Research Progress of Microplastics and Nanoplastics in Environment
-
摘要: 为探究环境中微纳塑料的含量、归趋和生态风险,发展可靠的检测方法是重要前提.目前,对微纳塑料的分析方法多种多样,国内外已有多篇综述归纳了各方法的优缺点,甚至提出了"统一"或"标准化"的方法.然而,由于研究目标和技术方法本身的成熟度不同等原因,很难笼统地提出一套适用于所有监测或研究的方法.微纳塑料的研究是基于颗粒性和尺寸效应的研究,笔者将其划分为大粒级微塑料(0.02~5 mm)、小粒级微塑料(1~20 μm)和纳米塑料(1~1 000 nm)3个类别,分别概述各粒级的分析方法进展和技术目标等.对于大粒级微塑料,已形成相对成熟的检测方案,适合开展常规监测和大规模基线数据的调查,但方法多样化,数据的质量不统一导致可比性差,提高方法的可行性和统一性是努力重点;对于20 μm以下的小粒级微塑料,检测的准确度有待提高,发展可靠的定性及定量方法是当前的目标;对于1 000 nm以下的塑料颗粒和可溶性聚合物,发展尚不成熟,需要研究更有效的前处理和分析方法.今后,应针对不同粒级微纳塑料所面临的问题开展方法学研究,加强对微纳塑料环境行为等的基础研究,并逐步发展微纳塑料的预测模型,在可靠数据的基础上进行全面的生态风险评估.Abstract: Microplastics, an emerging pollutant, have been a topic of increasing concern in recent years. Establishing reliable detection methods is a key goal for studying the concentration, fate, and ecological risks of microplastics and nanoplastics in the environment. At present, many review papers have outlined various methods of sampling, separation/enrichment, qualitative and quantitative analysis of plastics in different environments, and even proposed 'unified' or 'standardized' methods. However, due to the different research objectives and the maturity of the detection techniques, it is difficult to generalize a set of methods applicable to all monitoring or research. Because of the particle shape and size effects of microplastics and nanoplastics, we define three size categories of microplastics and nanoplastics, namely large microplastics (0.02-5 mm), small microplastics (1-20 μm), and nanoplastics (1-1000 nm) in this review. This article summarizes the research progress of detection techniques and specifies the development goals for the three categories of microplastics and nanoplastics. For large microplastics above 20 μm, there are variouse detection protocols for particle analysis, resulting in inconsistent quality of data and therefore less comparability among reports. Choosing a unified sampling and analysis method is the paramount goal of environmental monitoring. For small microplastics below 20 μm, the determination of concentration is not accurate. Therefore, it is important to develop more reliable, qualitative, and quantitative methods. For particles and water-soluble polymers below 1000 nm, the development of detection methodology is lagging, and efforts should be put on proposing more pretreatment and analysis methods, which will be potential alternative for future environmental monitoring protocol. In future research, we should vigorously develop reliable qualitative and quantitative methods, research on detection of water-soluble polymer and environmental behavior of micro- and nano- plastics, and their predictive models to conduct a comprehensive ecological risk assessment on the basis of more reliable data.
-
Key words:
- microplastic /
- small-sized microplastic /
- nanoplastic /
- analysis methods /
- environmental monitoring
-
表 1 大粒级微塑料研究中常用的分离及鉴定方法对比
Table 1. Comparison of commonly-used separation and identification methods for large microplastics
项目 种类 优点 缺点 数据来源 分离方法 消解 硝酸、高氯酸 较高的回收率 降解某些塑料 文献[12] 氢氧化钾 反应较快且价廉,回收率高 不能消解纤维素和几丁质,降解某些塑料 过氧化氢 回收率较高 降解过程中产生大量泡沫且使塑料褪色 胰蛋白酶 反应温和, 不降解塑料 价格昂贵且不适宜处理大体积样品 浮选 氯化钠 性价比高 样品需冲洗3遍 文献[13-15] 碘化钠 回收率较高 与纤维素发生反应使其变黑,影响观察鉴定 溴化锌 回收率较高 价格昂贵,具毒性,不适宜处理大体积样品 氯化锌 回收率较高 价格昂贵,不适宜处理大体积样品 鉴定方法 目检法 光学显微镜 快速、简便 误判率高 文献[6] 光谱法 显微红外光谱 信号较强,操作简便 空间分辨率较低,对环境样品下限为20 μm 文献[16] 显微拉曼光谱 空间分辨率较高 信号较弱,操作较复杂,检测环境样品时常有荧光干扰 热分析法 热裂解气相色谱质谱技术 样品无需复杂前处理 存在误判风险,且破坏样品 文献[17] 萃取-热脱附气相色谱质谱技术 一次进样可对多种成分进行定量分析 进样量少,不适合处理大体积样品 -
[1] LATTIN G L, MOORE C J, ZELLERS A F, et al. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore[J]. Marine Pollution Bulletin, 2004, 49(4): 291-294. doi: 10.1016/j.marpolbul.2004.01.020 [2] 吴磊石, 洪鸣, 彭梦微, 等. 北部湾海域表层水体中微塑料分布特征[J]. 环境科学研究, 2021. doi: 10.13198/j.issn.1001-6929.2021.08.13.WU Leishi, HONG Ming, PENG Mengwei, et al. Distribution characteristics of microplastics in surface waters of Beibu Gulf[J]. Research of Environmental Sciences, 2021. doi: 10.13198/j.issn.1001-6929.2021.08.13. [3] 高嘉蔚, 赵莎莎, 李富云, 等. 微塑料对大型溞摄食和抗氧化防御系统的影响[J]. 环境科学研究, 2021, 34(5): 1205-1212. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210519&flag=1GAO Jiawei, ZHAO Shasha, LI Fuyun, et al. Effects of microplastics on feeding behavior and antioxidant system of Daphnia magna[J]. Research of Environmental Sciences, 2021, 34(5): 1205-1212. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210519&flag=1 [4] HARTMANN N B, HVFFER T, THOMPSON R C, et al. Are we speaking the same language? recommendations for a definition and categorization framework for plastic debris[J]. Environmental Science & Technology, 2019, 53(3): 1039-1047. http://www.onacademic.com/detail/journal_1000041599117899_dcb2.html [5] VELIMIROVIC M, TIREZ K, VOORSPOELS S, et al. Recent developments in mass spectrometry for the characterization of micro- and nanoscale plastic debris in the environment[J]. Analytical and Bioanalytical Chemistry, 2021, 413(1): 7-15. doi: 10.1007/s00216-020-02898-w [6] ROCHA-SANTOS T, DUARTE A C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment[J]. TrAC Trends in Analytical Chemistry, 2015, 65: 47-53. doi: 10.1016/j.trac.2014.10.011 [7] 邓义祥, 雷坤, 安立会, 等. 我国塑料垃圾和微塑料污染源头控制对策[J]. 中国科学院院刊, 2018, 33(10): 1042-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201810005.htmDENG Yixiang, LEI Kun, AN Lihui, et al. Countermeasurces on control of plastic litter and microplastic pollution[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1042-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201810005.htm [8] LÖDER M G J, GERDTS G. Methodology used for the detection and identification of microplastics: a critical appraisal[C]//BERGMANN M, GUTOW L, KLAGES M. Marine Anthropogenic Litter. Cham: Springer International Publishing, 2015: 201-227. [9] SETÄLÄ O, MAGNUSSON K, LEHTINIEMI M, et al. Distribution and abundance of surface water microlitter in the Baltic Sea: a comparison of two sampling methods[J]. Marine Pollution Bulletin, 2016, 110(1): 177-183. doi: 10.1016/j.marpolbul.2016.06.065 [10] TALVITIE J, HEINONEN M, PÄÄKKÖNEN J P, et al. Do wastewater treatment plants act as a potential point source of microplastics? preliminary study in the coastal gulf of finland, Baltic Sea[J]. Water Science and Technology, 2015, 72(9): 1495-1504. doi: 10.2166/wst.2015.360 [11] PRATA J C, DA-COSTA J P, DUARTE A C, et al. Methods for sampling and detection of microplastics in water and sediment: a critical review[J]. TrAC Trends in Analytical Chemistry, 2019, 110: 150-159. doi: 10.1016/j.trac.2018.10.029 [12] MUNNO K, HELM P A, JACKSON D A, et al. Impacts of temperature and selected chemical digestion methods on microplastic particles[J]. Environmental Toxicology and Chemistry, 2018, 37(1): 91-98. doi: 10.1002/etc.3935 [13] CRICHTON E M, NOËL M, GIES E A, et al. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments[J]. Analytical Methods, 2017, 9(9): 1419-1428. doi: 10.1039/C6AY02733D [14] QUINN B, MURPHY F, EWINS C. Validation of density separation for the rapid recovery of microplastics from sediment[J]. Analytical Methods, 2017, 9(9): 1491-1498. doi: 10.1039/C6AY02542K [15] IMHOF H K, SCHMID J, NIESSNER R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments: novel plastic particle separation method[J]. Limnology and Oceanography: Methods, 2012, 10(7): 524-537. doi: 10.4319/lom.2012.10.524 [16] MINTENIG S M, INT-VEEN I, LÖDER M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging[J]. Water Research, 2017, 108: 365-372. doi: 10.1016/j.watres.2016.11.015 [17] SHIM W J, HONG S H, EO S E. Identification methods in microplastic analysis: a review[J]. Analytical Methods, 2017, 9(9): 1384-1391. doi: 10.1039/C6AY02558G [18] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6): 3060-3075. http://www.researchgate.net/profile/Martin_Thiel/publication/221819658_Microplastics_in_the_marine_environment_a_review_of_the_methods_used_for_identification_and_quantification/links/02e7e531f89c3e4446000000 [19] STOCK F, KOCHLEUS C, BÄNSCH-BALTRUSCHAT B, et al. Sampling techniques and preparation methods for microplastic analyses in the aquatic environment: a review[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 84-92. doi: 10.1016/j.trac.2019.01.014 [20] GALGANI F, HANKE G, WERNER S, et al. Guidance on monitoring of marine litter in European seas[M]. Luxembourg: Publications Office of the European Union, 2013. [21] European Commission, Joint Research Centre. Riverine litter monitoring: options and recommendations? MSFD GES TG marine litter thematic report[M]. Brussels: Publications Office of the Europear Union, 2016. [22] CLAESSENS M, MEESTER S D, LANDUYT L V, et al. Occurrence and distribution of microplastics in marine sediments along the Belgian Coast[J]. Marine Pollution Bulletin, 2011, 62(10): 2199-2204. doi: 10.1016/j.marpolbul.2011.06.030 [23] SCIRCLE A, CIZDZIEL J V, MISSLING K, et al. Single-pot method for the collection and preparation of natural water for microplastic analyses: microplastics in the Mississippi River system during and after historic flooding[J]. Environmental Toxicology and Chemistry, 2020, 39(5): 986-995. doi: 10.1002/etc.4698 [24] CAI H, CHEN M, CHEN Q, et al. Microplastic quantification affected by structure and pore size of filters[J]. Chemosphere, 2020, 257: 127198. doi: 10.1016/j.chemosphere.2020.127198 [25] LÖDER M G J, IMHOF H K, LADEHOFF M, et al. Enzymatic purification of microplastics in environmental samples[J]. Environmental Science & Technology, 2017, 51(24): 14283-14292. [26] COVERNTON G A, PEARCE C M, GURNEY-SMITH H J, et al. Size and shape matter: a preliminary analysis of microplastic sampling technique in seawater studies with implications for ecological risk assessment[J]. Science of the Total Environment, 2019, 667: 124-132. doi: 10.1016/j.scitotenv.2019.02.346 [27] CABERNARD L, ROSCHER L, LORENZ C, et al. Comparison of raman and fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2018, 52(22): 13279-13288. http://www.onacademic.com/detail/journal_1000040893390310_498e.html [28] ZHANG Q, ZHAO Y, DU F, et al. Microplastic fallout in different indoor environments[J]. Environmental Science & Technology, 2020, 54(11): 6530-6539. doi: 10.1021/acs.est.0c00087 [29] HERMSEN E, MINTENIG S M, BESSELING E, et al. Quality criteria for the analysis of microplastic in biota samples: a critical review[J]. Environmental Science & Technology, 2018, 52(18): 10230-10240. [30] SCHYMANSKI D, GOLDBECK C, HUMPF H U, et al. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water[J]. Water Research, 2018, 129: 154-162. doi: 10.1016/j.watres.2017.11.011 [31] ZITOUNI N, BOUSSERRHINE N, BELBEKHOUCHE S, et al. First report on the presence of small microplastics (≤ 3μm) in tissue of the commercial fish Serranus scriba (Linnaeus. 1758) from Tunisian coasts and associated cellular alterations[J]. Environmental Pollution, 2020, 263: 114576. doi: 10.1016/j.envpol.2020.114576 [32] ENDERS K, LENZ R, STEDMON C A, et al. Abundance, size and polymer composition of marine microplastics ≥ 10μm in the Atlantic Ocean and their modelled vertical distribution[J]. Marine Pollution Bulletin, 2015, 100(1): 70-81. doi: 10.1016/j.marpolbul.2015.09.027 [33] GRBIC J, NGUYEN B, GUO E, et al. Magnetic extraction of microplastics from environmental samples[J]. Environmental Science & Technology Letters, 2019, 6(2): 68-72. http://www.onacademic.com/detail/journal_1000041599142599_d8cd.html [34] OSSMANN B E, SARAU G, HOLTMANNSPÖTTER H, et al. Small-sized microplastics and pigmented particles in bottled mineral water[J]. Water Research, 2018, 141: 307-316. doi: 10.1016/j.watres.2018.05.027 [35] MISSAWI O, BOUSSERRHINE N, BELBEKHOUCHE S, et al. Abundance and distribution of small microplastics (≤ 3μm) in sediments and seaworms from the southern Mediterranean coasts and characterisation of their potential harmful effects[J]. Environmental Pollution, 2020, 263: 114634. doi: 10.1016/j.envpol.2020.114634 [36] IMHOF H K, WIESHEU A C, ANGER P M, et al. Variation in plastic abundance at different lake beach zones: a case study[J]. Science of the Total Environment, 2018, 613/614: 530-537. doi: 10.1016/j.scitotenv.2017.08.300 [37] 徐舟影, 陈奥飞, 赵胤祺, 等. 武汉城市污水中微塑料的分离、鉴定及其微观特征分析[J]. 环境科学研究, 2021, 34(3): 637-645. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210314&flag=1XU Zhouying, CHEN Aofei, ZHAO Yinqi, et al. Separation, identification and microscopic characteristics analysis of microplastics in Wuhan municipal sewage[J]. Research of Environmental Sciences, 2021, 34(3): 637-645. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210314&flag=1 [38] SOBHANI Z, AL-AMIN M, NAIDU R, et al. Identification and visualisation of microplastics by Raman mapping[J]. Analytica Chimica Acta, 2019, 1077: 191-199. doi: 10.1016/j.aca.2019.05.021 [39] ZHOU X X, LIU R, HAO L T, et al. Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy[J]. Talanta, 2021, 221: 121552. doi: 10.1016/j.talanta.2020.121552 [40] BORMAN S A. Nonlinear Raman spectroscopy[J]. Analytical Chemistry, 1982, 54(9): 1021-1026. doi: 10.1021/ac00246a002 [41] ARAUJO C F, NOLASCO M M, RIBEIRO A M P, et al. Identification of microplastics using Raman spectroscopy: latest developments and future prospects[J]. Water Research, 2018, 142: 426-440. doi: 10.1016/j.watres.2018.05.060 [42] ANGER P M, VON-DER-ESCH E, BAUMANN T, et al. Raman microspectroscopy as a tool for microplastic particle analysis[J]. TrAC Trends in Analytical Chemistry, 2018, 109: 214-226. doi: 10.1016/j.trac.2018.10.010 [43] COLE M, GALLOWAY T S. Ingestion of nanoplastics and microplastics by pacific oyster larvae[J]. Environmental Science & Technology, 2015, 49(24): 14625-14632. doi: 10.1021/acs.est.5b04099 [44] GIGAULT J, EL-HADRI H, NGUYEN B, et al. Nanoplastics are neither microplastics nor engineered nanoparticles[J]. Nature Nanotechnology, 2021, 16: 501-507. doi: 10.1038/s41565-021-00886-4 [45] MITRANO D M, WICK P, NOWACK B. Placing nanoplastics in the context of global plastic pollution[J]. Nature Nanotechnology, 2021, 16: 491-500. doi: 10.1038/s41565-021-00888-2 [46] HILDEBRANDT L, MITRANO D M, ZIMMERMANN T, et al. A nanoplastic sampling and enrichment approach by continuous flow centrifugation[J]. Frontiers in Environmental Science, 2020, 8: 89. doi: 10.3389/fenvs.2020.00089 [47] GILLIBERT R, BALAKRISHNAN G, DESHOULES Q, et al. Raman tweezers as a tool for small microplastics and nanoplastics identification in sea water[J]. Environmental Science & Technology, 2019, 53(15): 9003-9013. http://www.researchgate.net/publication/330875288_Supplementary_Informations_Raman_Tweezers_as_a_Tool_for_Small_Microplastics_and_Nanoplastics_Identification_in_Sea_Water/link/5c59771b45851582c3cfc0ca/download [48] TER-HALLE A, JEANNEAU L, MARTIGNAC M, et al. Nanoplastic in the North Atlantic subtropical gyre[J]. Environmental Science & Technology, 2017, 51(23): 13689-13697. [49] CAI H, CHEN M, DU F, et al. Separation and enrichment of nanoplastics in environmental water samples via ultracentrifugation[J]. Water Research, 2021, 203: 117509. doi: 10.1016/j.watres.2021.117509 [50] ZHOU X, HAO L, WANG H, et al. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography-mass spectrometry[J]. Analytical Chemistry, 2019, 91(3): 1785-1790. doi: 10.1021/acs.analchem.8b04729 [51] HERNANDEZ L M, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 2017, 4(7): 280-285. doi: 10.1021/acs.estlett.7b00187 [52] HERNANDEZ L M, XU E G, LARSSON H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environmental Science & Technology, 2019, 53(21): 12300-12310. http://www.ncbi.nlm.nih.gov/pubmed/31552738?utm_source=research-news&utm_medium=referral&utm_campaign=research-news [53] SOBHANI Z, ZHANG X, GIBSON C, et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging: down to 100 nm[J]. Water Research, 2020, 174: 115658. doi: 10.1016/j.watres.2020.115658 [54] ZHANG W, DONG Z, ZHU L, et al. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative Raman imaging and scanning electron microscopy[J]. ACS Nano, 2020, 14(7): 7920-7926. doi: 10.1021/acsnano.0c02878 [55] XU G, CHENG H, JONES R, et al. Surface-enhanced Raman spectroscopy facilitates the detection of microplastics < 1μm in the environment[J]. Environmental Science & Technology, 2020, 54(24): 15594-15603. [56] CAI H, XU E G, DU F, et al. Analysis of environmental nanoplastics: progress and challenges[J]. Chemical Engineering Journal, 2021, 410: 128208. doi: 10.1016/j.cej.2020.128208 [57] MATERIĆ D, KASPER-GIEBL A, KAU D, et al. Micro- and nanoplastics in alpine snow: a new method for chemical identification and (semi)quantification in the nanogram range[J]. Environmental Science & Technology, 2020, 54(4): 2353-2359. http://www.researchgate.net/publication/338666180_Micro-_and_Nanoplastics_in_Alpine_Snow_A_New_Method_for_Chemical_Identification_and_SemiQuantification_in_the_Nanogram_Range [58] WANG Z, SAADÉ N K, ARIYA P A. Advances in ultra-trace analytical capability for micro/nanoplastics and water-soluble polymers in the environment: fresh falling urban snow[J]. Environmental Pollution, 2021, 276: 116698. doi: 10.1016/j.envpol.2021.116698 [59] EUBELER J P, ZOK S, BERNHARD M, et al. Environmental biodegradation of synthetic polymers Ⅰ. test methodologies and procedures[J]. TrAC Trends in Analytical Chemistry, 2009, 28(9): 1057-1072. [60] KLEIN S, DIMZON I K, EUBELER J, et al. Analysis, occurrence, and degradation of microplastics in the aqueous environment[C]//WAGNER M, LAMBERT S. Freshwater Microplastics. Berlin: Springer International Publishing, 2018, 58: 51-67. [61] LIU P, ZHAN X, WU X, et al. Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks[J]. Chemosphere, 2020, 242: 125193. doi: 10.1016/j.chemosphere.2019.125193 [62] SCHRANK I, TROTTER B, DUMMERT J, et al. Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna[J]. Environmental Pollution, 2019, 255: 113233. doi: 10.1016/j.envpol.2019.113233 -