Leaching Behavior of Antibiotics Sulfadiazine and Sulfamethoxazole in Soil
-
摘要: 农业生产中畜禽粪污还田会将残留的抗生素带入农田土壤,并能通过淋溶作用迁移至深层土壤最终进入地下水. 该研究采用模拟土壤柱淋溶试验方法,研究了2种磺胺类抗生素——磺胺嘧啶(sulfadiazine,SDZ)和磺胺甲恶唑(sulfamethoxazole,SMX)在农田土壤中的淋溶行为,以及表层土抗生素含量、淋溶液pH和有机质对各土柱剖面SDZ和SMX残留水平的影响. 结果表明:①不同表层土抗生素含量下,SDZ和SMX在供试土壤中均呈向下迁移的趋势,但淋溶结束后上层土壤中二者含量明显高于下层,土柱各层抗生素的含量随表层土抗生素含量的增加而增加. ②淋溶液pH为3.00和5.00时,各层土壤中SDZ和SMX的含量均高于淋溶液pH为7.00时. 淋溶液pH较高时两种磺胺类抗生素多以阴离子形态存在,会与带负电荷的土壤颗粒产生静电斥力而易于向下迁移;随着淋溶液pH的降低,两种磺胺类抗生素阴离子形态占比减少,上层土壤中保留的抗生素含量变高,向下迁移的能力减弱. ③粪便添加组上层土壤中SDZ和SMX的含量明显高于未添加组,抗生素向下迁移的能力减弱,这与有机质的添加使得上层土柱吸附能力增强有关. 通过模型模拟,SDZ和SMX的地下水污染指数分别为3.50和4.45,均大于2.8,表明在供试土壤中这2种磺胺类抗生素的淋溶迁移性较强. 研究显示,淋溶试验结果与模型模拟结果一致,表明SDZ和SMX对地下水存在潜在污染风险.Abstract: In agricultural production, livestock manure and urine applied as fertilizers bring the residual antibiotics into the farmland soil, which can migrate to the deeper soil through leaching and eventually into the groundwater. In this study, the soil column method was used to investigate the leaching behavior of two sulfonamide antibiotics: sulfadiazine (SDZ) and sulfamethoxazole (SMX) under multiple conditions including different antibiotic content in topsoil, leachates with different pH values, and different doses of manure in columns. The results showed that SDZ and SMX had similar downward migration under different antibiotic content in topsoil. The antibiotics remained higher in the upper soil than in the deeper soil, and the residues in every layer of soil columns increased when antibiotic content in topsoil was higher. When the pH values of leachate were 3.00 and 5.00, the concentrations of SDZ and SMX in each layer of soil were higher than those at pH 7.00. It was possibly because at high pH, the two sulfonamide antibiotics existed as anions and generated electrostatic repulsion with negatively charged soil particles. On the contrary, when the pH value decreased, the two sulfonamide antibiotics were less negatively charged, the migration capacity of antibiotics was weakened and the concentration of antibiotics retained in the upper soil increased. When cattle manure was added as organic matter, the contents of SDZ and SMX in the upper soil were significantly higher than those of the non-addition group, reflecting their ability to migrate downward was impaired. This was mainly the result of the altered physicochemical properties (e.g., the enhanced absorption) of the surface soil by organic matter. Moreover, the groundwater ubiquity scores (GUS) of SDZ and SMX were calculated as 3.50 and 4.45, indicating that both of them had strong leachability (>2.8) in soil. Based on the consistent results between model calculation and the experiment, the target sulfonamide antibiotics pose potential risks to groundwater, which is worthy of further investigation.
-
Key words:
- antibiotics /
- sulfadiazine /
- sulfamethoxazole /
- leaching in soil columns /
- groundwater pollution risk
-
表 1 2种目标抗生素的理化性质
Table 1. The physiochemical properties of 2 target antibiotics
表 2 供验土壤和牛粪的基本理化性质
Table 2. The physiochemical properties of the tested soil and cattle manure
供验类型 pH 含水率/% 有机碳含量/
(g/kg)溶解性有机碳
含量/(mg/kg)阳离子交换量/
(cmol/kg)颗粒占比/% 粘粒 粉粒 砂粒 土壤 6.08 50 19.49 437.23 19.2 20.53 55.85 23.62 牛粪 8.12 40 362.50 32 775.96 — — — — 表 3 2种目标抗生素的标准曲线、检测限和加标回收率
Table 3. The standard curve, detection limits and recoveries HPLC-MS/MS detection of 2 target antibiotics
抗生素 停留时间/min 标准曲线 R2 检测限/(μg/L) 回收率/% 加标量为
0.1 mg/kg加标量为
1 mg/kg加标量为
4 mg/kg加标量为
10 mg/kg加标量为
20 mg/kg磺胺嘧啶(SDZ) 1.47 y=1.133x+0.184 0.994 7.23 98.53±2.74 100.67±1.98 79.92±10.97 92.30±3.04 97.52±9.82 磺胺甲恶唑(SMX) 3.77 y=0.893x −0.002 0.998 0.77 97.12±3.45 95.67±2.47 97.92±6.23 95.23±4.30 98.73±2.95 -
[1] GRABICOVA K,GRABIC R,BLAHA M,et al.Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant[J].Water Research,2015,72:145-153. doi: 10.1016/j.watres.2014.09.018 [2] FEDOROVA G,NEBESKY V,RANDAK T,et al.Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS[J].Chemical Papers,2014,68(1):29-36. [3] JOHNSON A C,KELLER V,DUMONT E,et al.Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers[J].Science of the Total Environment,2015,511:747-755. doi: 10.1016/j.scitotenv.2014.12.055 [4] KOBA O,GOLOVKO O,KODEŠOVÁ R,et al.Antibiotics degradation in soil: a case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products[J].Environmental Pollution,2017,220:1251-1263. doi: 10.1016/j.envpol.2016.11.007 [5] WANG N,GUO X Y,YAN Z,et al.A comprehensive analysis on spread and distribution characteristic of antibiotic resistance genes in livestock farms of southeastern China[J].PLoS One,2016,11(7):e0156889. doi: 10.1371/journal.pone.0156889 [6] SCHAUSS K,FOCKS A,HEUER H,et al.Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems[J].TrAC Trends in Analytical Chemistry,2009,28(5):612-618. doi: 10.1016/j.trac.2009.02.009 [7] BOONSANER M,HAWKER D W.Evaluation of food chain transfer of the antibiotic oxytetracycline and human risk assessment[J].Chemosphere,2013,93(6):1009-1014. doi: 10.1016/j.chemosphere.2013.05.070 [8] BOONSANER M,HAWKER D W.Transfer of oxytetracycline from swine manure to three different aquatic plants: implications for human exposure[J].Chemosphere,2015,122:176-182. doi: 10.1016/j.chemosphere.2014.11.045 [9] WANG H X,WANG B,ZHAO Q,et al.Antibiotic body burden of Chinese school children: a multisite biomonitoring-based study[J].Environmental Science & Technology,2015,49(8):5070-5079. [10] 陈宇,许亚南,庞燕.抗生素赋存、来源及风险评估研究进展[J].环境工程技术学报,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180CHEN Y,XU Y N,PANG Y.Advances in research on the occurrence, source and risk assessment of antibiotics[J].Journal of Environmental Engineering Technology,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180 [11] 卿叶,李红芳,张苗苗,等.养猪废水中磺胺嘧啶对湿地底泥中氮转化微生物及过程影响[J].环境科学研究,2021,34(9):2191-2199.QING Y,LI H F,ZHANG M M,et al.Effects of sulfadiazine in swine wastewater on microorganisms and nitrogen transformation processes in wetland sediment[J].Research of Environmental Sciences,2021,34(9):2191-2199. [12] ZHANG Q Q,YING G G,PAN C G,et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J].Environmental Science & Technology,2015,49(11):6772-6782. [13] YAN C X,YANG Y,ZHOU J L,et al.Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J].Environmental Pollution,2013,175:22-29. doi: 10.1016/j.envpol.2012.12.008 [14] HU X G,ZHOU Q X,LUO Y.Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J].Environmental Pollution,2010,158(9):2992-2998. doi: 10.1016/j.envpol.2010.05.023 [15] STOOB K,SINGER H P,MUELLER S R,et al.Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment[J].Environmental Science & Technology,2007,41(21):7349-7355. [16] 上官宇先,秦晓鹏,赵冬安,等.利用大型土柱自然淋溶条件下研究土壤重金属的迁移及形态转化[J].环境科学研究,2015,28(7):1015-1024.SHANGGUAN Y X,QIN X P,ZHAO D A,et al.Migration and transformation of heavy metals in soils by lysimeter study with field condition[J].Research of Environmental Sciences,2015,28(7):1015-1024. [17] ALDANA G O,HAZLERIGG C,LOPEZ-CAPEL E,et al.Agrochemical leaching reduction in biochar-amended tropical soils of Belize[J].European Journal of Soil Science,2021,72:1243-1255. doi: 10.1111/ejss.13021 [18] MEHRTENS A,LICHA T,BROERS H P,et al.Tracing veterinary antibiotics in the subsurface: a long-term field experiment with spiked manure[J].Environmental Pollution,2020,265:114930. doi: 10.1016/j.envpol.2020.114930 [19] 郭欣妍,王娜,许静,等.五种磺胺类抗生素在土壤中的吸附和淋溶特性[J].环境科学学报,2013,33(11):3083-3091.GUO X Y,WANG N,XU J,et al.Adsorption and leaching behavior of sulfonamides in soils[J].Acta Scientiae Circumstantiae,2013,33(11):3083-3091. [20] OECD.OECD guidelines for testing of chemicals,312 leaching in soil columns[S].Paris:OECD,2004. [21] GUSTAFSON D I.Groundwater ubiquity score: a simple method for assessing pesticide leachability[J].Environmental Toxicology & Chemistry,1989,8(4):339-357. [22] HU S Q,ZHANG Y,SHEN G X,et al.Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems[J].Soil & Tillage Research,2019,186:233-241. [23] 文春波,张从良,王岩.磺胺嘧啶在土壤中的降解与迁移研究[J].农业环境科学学报,2007,26(5):1677-1680. doi: 10.3321/j.issn:1672-2043.2007.05.015WEN C B,ZHANG C L,WANG Y.Degradation and transport of sulfadiazine in soil[J].Journal of Agro-Environment Science,2007,26(5):1677-1680. doi: 10.3321/j.issn:1672-2043.2007.05.015 [24] WANG S L,WANG H.Adsorption behavior of antibiotic in soil environment: a critical review[J].Frontiers of Environmental Science & Engineering,2015,9(4):565-574. [25] RABØLLE M,SPLIID N H.Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J].Chemosphere,2000,40(7):715-722. doi: 10.1016/S0045-6535(99)00442-7 [26] SUKUL P,LAMSHÖFT M,ZÜHLKE S,et al.Sorption and desorption of sulfadiazine in soil and soil-manure systems[J].Chemosphere,2008,73(8):1344-1350. doi: 10.1016/j.chemosphere.2008.06.066 [27] 范秀磊,甘容,谢雅,等.老化前后聚乳酸和聚乙烯微塑料对抗生素的吸附解吸行为[J].环境科学研究,2021,34(7):1747-1756.FAN X L,GAN R,XIE Y,et al.Adsorption and desorption behavior of antibiotics on polylactic acid and polyethylene microplastics before and after aging[J].Research of Environmental Sciences,2021,34(7):1747-1756. [28] 汪仙仙,张洪昌,沈根祥,等.典型磺胺类抗生素在稻田土中的纵向迁移[J].环境化学,2018,37(8):1746-1754. doi: 10.7524/j.issn.0254-6108.2018022802WANG X X,ZHANG H C,SHEN G X,et al.Vertical migration of typical sulfonamide antibiotics in paddy soil[J].Environmental Chemistry,2018,37(8):1746-1754. doi: 10.7524/j.issn.0254-6108.2018022802 [29] THIELE-BRUHN S,SEIBICKE T,SCHULTEN H R,et al.Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions[J].Journal of Environment Quality,2004,33(4):1331-1342. doi: 10.2134/jeq2004.1331 [30] ZHENG H,WANG Z Y,ZHAO J,et al.Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J].Environmental Pollution,2013,181:60-67. doi: 10.1016/j.envpol.2013.05.056 [31] MARTĺNEZ-HERNÁNDEZ V,MEFFE R,HERRERA S,et al.Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment[J].Science of the Total Environment,2014,472:273-281. doi: 10.1016/j.scitotenv.2013.11.036 [32] SRINIVASAN P,SARMAH A K,MANLEY-HARRIS M.Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils[J].Environmental Pollution,2013,180:165-172. doi: 10.1016/j.envpol.2013.05.022 [33] GAO J,PEDERSEN J A.Adsorption of sulfonamide antimicrobial agents to clay minerals[J].Environmental Science & Technology,2005,39(24):9509-9516. [34] 罗芳林. 猪粪DOM对抗生素在紫色土中吸附迁移作用的影响[D]. 成都: 西南交通大学, 2019: 15-16. [35] PAN M,CHU L M.Leaching behavior of veterinary antibiotics in animal manure-applied soils[J].Science of the Total Environment,2017,579:466-473. doi: 10.1016/j.scitotenv.2016.11.072 [36] NAVARRO S,HERNÁNDEZ-BASTIDA J,CAZAÑA G,et al.Assessment of the leaching potential of 12 substituted phenylurea herbicides in two agricultural soils under laboratory conditions[J].Journal of Agricultural and Food Chemistry,2012,60(21):5279-5286. doi: 10.1021/jf301094c [37] CHEN K L,LIU L C,CHEN W R.Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils[J].Environmental Pollution,2017,231:1163-1171. doi: 10.1016/j.envpol.2017.08.011 [38] BLACKWELL P A,KAY P,ASHAUER R,et al.Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils[J].Chemosphere,2009,75(1):13-19. doi: 10.1016/j.chemosphere.2008.11.070 [39] ZHANG Y,HU S Q,ZHANG H C,et al.Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application[J].Science of the Total Environment,2017,607/608:1348-1356. doi: 10.1016/j.scitotenv.2017.07.083 -