影, 陈奥飞, 赵胤祺, 等. 武汉城市污水中微塑料的分离、鉴定及其微观特征分析[J]. 环境科学研究, 2021, 34(3): 637-645. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210314&flag=1XU Zhouying, CHEN Aofei, ZHAO Yinqi, et al. Separation, identification and microscopic characteristics analysis of microplastics in Wuhan municipal sewage[J]. Research of Environmental Sciences, 2021, 34(3): 637-645. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210314&flag=1 [7] DRIS R, GASPERI J, MIRANDE C, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments[J]. Environmental Pollution, 2017, 221: 453-458. doi: 10.1016/j.envpol.2016.12.013 [8] BRAHNEY J, HALLERUD M, HEIM E, et al. Plastic rain in protected areas of the United States[J]. Science, 2020, 368(6496): 1257-1260. doi: 10.1126/science.aaz5819 [9] ABADI Z T R, ABTAHI B, GROSSART H P, et al. Microplastic content of Kutum fish, Rutilus frisii kutum in the southern Caspian Sea[J]. Science of the Total Environment, 2020, 752: 141542. http://www.sciencedirect.com/science/article/pii/S0048969720350713 [10] WANG Wenfeng, GE Jing, YU Xiangyang. Bioavailability and toxicity of microplastics to fish species: a review[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109913. doi: 10.1016/j.ecoenv.2019.109913 [11] 高嘉蔚, 赵莎莎, 李富云, 等. 微塑料对大型溞摄食和抗氧化防御系统的影响[J]. 环境科学研究, 2021, 34(5): 1205-1212. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210519&flag=1GAO Jiawei, ZHAO Shasha, LI Fuyun, et al. Effects of microplastics on feeding behavior and antioxidant system of Daphnia magna[J]. Research of Environmental Sciences, 2021, 34(5): 1205-1212. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210519&flag=1 [12] SONG J, JONGMANS-HOCHSCHULZ E, MAUDER N, et al. The travelling particles: investigating microplastics as possible transport vectors for multidrug resistant E. coli in the Weser Estuary (Germany)[J]. Science of the Total Environment, 2020, 720: 137603. doi: 10.1016/j.scitotenv.2020.137603 [13] 荣佳辉, 牛学锐, 韩美, 等. 河流微塑料入海通量研究进展[J]. 环境科学研究, 2021, 34(7): 1630-1640. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210713&flag=1RONG Jiahui, NIU Xuerui, HAN Mei, et al. Global river microplastics flux into the sea: a review[J]. Research of Environmental Sciences, 2021, 34(7): 1630-1640. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210713&flag=1 [14] LIU Kai, COURTENE-JONES W, WANG Xiaohui, et al. Elucidating the vertical transport of microplastics in the water column: a review of sampling methodologies and distributions[J]. Water Research, 2020, 186: 116403. doi: 10.1016/j.watres.2020.116403 [15] QIAN Jin, TANG Sijing, WANG Peifang, et al. From source to sink: review and prospects of microplastics in wetland ecosystems[J]. Science of the Total Environment, 2021, 758: 143633. doi: 10.1016/j.scitotenv.2020.143633 [16] TAMMINGA M, FISCHER E K. Microplastics in a deep, dimictic lake of the North German Plain with special regard to vertical distribution patterns[J]. Environmental Pollution, 2020, 267: 115507. doi: 10.1016/j.envpol.2020.115507 [17] MAO Ruofan, SONG Junlin, YAN Pengcheng, et al. Horizontal and vertical distribution of microplastics in the Wuliangsuhai Lake sediment, northern China[J]. Science of the Total Environment, 2020, 754: 142426. http://www.sciencedirect.com/science/article/pii/S0048969720359556 [18] ZHENG Yifan, LI Jingxi, CAO Wei, et al. Vertical distribution of microplastics in bay sediment reflecting effects of sedimentation dynamics and anthropogenic activities[J]. Marine Pollution Bulletin, 2020, 152: 110885. doi: 10.1016/j.marpolbul.2020.110885 [19] LIN Li, PAN Xiong, ZHANG Sheng, et al. Distribution and source of microplastics in China's second largest reservoir: Danjiangkou Reservoir[J]. Journal of Environmental Sciences, 2021, 102: 74-84. doi: 10.1016/j.jes.2020.09.018 [20] NIU Lihua, LI Yuanyuan, LI Yi, et al. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments[J]. Water Research, 2020, 188: 116449. http://www.sciencedirect.com/science/article/pii/S0043135420309842 [21] WANG Jiao, PENG Chu, LI Hongyu, et al. The impact of microplastic-microbe interactions on animal health and biogeochemical cycles: a mini-review[J]. Science of the Total Environment, 2021, 773: 145697. doi: 10.1016/j.scitotenv.2021.145697 [22] LI Wenjie, ZHANG Ying, WU Nan, et al. Colonization characteristics of bacterial communities on plastic debris influenced by environmental factors and polymer types in the Haihe Estuary of Bohai Bay, China[J]. Environmental Science & Technology, 2019, 53(18): 10763-10773. http://www.ncbi.nlm.nih.gov/pubmed/31441645 [23] OBERBECKMANN S, LÖDER M G J, LABRENZ M. Marine microplastic-associated biofilms: a review[J]. Environmental Chemistry, 2015, 12(5): 551-562. doi: 10.1071/EN15069 [24] XUE Nana, WANG Liyi, LI Wenfeng, et al. Increased inheritance of structure and function of bacterial communities and pathogen propagation in plastisphere along a river with increasing antibiotics pollution gradient[J]. Environmental Pollution, 2020, 265: 114641. doi: 10.1016/j.envpol.2020.114641 [25] MIAO Lingzhan, HOU Jun, YOU Guoxiang, et al. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification[J]. Environmental Pollution, 2019, 255: 113300. doi: 10.1016/j.envpol.2019.113300 [26] GONG Mengting, YANG Guiqin, ZHUANG Li, et al. Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms[J]. Environmental Pollution, 2019, 252: 94-102. doi: 10.1016/j.envpol.2019.05.090 [27] BANK M S, HANSSON S V. The plastic cycle: a novel and holistic paradigm for the Anthropocene[J]. Environmental Science & Technology, 2019, 53(13): 7177-7179. http://www.researchgate.net/publication/333668068_The_Plastic_Cycle_A_Novel_and_Holistic_Paradigm_for_the_Anthropocene [28] CHEN Xianchuan, CHEN Xiaofei, ZHAO Yanhui, et al. Effects of microplastic biofilms on nutrient cycling in simulated freshwater systems[J]. Science of the Total Environment, 2020, 719: 137276. doi: 10.1016/j.scitotenv.2020.137276 [29] DAI Huihui, GAO Jingfeng, WANG Zhiqi, et al. Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system[J]. Journal of Cleaner Production, 2020, 256: 120402. doi: 10.1016/j.jclepro.2020.120402 [30] LI Lu, SONG Kang, YEERKEN S, et al. Effect evaluation of microplastics on activated sludge nitrification and denitrification[J]. Science of the Total Environment, 2020, 707: 135953. doi: 10.1016/j.scitotenv.2019.135953 [31] QIN Ronghua, SU Chengyuan, LIU Weihong, et al. Effects of exposure to polyether sulfone microplastic on the nitrifying process and microbial community structure in aerobic granular sludge[J]. Bioresource Technology, 2020, 302: 122827. doi: 10.1016/j.biortech.2020.122827 [32] 史文超, 桂梦瑶, 杜俊逸, 等. 典型微塑料对好氧反硝化菌群脱氮特性及反硝化相关基因的影响[J]. 环境工程学报, 2021, 15(4): 1333-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202104022.htmSHI Wenchao, GUI Mengyao, DU Junyi, et al. Effects of typical microplastics on the denitrification characteristics and denitrification related genes of aerobic denitrifying bacteria[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1333-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202104022.htm [33] VO H C, PHAM M H. Ecotoxicological effects of microplastics on aquatic organisms: a review[J]. Environmental Science and Pollution Research, 2021, 28(33): 44716-44725. doi: 10.1007/s11356-021-14982-4 [34] LIMA A R A, FERREIRA G V B, BARROWS A P W, et al. Global patterns for the spatial distribution of floating microfibers: Arctic Ocean as a potential accumulation zone[J]. Journal of Hazardous Materials, 2020, 403: 123796. http://www.sciencedirect.com/science/article/pii/S0304389420317854 [35] PAJARES MORENO S, RAMOS R. Processes and microorganisms involved in the marine nitrogen cycle: knowledge and gaps[J]. Frontiers in Marine Science, 2019, 6: 739. doi: 10.3389/fmars.2019.00739 [36] SHEN Maocai, YE Shujing, ZENG Guangming, et al. Can microplastics pose a threat to ocean carbon sequestration?[J]. Marine Pollution Bulletin, 2020, 150: 110712. doi: 10.1016/j.marpolbul.2019.110712 [37] COPPOCK R L, GALLOWAY T S, COLE M, et al. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus[J]. Science of the Total Environment, 2019, 687: 780-789. doi: 10.1016/j.scitotenv.2019.06.009 [38] 夏星辉, 王君峰, 张翎, 等. 黄河泥沙对氮迁移转化的影响及环境效应[J]. 水利学报, 2020, 51(9): 1138-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202009015.htmXIA Xinghui, WANG Junfeng, ZHANG Ling, et al. Effects and environmental implications of suspended sediment on the transportation and transformation of nitrogen in the Yellow River[J]. Journal of Hydraulic Engineering, 2020, 51(9): 1138-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202009015.htm [39] MCGEE C F. The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks[J]. Environmental Science and Pollution Research, 2020, 27(25): 31061-31073. doi: 10.1007/s11356-020-09548-9 [40] WANG Chao, LIU Songqi, HOU Jun, et al. Effects of silver nanoparticles on coupled nitrification-denitrification in suspended sediments[J]. Journal of Hazardous Materials, 2020, 389: 122130. doi: 10.1016/j.jhazmat.2020.122130 [41] SEELEY M E, SONG B, PASSIE R, et al. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 2020, 11(1): 1-10. doi: 10.1038/s41467-019-13993-7 [42] HUANG Yuyue, LI Wei, GAO Jie, et al. Effect of microplastics on ecosystem functioning: microbial nitrogen removal mediated by benthic invertebrates[J]. Science of the Total Environment, 2020, 754: 142133. http://www.sciencedirect.com/science/article/pii/S004896972035662X [43] GREEN D S, BOOTS B, SIGWART J, et al. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling[J]. Environmental Pollution, 2016, 208: 426-434. doi: 10.1016/j.envpol.2015.10.010 [44] HOPE J A, COCO G, THRUSH S F. Effects of polyester microfibers on microphytobenthos and sediment-dwelling infauna[J]. Environmental Science & Technology, 2020, 54(13): 7970-7982. doi: 10.1021/acs.est.0c00514 [45] ZHU Dong, CHEN Qinglin, AN Xinli, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil Biology and Biochemistry, 2018, 116: 302-310. doi: 10.1016/j.soilbio.2017.10.027 [46] BLÄSING M, AMELUNG W. Plastics in soil: analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. doi: 10.1016/j.scitotenv.2017.08.086 [47] PIEHL S, LEIBNER A, LÖDER M G J, et al. Identification and quantification of macro-and microplastics on an agricultural farmland[J]. Scientific Reports, 2018, 8(1): 1-9. http://www.onacademic.com/detail/journal_1000041602111999_c984.html [48] IQBAL S, XU J, ALLEN S D, et al. Unraveling consequences of soil micro-and nano-plastic pollution for soil-plant system with implications for nitrogen (N) cycling and soil microbial activity[J]. Chemosphere, 2020, 260: 127578. doi: 10.1016/j.chemosphere.2020.127578 [49] FEI Yufan, HUANG Shunyin, ZHANG Haibo, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of the Total Environment, 2020, 707: 135634. doi: 10.1016/j.scitotenv.2019.135634 [50] AWET T T, KOHL Y, MEIER F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil[J]. Environmental Sciences Europe, 2018, 30(1): 1-10. doi: 10.1186/s12302-017-0129-6 [51] GAO Bo, YAO Huaiying, LI Yaying, et al. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil[J]. Environmental Toxicology and Chemistry, 2021, 40(2): 352-365. doi: 10.1002/etc.4916 [52] HUANG Yi, ZHAO Yanran, WANG Jie, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 2019, 254: 112983. doi: 10.1016/j.envpol.2019.112983 [53] QIAN Haifeng, ZHANG Meng, LIU Guangfu, et al. Effects of soil residual plastic film on soil microbial community structure and fertility[J]. Water, Air, & Soil Pollution, 2018, 229(8): 261. [54] ARDISSON G B, TOSIN M, BARBALE M, et al. Biodegradation of plastics in soil and effects on nitrification activity: a laboratory approach[J]. Frontiers in Microbiology, 2014, 5: 710. http://pdfs.semanticscholar.org/7b67/04c91fc8ea0f53cd69bd93be836de2b033a3.pdf [55] CHEN Huiping, WANG Yuhuang, SUN Xi, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function[J]. Chemosphere, 2020, 243: 125271. doi: 10.1016/j.chemosphere.2019.125271 [56] WANG Ling, JIANG Guibin, CAI Yaqi, et al. Cloud point extraction coupled with HPLC-UV for the determination of phthalate esters in environmental water samples[J]. Journal of Environmental Sciences, 2007, 19(7): 874-878. doi: 10.1016/S1001-0742(07)60145-4 [57] DONG Zhiqiang, QIU Yuping, ZHANG Wen, et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater[J]. Water Research, 2018, 143: 518-526. doi: 10.1016/j.watres.2018.07.007 [58] DONG Zhiqiang, ZHU Ling, ZHANG Wen, et al. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand[J]. Environmental Pollution, 2019, 255: 113177. doi: 10.1016/j.envpol.2019.113177 [59] CLUZARD M, KAZMIRUK T N, KAZMIRUK V D, et al. Intertidal concentrations of microplastics and their influence on ammonium cycling as related to the shellfish industry[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 310-319. doi: 10.1007/s00244-015-0156-5 [60] AZIZI S M M, HAI F I, LU W, et al. A review of mechanisms underlying the impacts of (nano) microplastics on anaerobic digestion[J]. Bioresource Technology, 2021, 329: 124894. doi: 10.1016/j.biortech.2021.124894 [61] WEI Wei, HUANG Qisu, SUN Jing, et al. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A[J]. Environmental Science & Technology, 2019, 53(5): 2509-2517. http://www.ncbi.nlm.nih.gov/pubmed/30758964 -