留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗生素磺胺嘧啶和磺胺甲恶唑在土壤中的淋溶行为研究

胡双庆 张玉 沈根祥

胡双庆, 张玉, 沈根祥. 抗生素磺胺嘧啶和磺胺甲恶唑在土壤中的淋溶行为研究[J]. 环境科学研究, 2022, 35(2): 470-477. doi: 10.13198/j.issn.1001-6929.2021.08.18
引用本文: 胡双庆, 张玉, 沈根祥. 抗生素磺胺嘧啶和磺胺甲恶唑在土壤中的淋溶行为研究[J]. 环境科学研究, 2022, 35(2): 470-477. doi: 10.13198/j.issn.1001-6929.2021.08.18
HU Shuangqing, ZHANG Yu, SHEN Genxiang. Leaching Behavior of Antibiotics Sulfadiazine and Sulfamethoxazole in Soil[J]. Research of Environmental Sciences, 2022, 35(2): 470-477. doi: 10.13198/j.issn.1001-6929.2021.08.18
Citation: HU Shuangqing, ZHANG Yu, SHEN Genxiang. Leaching Behavior of Antibiotics Sulfadiazine and Sulfamethoxazole in Soil[J]. Research of Environmental Sciences, 2022, 35(2): 470-477. doi: 10.13198/j.issn.1001-6929.2021.08.18

抗生素磺胺嘧啶和磺胺甲恶唑在土壤中的淋溶行为研究

doi: 10.13198/j.issn.1001-6929.2021.08.18
基金项目: 国家水体污染控制与治理科技重大专项(No.2017ZX07207002);上海市自然科学基金资助项目(No.21ZR1454500)
详细信息
    作者简介:

    胡双庆(1978-),男,四川自贡人,高级工程师,博士,主要从事化学品生态毒理学研究,husq@saes.sh.cn

    通讯作者:

    沈根祥(1965-),男,浙江湖州人,教授级高级工程师,博士,主要从事生态毒理和农村环保研究,shengx@saes.sh.cn

  • 中图分类号: X13

Leaching Behavior of Antibiotics Sulfadiazine and Sulfamethoxazole in Soil

Funds: National Water Pollution Control and Treatment Science and Technology Major Project of China (No.2017ZX07207002); Natural Science Foundation of Shanghai (No.21ZR1454500)
  • 摘要: 农业生产中畜禽粪污还田会将残留的抗生素带入农田土壤,并能通过淋溶作用迁移至深层土壤最终进入地下水. 该研究采用模拟土壤柱淋溶试验方法,研究了2种磺胺类抗生素——磺胺嘧啶(sulfadiazine,SDZ)和磺胺甲恶唑(sulfamethoxazole,SMX)在农田土壤中的淋溶行为,以及表层土抗生素含量、淋溶液pH和有机质对各土柱剖面SDZ和SMX残留水平的影响. 结果表明:①不同表层土抗生素含量下,SDZ和SMX在供试土壤中均呈向下迁移的趋势,但淋溶结束后上层土壤中二者含量明显高于下层,土柱各层抗生素的含量随表层土抗生素含量的增加而增加. ②淋溶液pH为3.00和5.00时,各层土壤中SDZ和SMX的含量均高于淋溶液pH为7.00时. 淋溶液pH较高时两种磺胺类抗生素多以阴离子形态存在,会与带负电荷的土壤颗粒产生静电斥力而易于向下迁移;随着淋溶液pH的降低,两种磺胺类抗生素阴离子形态占比减少,上层土壤中保留的抗生素含量变高,向下迁移的能力减弱. ③粪便添加组上层土壤中SDZ和SMX的含量明显高于未添加组,抗生素向下迁移的能力减弱,这与有机质的添加使得上层土柱吸附能力增强有关. 通过模型模拟,SDZ和SMX的地下水污染指数分别为3.50和4.45,均大于2.8,表明在供试土壤中这2种磺胺类抗生素的淋溶迁移性较强. 研究显示,淋溶试验结果与模型模拟结果一致,表明SDZ和SMX对地下水存在潜在污染风险.

     

  • 图  1  2种目标抗生素的分子结构式

    Figure  1.  The molecular structural formulas of 2 target antibiotics

    图  2  不同表层土抗生素含量下SDZ和SMX的淋溶行为

    注:不同小写字母表示不同土壤深度下各处理组之间差异显著(P<0.05).

    Figure  2.  Leaching behaviors of SDZ and SMX in soil columns with different antibiotic contents in topsoil

    图  3  不同淋溶液pH下SDZ和SMX的淋溶行为

    注:不同小写字母表示不同土壤深度下各处理组之间差异显著(P<0.05).

    Figure  3.  Leaching behaviors of SDZ and SMX in soil columns irrigated by rainfall of different pH values

    图  4  粪便添加下SDZ和SMX的淋溶行为

    注:不同小写字母表示不同土壤深度下各处理组之间差异显著(P<0.05).

    Figure  4.  Leaching behaviors of SDZ and SMX in soil columns filled with different manure-applied soils

    表  1  2种目标抗生素的理化性质

    Table  1.   The physiochemical properties of 2 target antibiotics

    参数磺胺嘧啶(SDZ)磺胺甲恶唑(SMX)
    分子式C10H10N4O2SC10H11N3O3S
    分子量250.28253.27
    电离平衡常数2.0、6.5[15]1.8、6.0[15]
    正辛醇水分配系数0.8[15]0.9[15]
    下载: 导出CSV

    表  2  供验土壤和牛粪的基本理化性质

    Table  2.   The physiochemical properties of the tested soil and cattle manure

    供验类型pH含水率/%有机碳含量/
    (g/kg)
    溶解性有机碳
    含量/(mg/kg)
    阳离子交换量/
    (cmol/kg)
    颗粒占比/%
    粘粒粉粒砂粒
    土壤6.085019.49437.2319.220.5355.8523.62
    牛粪8.1240362.5032 775.96
    下载: 导出CSV

    表  3  2种目标抗生素的标准曲线、检测限和加标回收率

    Table  3.   The standard curve, detection limits and recoveries HPLC-MS/MS detection of 2 target antibiotics

    抗生素停留时间/min标准曲线R2检测限/(μg/L)回收率/%
    加标量为
    0.1 mg/kg
    加标量为
    1 mg/kg
    加标量为
    4 mg/kg
    加标量为
    10 mg/kg
    加标量为
    20 mg/kg
    磺胺嘧啶(SDZ)1.47y=1.133x+0.1840.9947.2398.53±2.74100.67±1.9879.92±10.9792.30±3.0497.52±9.82
    磺胺甲恶唑(SMX)3.77y=0.893x −0.0020.9980.7797.12±3.4595.67±2.4797.92±6.2395.23±4.3098.73±2.95
    下载: 导出CSV
  • [1] GRABICOVA K,GRABIC R,BLAHA M,et al.Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant[J].Water Research,2015,72:145-153. doi: 10.1016/j.watres.2014.09.018
    [2] FEDOROVA G,NEBESKY V,RANDAK T,et al.Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS[J].Chemical Papers,2014,68(1):29-36.
    [3] JOHNSON A C,KELLER V,DUMONT E,et al.Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers[J].Science of the Total Environment,2015,511:747-755. doi: 10.1016/j.scitotenv.2014.12.055
    [4] KOBA O,GOLOVKO O,KODEŠOVÁ R,et al.Antibiotics degradation in soil: a case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products[J].Environmental Pollution,2017,220:1251-1263. doi: 10.1016/j.envpol.2016.11.007
    [5] WANG N,GUO X Y,YAN Z,et al.A comprehensive analysis on spread and distribution characteristic of antibiotic resistance genes in livestock farms of southeastern China[J].PLoS One,2016,11(7):e0156889. doi: 10.1371/journal.pone.0156889
    [6] SCHAUSS K,FOCKS A,HEUER H,et al.Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems[J].TrAC Trends in Analytical Chemistry,2009,28(5):612-618. doi: 10.1016/j.trac.2009.02.009
    [7] BOONSANER M,HAWKER D W.Evaluation of food chain transfer of the antibiotic oxytetracycline and human risk assessment[J].Chemosphere,2013,93(6):1009-1014. doi: 10.1016/j.chemosphere.2013.05.070
    [8] BOONSANER M,HAWKER D W.Transfer of oxytetracycline from swine manure to three different aquatic plants: implications for human exposure[J].Chemosphere,2015,122:176-182. doi: 10.1016/j.chemosphere.2014.11.045
    [9] WANG H X,WANG B,ZHAO Q,et al.Antibiotic body burden of Chinese school children: a multisite biomonitoring-based study[J].Environmental Science & Technology,2015,49(8):5070-5079.
    [10] 陈宇,许亚南,庞燕.抗生素赋存、来源及风险评估研究进展[J].环境工程技术学报,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180

    CHEN Y,XU Y N,PANG Y.Advances in research on the occurrence, source and risk assessment of antibiotics[J].Journal of Environmental Engineering Technology,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180
    [11] 卿叶,李红芳,张苗苗,等.养猪废水中磺胺嘧啶对湿地底泥中氮转化微生物及过程影响[J].环境科学研究,2021,34(9):2191-2199.

    QING Y,LI H F,ZHANG M M,et al.Effects of sulfadiazine in swine wastewater on microorganisms and nitrogen transformation processes in wetland sediment[J].Research of Environmental Sciences,2021,34(9):2191-2199.
    [12] ZHANG Q Q,YING G G,PAN C G,et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J].Environmental Science & Technology,2015,49(11):6772-6782.
    [13] YAN C X,YANG Y,ZHOU J L,et al.Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J].Environmental Pollution,2013,175:22-29. doi: 10.1016/j.envpol.2012.12.008
    [14] HU X G,ZHOU Q X,LUO Y.Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J].Environmental Pollution,2010,158(9):2992-2998. doi: 10.1016/j.envpol.2010.05.023
    [15] STOOB K,SINGER H P,MUELLER S R,et al.Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment[J].Environmental Science & Technology,2007,41(21):7349-7355.
    [16] 上官宇先,秦晓鹏,赵冬安,等.利用大型土柱自然淋溶条件下研究土壤重金属的迁移及形态转化[J].环境科学研究,2015,28(7):1015-1024.

    SHANGGUAN Y X,QIN X P,ZHAO D A,et al.Migration and transformation of heavy metals in soils by lysimeter study with field condition[J].Research of Environmental Sciences,2015,28(7):1015-1024.
    [17] ALDANA G O,HAZLERIGG C,LOPEZ-CAPEL E,et al.Agrochemical leaching reduction in biochar-amended tropical soils of Belize[J].European Journal of Soil Science,2021,72:1243-1255. doi: 10.1111/ejss.13021
    [18] MEHRTENS A,LICHA T,BROERS H P,et al.Tracing veterinary antibiotics in the subsurface: a long-term field experiment with spiked manure[J].Environmental Pollution,2020,265:114930. doi: 10.1016/j.envpol.2020.114930
    [19] 郭欣妍,王娜,许静,等.五种磺胺类抗生素在土壤中的吸附和淋溶特性[J].环境科学学报,2013,33(11):3083-3091.

    GUO X Y,WANG N,XU J,et al.Adsorption and leaching behavior of sulfonamides in soils[J].Acta Scientiae Circumstantiae,2013,33(11):3083-3091.
    [20] OECD.OECD guidelines for testing of chemicals,312 leaching in soil columns[S].Paris:OECD,2004.
    [21] GUSTAFSON D I.Groundwater ubiquity score: a simple method for assessing pesticide leachability[J].Environmental Toxicology & Chemistry,1989,8(4):339-357.
    [22] HU S Q,ZHANG Y,SHEN G X,et al.Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems[J].Soil & Tillage Research,2019,186:233-241.
    [23] 文春波,张从良,王岩.磺胺嘧啶在土壤中的降解与迁移研究[J].农业环境科学学报,2007,26(5):1677-1680. doi: 10.3321/j.issn:1672-2043.2007.05.015

    WEN C B,ZHANG C L,WANG Y.Degradation and transport of sulfadiazine in soil[J].Journal of Agro-Environment Science,2007,26(5):1677-1680. doi: 10.3321/j.issn:1672-2043.2007.05.015
    [24] WANG S L,WANG H.Adsorption behavior of antibiotic in soil environment: a critical review[J].Frontiers of Environmental Science & Engineering,2015,9(4):565-574.
    [25] RABØLLE M,SPLIID N H.Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J].Chemosphere,2000,40(7):715-722. doi: 10.1016/S0045-6535(99)00442-7
    [26] SUKUL P,LAMSHÖFT M,ZÜHLKE S,et al.Sorption and desorption of sulfadiazine in soil and soil-manure systems[J].Chemosphere,2008,73(8):1344-1350. doi: 10.1016/j.chemosphere.2008.06.066
    [27] 范秀磊,甘容,谢雅,等.老化前后聚乳酸和聚乙烯微塑料对抗生素的吸附解吸行为[J].环境科学研究,2021,34(7):1747-1756.

    FAN X L,GAN R,XIE Y,et al.Adsorption and desorption behavior of antibiotics on polylactic acid and polyethylene microplastics before and after aging[J].Research of Environmental Sciences,2021,34(7):1747-1756.
    [28] 汪仙仙,张洪昌,沈根祥,等.典型磺胺类抗生素在稻田土中的纵向迁移[J].环境化学,2018,37(8):1746-1754. doi: 10.7524/j.issn.0254-6108.2018022802

    WANG X X,ZHANG H C,SHEN G X,et al.Vertical migration of typical sulfonamide antibiotics in paddy soil[J].Environmental Chemistry,2018,37(8):1746-1754. doi: 10.7524/j.issn.0254-6108.2018022802
    [29] THIELE-BRUHN S,SEIBICKE T,SCHULTEN H R,et al.Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions[J].Journal of Environment Quality,2004,33(4):1331-1342. doi: 10.2134/jeq2004.1331
    [30] ZHENG H,WANG Z Y,ZHAO J,et al.Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J].Environmental Pollution,2013,181:60-67. doi: 10.1016/j.envpol.2013.05.056
    [31] MARTĺNEZ-HERNÁNDEZ V,MEFFE R,HERRERA S,et al.Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment[J].Science of the Total Environment,2014,472:273-281. doi: 10.1016/j.scitotenv.2013.11.036
    [32] SRINIVASAN P,SARMAH A K,MANLEY-HARRIS M.Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils[J].Environmental Pollution,2013,180:165-172. doi: 10.1016/j.envpol.2013.05.022
    [33] GAO J,PEDERSEN J A.Adsorption of sulfonamide antimicrobial agents to clay minerals[J].Environmental Science & Technology,2005,39(24):9509-9516.
    [34] 罗芳林. 猪粪DOM对抗生素在紫色土中吸附迁移作用的影响[D]. 成都: 西南交通大学, 2019: 15-16.
    [35] PAN M,CHU L M.Leaching behavior of veterinary antibiotics in animal manure-applied soils[J].Science of the Total Environment,2017,579:466-473. doi: 10.1016/j.scitotenv.2016.11.072
    [36] NAVARRO S,HERNÁNDEZ-BASTIDA J,CAZAÑA G,et al.Assessment of the leaching potential of 12 substituted phenylurea herbicides in two agricultural soils under laboratory conditions[J].Journal of Agricultural and Food Chemistry,2012,60(21):5279-5286. doi: 10.1021/jf301094c
    [37] CHEN K L,LIU L C,CHEN W R.Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils[J].Environmental Pollution,2017,231:1163-1171. doi: 10.1016/j.envpol.2017.08.011
    [38] BLACKWELL P A,KAY P,ASHAUER R,et al.Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils[J].Chemosphere,2009,75(1):13-19. doi: 10.1016/j.chemosphere.2008.11.070
    [39] ZHANG Y,HU S Q,ZHANG H C,et al.Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application[J].Science of the Total Environment,2017,607/608:1348-1356. doi: 10.1016/j.scitotenv.2017.07.083
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  81
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2021-08-23
  • 网络出版日期:  2022-03-07

目录

    /

    返回文章
    返回