Photocatalytic Degradation of Diclofenac in Water under Simulated Solar Light Using Tubular Carbon Nitride Synthesized by Self-Assembled Supramolecular Precursor
-
摘要: 石墨相氮化碳(g-C3N4,GCN)作为一种新型无金属二维材料,因在可见光驱动下能够降解水中新有机污染物而备受关注. 但传统石墨相氮化碳存在比表面积小与活性位点少的弊端,严重限制了其应用前景. 为改良氮化碳性能,利用超分子自组装前驱体热聚合方法成功制备了微米级管状石墨相氮化碳(TCN),使用扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、紫外-可见漫反射光谱(UV-vis DRS)等技术手段,对TCN的形貌、元素组成、晶体结构、电化学性能等进行表征. 研究还选取双氯芬酸(DCF)作为目标污染物,探索其降解行为与机理. 结果表明:①TCN基本结构单元为七嗪环,但比表面积(20.9 m2/g)较GCN增加了1倍以上. ②TCN (100)晶面暴露增强,晶面调控暴露出更多七嗪环边缘氮原子的孤对电子,利于光生电子激发和载流子分离,从而增强光催化活性. ③TCN能带带隙为2.48 eV,小于GCN (2.69 eV),说明TCN对可见光的吸收能力提升. ④莫特-肖特基曲线、光电流、阻抗谱图和扫描伏安谱图等电化学性能测试结果表明,TCN的光生电子转移效率大幅提升,有利于抑制光生空穴-电子对(h+-e-)的复合. ⑤TCN在模拟太阳光驱动下降解双氯芬酸(DCF)的动力学试验中准一级动力学常数(k1)达6.99×10-2 min-1,是GCN的5.5倍. ⑥电子自旋共振谱(ESR)和自由基淬灭试验证实,体系中超氧根自由基(·O2-)是最重要的活性氧物种,光生空穴(h+)也对DCF的降解有贡献. 研究显示,以超分子自组装的方式制备石墨相氮化碳的前驱体将有助于促进氮化碳可见光吸收、加速载流子分离,并提升光催化活性.Abstract: Graphite carbon nitride (g-C3N4, GCN), as a novel metal-free two-dimensional (2D) semiconductor, can efficiently photodegrade emerging organic pollutants in water under visible light. Thus, the development of new g-C3N4 photocatalysts has attracted more and more attention. However, low specific surface area and active sites limit the potential applications of bulk g-C3N4. In this study, self-assembled supramolecular precursor was initially synthesized by hydrothermal treatment of melamine, and then tubular carbon nitride (TCN) was prepared by thermal polymerization. TCN was characterized by SEM, FT-IR, XRD, UV-vis DRS, Mott-Schottky plot, photocurrent, electrochemical impedance spectroscopy (EIS) response, and linear sweep voltammetry (LSV). Diclofenac (DCF) was selected as target pollutant to study photocatalytic degradation mechanism. The results showed that: (1) TCN had an interconnected tri-s-triazine structure (same with GCN), but the specific surface area of TCN (20.9 m2/g) was 2 times that of GCN. (2) TCN achieved greatly enhanced (100)-facet exposure through control of crystal structure, which exposed more lone pair electrons of nitrogen atoms on the edge of tri-s-triazine, thus facilitating excitation of photogenerated electrons and the separation of charge carriers to improve photocatalytic activity. (3) The energy band gap (Eg) of TCN was 2.48 eV, which was lower than that of GCN (2.69 eV). The narrowed energy band gap verified that TCN improved the absorption of visible light. (4) Photoelectric characterizations, including Mott-Schottky plot, photocurrent, EIS, and LSV, indicated that TCN had enhanced electron transfer efficiency, which was beneficial to inhibit the recombination of photogenerated holes and electron pairs (h+-e-). (5) Under simulated solar light, the pseudo-first order kinetic constant (k1) of the photocatalytic degradation of diclofenac (DCF) by TCN (6.99×10-2 min-1) was 5.5 times that of GCN (1.28×10-2 min-1). (6) Electron spin resonance (ESR) spectra and scavenger quenching tests further demonstrated that the superoxide radicals (·O2-) were the dominant species for DCF photodegradation, and photogenerated holes also contributed to DCF degradation. This study proved that using self-assembled supramolecular precursors for g-C3N4 synthesis could enhance visible light absorption and carrier separation rate, and further improve photocatalytic activity.
-
Key words:
- self-assembled supramolecular precursor /
- tubular g-C3N4 /
- photocatalysis /
- diclofenac /
- radicals
-
表 1 GCN与TCN降解DCF的矿化率与动力学拟合结果
Table 1. DCF mineralization and pseudo 1st order kinetic model fitting results
催化剂 DCF矿化率/% k1/min-1 R2 GCN 21.8 1.28×10-2 0.961 TCN 51.9 6.99×10-2 0.998 -
[1] LIU Wen, LI Yunyi, LIU Fuyang, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: mechanisms, degradation pathway and DFT calculation[J]. Water Research, 2019, 151: 8-19. doi: 10.1016/j.watres.2018.11.084 [2] MCGETTIGAN P, HENRY D. Use of non-steroidal anti-inflammatory drugs that elevate cardiovascular risk: an examination of sales and essential medicines lists in low-, middle-, and high-income countries[J]. PLOS Medicine, 2013, 10(2): e1001388. doi: 10.1371/journal.pmed.1001388 [3] ZHANG Yongjun, GEIßEN S U, GAL C. Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies[J]. Chemosphere, 2008, 73(8): 1151-1161. doi: 10.1016/j.chemosphere.2008.07.086 [4] VIENO N, SILLANPÄÄ M. Fate of diclofenac in municipal wastewater treatment plant: a review[J]. Environment International, 2014, 69: 28-39. doi: 10.1016/j.envint.2014.03.021 [5] BUSER H R, POIGER T, MVLLER M D. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake[J]. Environmental Science & Technology, 1998, 32(22): 3449-3456. http://www.geol.lsu.edu/blanford/NATORBF/14%20Pharmaceuticals%20and%20RBF/Buser%20H%20et%20al_Env.%20Sci.%20and%20Tech._Nov%201998.pdf [6] LONAPPAN L, BRAR S K, DAS R K, et al. Diclofenac and its transformation products: environmental occurrence and toxicity: a review[J]. Environment International, 2016, 96: 127-138. doi: 10.1016/j.envint.2016.09.014 [7] SANDERSON H, JOHNSON D J, WILSON C J, et al. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening[J]. Toxicology Letters, 2003, 144(3): 383-395. doi: 10.1016/S0378-4274(03)00257-1 [8] BORT R, PONSODA X, JOVER R, et al. Diclofenac toxicity to hepatocytes: a role for drug metabolism in cell toxicity[J]. Journal of Pharmacology and Experimental Therapeutics, 1999, 288(1): 65-72. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1011.5469&rep=rep1&type=pdf [9] OAKS J L, GILBERT M, VIRANI M Z, et al. Diclofenac residues as the cause of vulture population decline in Pakistan[J]. Nature, 2004, 427(6975): 630-633. doi: 10.1038/nature02317 [10] BELTRÁN F J, POCOSTALES P, ALVAREZ P, et al. Diclofenac removal from water with ozone and activated carbon[J]. Journal of Hazardous Materials, 2009, 163(2/3): 768-776. http://www.onacademic.com/detail/journal_1000034085381210_bd4c.html [11] GIL A, SANTAMARÍA L, KORILI S A. Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes[J]. Colloid and Interface Science Communications, 2018, 22: 25-28. doi: 10.1016/j.colcom.2017.11.007 [12] DANG Chenyuan, SUN Fengbin, JIANG Huan, et al. Pre-accumulation and in-situ destruction of diclofenac by a photo-regenerable activated carbon fiber supported titanate nanotubes composite material: intermediates, DFT calculation, and ecotoxicity[J]. Journal of Hazardous Materials, 2020, 400: 123225. doi: 10.1016/j.jhazmat.2020.123225 [13] PRASETYA N, LI Kang. MOF-808 and its hollow fibre adsorbents for efficient diclofenac removal[J]. Chemical Engineering Journal, 2021, 417: 129216. doi: 10.1016/j.cej.2021.129216 [14] SUN Weiling, LI Haibo, LI Huimin, et al. Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: batch experiment and DFT calculation[J]. Chemical Engineering Journal, 2019, 360: 645-653. doi: 10.1016/j.cej.2018.12.021 [15] LANDRY K A, BOYER T H. Diclofenac removal in urine using strong-base anion exchange polymer resins[J]. Water Research, 2013, 47(17): 6432-6444. doi: 10.1016/j.watres.2013.08.015 [16] LI Fan, WEI Zongsu, HE Ke, et al. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst[J]. Water Research, 2020, 185: 116219. doi: 10.1016/j.watres.2020.116219 [17] LI Fan, DUAN Jun, TIAN Shuting, et al. Short-chain per-and polyfluoroalkyl substances in aquatic systems: occurrence, impacts and treatment[J]. Chemical Engineering Journal, 2020, 380: 122506. doi: 10.1016/j.cej.2019.122506 [18] CHONG Shan, ZHANG Guangming, ZHANG Nan, et al. Diclofenac degradation in water by FeCeOx catalyzed H2O2: influencing factors, mechanism and pathways[J]. Journal of Hazardous Materials, 2017, 334: 150-159. doi: 10.1016/j.jhazmat.2017.04.008 [19] RIZZO L, MERIC S, KASSINOS D, et al. Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays[J]. Water Research, 2009, 43(4): 979-988. doi: 10.1016/j.watres.2008.11.040 [20] SHAO Huixin, ZHAO Xu, WANG Yanbin, et al. Synergetic activation of peroxymonosulfate by Co3O4 modified g-C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation[J]. Applied Catalysis B: Environmental, 2017, 218: 810-818. doi: 10.1016/j.apcatb.2017.07.016 [21] 常方, 黄韬博, 陈龙, 等. 不同光波长对类石墨相氮化碳催化降解莫西沙星的机理探究[J]. 环境化学, 2020, 39(3): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003004.htmCHANG Fang, HUANG Taobo, CHEN Long, et al. Photocatalytic degradation mechanism of moxifloxacin by g-C3N4 under various light wavelengths[J]. Environmental Chemistry, 2020, 39(3): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003004.htm [22] HUA Shengzhuo, YU Xinxiao, LI Fan, et al. Hydrogen titanate nanosheets with both adsorptive and photocatalytic properties used for organic dyes removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516: 211-218. http://www.sciencedirect.com/science/article/pii/S0927775716310743 [23] LI Fan, DU Penghui, LIU Wen, et al. Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: solar-light-driven photocatalytic activity and computational chemistry analysis[J]. Chemical Engineering Journal, 2018, 331: 685-694. doi: 10.1016/j.cej.2017.09.036 [24] CHEN Ping, ZHANG Qianxin, SU Yuehan, et al. Accelerated photocatalytic degradation of diclofenac by a novel CQDs/BiOCOOH hybrid material under visible-light irradiation: dechloridation, detoxicity, and a new superoxide radical model study[J]. Chemical Engineering Journal, 2018, 332: 737-748. doi: 10.1016/j.cej.2017.09.118 [25] ZHANG Wei, ZHOU Li, SHI Jun, et al. Synthesis of Ag3PO4/G-C3N4 composite with enhanced photocatalytic performance for the photodegradation of diclofenac under visible light irradiation[J]. Catalysts, 2018, 8(2): 45. doi: 10.3390/catal8020045 [26] WANG Xinchen, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317 [27] JI Haodong, DU Penghui, ZHAO Dongye, et al. 2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: catalytic 'hot spots' at the rutile-anatase-titanate interfaces[J]. Applied Catalysis B: Environmental, 2020, 263: 118357. doi: 10.1016/j.apcatb.2019.118357 [28] ZHANG Dandan, QI Juanjuan, JI Haodong, et al. Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: Theoretical calculation, ofloxacin degradation pathways and toxicity evolution[J]. Chemical Engineering Journal, 2020, 400: 125918. doi: 10.1016/j.cej.2020.125918 [29] WEN Jiuqing, XIE Jun, CHEN Xiaobo, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science, 2017, 391: 72-123. doi: 10.1016/j.apsusc.2016.07.030 [30] LIU Guangqing, XUE Mengwei, LIU Qinpu, et al. Facile synthesis of C-doped hollow spherical g-C3N4 from supramolecular self-assembly for enhanced photoredox water splitting[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25671-25679. doi: 10.1016/j.ijhydene.2019.08.056 [31] CHEN Yao, DING Fei, KHAING A, et al. Acetic acid-assisted supramolecular assembly synthesis of porous g-C3N4 hexagonal prism with excellent photocatalytic activity[J]. Applied Surface Science, 2019, 479: 757-764. doi: 10.1016/j.apsusc.2019.02.176 [32] JUN Y S, LEE E Z, WANG Xinchen, et al. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres[J]. Advanced Functional Materials, 2013, 23(29): 3661-3667. doi: 10.1002/adfm.201203732 [33] NIU Hongyun, ZHAO Weijia, LV Hongzhou, et al. Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method[J]. Chemical Engineering Journal, 2021, 411: 128400. doi: 10.1016/j.cej.2020.128400 [34] TIAN Jingqi, NING Rui, LIU Qian, et al. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1011-1017. http://europepmc.org/abstract/med/24377299 [35] ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. doi: 10.1021/acs.chemrev.6b00075 [36] ZHAO Huanxin, YU Hongtao, QUAN Xie, et al. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation[J]. Applied Catalysis B: Environmental, 2014, 152: 46-50. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=94793216&site=ehost-live [37] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401. doi: 10.1021/la900923z [38] ZHU Bicheng, XIA Pengfei, HO Wingkei, et al. Isoelectric point and adsorption activity of porous g-C3N4[J]. Applied Surface Science, 2015, 344: 188-195. doi: 10.1016/j.apsusc.2015.03.086 [39] HO Wingkei, ZHANG Zizhong, XU Mukun, et al. Enhanced visible-light-driven photocatalytic removal of NO: effect on layer distortion on g-C3N4 by H2 heating[J]. Applied Catalysis B: Environmental, 2015, 179: 106-112. doi: 10.1016/j.apcatb.2015.05.010 [40] XIAO Jiadong, HAN Qingzhen, CAO Hongbin, et al. Number of reactive charge carriers: a hidden linker between band structure and catalytic performance in photocatalysts[J]. ACS Catalysis, 2019, 9(10): 8852-8861. doi: 10.1021/acscatal.9b02426 [41] DONG Fan, ZHAO Zaiwang, XIONG Ting, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11392-11401. http://s3-eu-west-1.amazonaws.com/pstorage-acs-6854636/3597870/am403653a_si_001.pdf [42] QIAN Jieshu, GAO Xiang, PAN Bingcai. Nanoconfinement-mediated water treatment: from fundamental to application[J]. Environmental Science & Technology, 2020, 54(14): 8509-8526. doi: 10.1021/acs.est.0c01065 [43] YANG Zhichao, QIAN Jieshu, YU Anqing, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement[J]. Proceedings of the National Academy of Sciences, 2019, 116(14): 6659-6664. doi: 10.1073/pnas.1819382116 [44] ZHANG Shuo, HEDTKE T, ZHOU Xuechen, et al. Environmental applications of engineered materials with nanoconfinement[J]. ACS Environmental Science & Technology Engineering, 2021, 1(4): 706-724. doi: 10.1021/acsestengg.1c00007 [45] GROMMET A B, FELLER M, KLAJN R. Chemical reactivity under nanoconfinement[J]. Nature Nanotechnology, 2020, 15(4): 256-271. doi: 10.1038/s41565-020-0652-2 [46] WAN Chao, ZHOU Liu, SUN Lin, et al. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst[J]. Chemical Engineering Journal, 2020, 396: 125229. doi: 10.1016/j.cej.2020.125229 [47] 张金水, 王博, 王心晨. 氮化碳聚合物半导体光催化[J]. 化学进展, 2014, 26(1): 19. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201401003.htmZHANG Jinshui, WANG Bo, WANG Xinchen. Carbon nitride polymeric semiconductor for photocatalysis[J]. Progress in Chemistry, 2014, 26(1): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201401003.htm [48] 闫亮, 周敏, 黄新文, 等. 改性TiO2光催化膜处理贾鲁河河水效果[J]. 环境科学研究, 2021, 34(8): 1844-1851. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210808&flag=1YAN Liang, ZHOU Min, HUANG Xinwen, et al. Water treatment effect of Jialu River by modified TiO2 photocatalytic membrane[J]. Research of Environmental Sciences, 2021, 34(8): 1844-1851. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210808&flag=1 [49] 朱秋蓉, 何世颖, 赵晓蕾, 等. AgCl/ZnO/GO光催化降解甲基橙的性能研究[J]. 环境科学研究, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1ZHU Qiurong, HE Shiying, ZHAO Xiaolei, et al. Photocatalytic degradation of methyl orange by AgCl/ZnO/GO[J]. Research of Environmental Sciences, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1 [50] KWON B G, YOON J. Superoxide anion radical: principle and application[J]. Applied Chemistry for Engineering, 2009, 20(6): 593-602. -