留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境微纳塑料的分析方法进展

蔡慧文 杜方旎 张微微 施华宏

蔡慧文, 杜方旎, 张微微, 施华宏. 环境微纳塑料的分析方法进展[J]. 环境科学研究, 2021, 34(11): 2547-2555. doi: 10.13198/j.issn.1001-6929.2021.08.21
引用本文: 蔡慧文, 杜方旎, 张微微, 施华宏. 环境微纳塑料的分析方法进展[J]. 环境科学研究, 2021, 34(11): 2547-2555. doi: 10.13198/j.issn.1001-6929.2021.08.21
CAI Huiwen, DU Fangni, ZHANG Weiwei, SHI Huahong. Research Progress of Microplastics and Nanoplastics in Environment[J]. Research of Environmental Sciences, 2021, 34(11): 2547-2555. doi: 10.13198/j.issn.1001-6929.2021.08.21
Citation: CAI Huiwen, DU Fangni, ZHANG Weiwei, SHI Huahong. Research Progress of Microplastics and Nanoplastics in Environment[J]. Research of Environmental Sciences, 2021, 34(11): 2547-2555. doi: 10.13198/j.issn.1001-6929.2021.08.21
编者按:
微塑料因在环境中留存时间长、输移扩散广、治理难度大,成为全球广泛关注的热点环境问题,其污染分布及其环境 行为是生态与环境科学研究的前沿. 近年来,我国在微塑料监测技术方法、微塑料在我国不同环境介质中的分布特征、微塑料的 生态环境效应等方面的研究取得积极进展,对科学认识微塑料问题和支撑我国微塑料的管理发挥了重要作用. 为使读者了解近 期我国环境中微塑料监测和生态风险评估领域的研究进展,现将部分成果予以发表,以期为相关研究提供参考.

环境微纳塑料的分析方法进展

doi: 10.13198/j.issn.1001-6929.2021.08.21
基金项目: 

国家自然科学基金项目 41776123

沪环科项目 202034

详细信息
    作者简介:

    蔡慧文(1993-), 女, 江苏扬州人, vicky.chw@foxmail.com

    通讯作者:

    施华宏(1970-), 男, 湖北孝感人, 教授, 博士, 博导, 主要从事环境微纳塑料的分析方法、环境行为与生态健康效应研究, hhshi@des.ecnu.edu.cn

  • 中图分类号: X830

Research Progress of Microplastics and Nanoplastics in Environment

Funds: 

National Natural Science Foundation of China 41776123

Pro-Environmental Research of Shanghai, China 202034

  • 摘要: 为探究环境中微纳塑料的含量、归趋和生态风险,发展可靠的检测方法是重要前提.目前,对微纳塑料的分析方法多种多样,国内外已有多篇综述归纳了各方法的优缺点,甚至提出了"统一"或"标准化"的方法.然而,由于研究目标和技术方法本身的成熟度不同等原因,很难笼统地提出一套适用于所有监测或研究的方法.微纳塑料的研究是基于颗粒性和尺寸效应的研究,笔者将其划分为大粒级微塑料(0.02~5 mm)、小粒级微塑料(1~20 μm)和纳米塑料(1~1 000 nm)3个类别,分别概述各粒级的分析方法进展和技术目标等.对于大粒级微塑料,已形成相对成熟的检测方案,适合开展常规监测和大规模基线数据的调查,但方法多样化,数据的质量不统一导致可比性差,提高方法的可行性和统一性是努力重点;对于20 μm以下的小粒级微塑料,检测的准确度有待提高,发展可靠的定性及定量方法是当前的目标;对于1 000 nm以下的塑料颗粒和可溶性聚合物,发展尚不成熟,需要研究更有效的前处理和分析方法.今后,应针对不同粒级微纳塑料所面临的问题开展方法学研究,加强对微纳塑料环境行为等的基础研究,并逐步发展微纳塑料的预测模型,在可靠数据的基础上进行全面的生态风险评估.

     

  • 图  1  塑料颗粒的尺寸分级及常见的采样和鉴定方法

    Figure  1.  Commonly-used sampling and identification methods for different size fractions of plastics

    图  2  微塑料研究常用的各种采样及分析方法

    Figure  2.  Some commonly-used sampling and analysis methods for microplastic studies

    图  3  显微拉曼技术鉴定小粒级微塑料的检测过程及存在的问题

    Figure  3.  Micro-Raman spectroscopy operating process and potential issues in microplastic studies

    表  1  大粒级微塑料研究中常用的分离及鉴定方法对比

    Table  1.   Comparison of commonly-used separation and identification methods for large microplastics

    项目 种类 优点 缺点 数据来源
    分离方法 消解 硝酸、高氯酸 较高的回收率 降解某些塑料 文献[12]
    氢氧化钾 反应较快且价廉,回收率高 不能消解纤维素和几丁质,降解某些塑料
    过氧化氢 回收率较高 降解过程中产生大量泡沫且使塑料褪色
    胰蛋白酶 反应温和, 不降解塑料 价格昂贵且不适宜处理大体积样品
    浮选 氯化钠 性价比高 样品需冲洗3遍 文献[13-15]
    碘化钠 回收率较高 与纤维素发生反应使其变黑,影响观察鉴定
    溴化锌 回收率较高 价格昂贵,具毒性,不适宜处理大体积样品
    氯化锌 回收率较高 价格昂贵,不适宜处理大体积样品
    鉴定方法 目检法 光学显微镜 快速、简便 误判率高 文献[6]
    光谱法 显微红外光谱 信号较强,操作简便 空间分辨率较低,对环境样品下限为20 μm 文献[16]
    显微拉曼光谱 空间分辨率较高 信号较弱,操作较复杂,检测环境样品时常有荧光干扰
    热分析法 热裂解气相色谱质谱技术 样品无需复杂前处理 存在误判风险,且破坏样品 文献[17]
    萃取-热脱附气相色谱质谱技术 一次进样可对多种成分进行定量分析 进样量少,不适合处理大体积样品
    下载: 导出CSV
  • [1] LATTIN G L, MOORE C J, ZELLERS A F, et al. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore[J]. Marine Pollution Bulletin, 2004, 49(4): 291-294. doi: 10.1016/j.marpolbul.2004.01.020
    [2] 吴磊石, 洪鸣, 彭梦微, 等. 北部湾海域表层水体中微塑料分布特征[J]. 环境科学研究, 2021. doi: 10.13198/j.issn.1001-6929.2021.08.13.

    WU Leishi, HONG Ming, PENG Mengwei, et al. Distribution characteristics of microplastics in surface waters of Beibu Gulf[J]. Research of Environmental Sciences, 2021. doi: 10.13198/j.issn.1001-6929.2021.08.13.
    [3] 高嘉蔚, 赵莎莎, 李富云, 等. 微塑料对大型溞摄食和抗氧化防御系统的影响[J]. 环境科学研究, 2021, 34(5): 1205-1212. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210519&flag=1

    GAO Jiawei, ZHAO Shasha, LI Fuyun, et al. Effects of microplastics on feeding behavior and antioxidant system of Daphnia magna[J]. Research of Environmental Sciences, 2021, 34(5): 1205-1212. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210519&flag=1
    [4] HARTMANN N B, HVFFER T, THOMPSON R C, et al. Are we speaking the same language? recommendations for a definition and categorization framework for plastic debris[J]. Environmental Science & Technology, 2019, 53(3): 1039-1047. http://www.onacademic.com/detail/journal_1000041599117899_dcb2.html
    [5] VELIMIROVIC M, TIREZ K, VOORSPOELS S, et al. Recent developments in mass spectrometry for the characterization of micro- and nanoscale plastic debris in the environment[J]. Analytical and Bioanalytical Chemistry, 2021, 413(1): 7-15. doi: 10.1007/s00216-020-02898-w
    [6] ROCHA-SANTOS T, DUARTE A C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment[J]. TrAC Trends in Analytical Chemistry, 2015, 65: 47-53. doi: 10.1016/j.trac.2014.10.011
    [7] 邓义祥, 雷坤, 安立会, 等. 我国塑料垃圾和微塑料污染源头控制对策[J]. 中国科学院院刊, 2018, 33(10): 1042-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201810005.htm

    DENG Yixiang, LEI Kun, AN Lihui, et al. Countermeasurces on control of plastic litter and microplastic pollution[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1042-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201810005.htm
    [8] LÖDER M G J, GERDTS G. Methodology used for the detection and identification of microplastics: a critical appraisal[C]//BERGMANN M, GUTOW L, KLAGES M. Marine Anthropogenic Litter. Cham: Springer International Publishing, 2015: 201-227.
    [9] SETÄLÄ O, MAGNUSSON K, LEHTINIEMI M, et al. Distribution and abundance of surface water microlitter in the Baltic Sea: a comparison of two sampling methods[J]. Marine Pollution Bulletin, 2016, 110(1): 177-183. doi: 10.1016/j.marpolbul.2016.06.065
    [10] TALVITIE J, HEINONEN M, PÄÄKKÖNEN J P, et al. Do wastewater treatment plants act as a potential point source of microplastics? preliminary study in the coastal gulf of finland, Baltic Sea[J]. Water Science and Technology, 2015, 72(9): 1495-1504. doi: 10.2166/wst.2015.360
    [11] PRATA J C, DA-COSTA J P, DUARTE A C, et al. Methods for sampling and detection of microplastics in water and sediment: a critical review[J]. TrAC Trends in Analytical Chemistry, 2019, 110: 150-159. doi: 10.1016/j.trac.2018.10.029
    [12] MUNNO K, HELM P A, JACKSON D A, et al. Impacts of temperature and selected chemical digestion methods on microplastic particles[J]. Environmental Toxicology and Chemistry, 2018, 37(1): 91-98. doi: 10.1002/etc.3935
    [13] CRICHTON E M, NOËL M, GIES E A, et al. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments[J]. Analytical Methods, 2017, 9(9): 1419-1428. doi: 10.1039/C6AY02733D
    [14] QUINN B, MURPHY F, EWINS C. Validation of density separation for the rapid recovery of microplastics from sediment[J]. Analytical Methods, 2017, 9(9): 1491-1498. doi: 10.1039/C6AY02542K
    [15] IMHOF H K, SCHMID J, NIESSNER R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments: novel plastic particle separation method[J]. Limnology and Oceanography: Methods, 2012, 10(7): 524-537. doi: 10.4319/lom.2012.10.524
    [16] MINTENIG S M, INT-VEEN I, LÖDER M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging[J]. Water Research, 2017, 108: 365-372. doi: 10.1016/j.watres.2016.11.015
    [17] SHIM W J, HONG S H, EO S E. Identification methods in microplastic analysis: a review[J]. Analytical Methods, 2017, 9(9): 1384-1391. doi: 10.1039/C6AY02558G
    [18] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6): 3060-3075. http://www.researchgate.net/profile/Martin_Thiel/publication/221819658_Microplastics_in_the_marine_environment_a_review_of_the_methods_used_for_identification_and_quantification/links/02e7e531f89c3e4446000000
    [19] STOCK F, KOCHLEUS C, BÄNSCH-BALTRUSCHAT B, et al. Sampling techniques and preparation methods for microplastic analyses in the aquatic environment: a review[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 84-92. doi: 10.1016/j.trac.2019.01.014
    [20] GALGANI F, HANKE G, WERNER S, et al. Guidance on monitoring of marine litter in European seas[M]. Luxembourg: Publications Office of the European Union, 2013.
    [21] European Commission, Joint Research Centre. Riverine litter monitoring: options and recommendations? MSFD GES TG marine litter thematic report[M]. Brussels: Publications Office of the Europear Union, 2016.
    [22] CLAESSENS M, MEESTER S D, LANDUYT L V, et al. Occurrence and distribution of microplastics in marine sediments along the Belgian Coast[J]. Marine Pollution Bulletin, 2011, 62(10): 2199-2204. doi: 10.1016/j.marpolbul.2011.06.030
    [23] SCIRCLE A, CIZDZIEL J V, MISSLING K, et al. Single-pot method for the collection and preparation of natural water for microplastic analyses: microplastics in the Mississippi River system during and after historic flooding[J]. Environmental Toxicology and Chemistry, 2020, 39(5): 986-995. doi: 10.1002/etc.4698
    [24] CAI H, CHEN M, CHEN Q, et al. Microplastic quantification affected by structure and pore size of filters[J]. Chemosphere, 2020, 257: 127198. doi: 10.1016/j.chemosphere.2020.127198
    [25] LÖDER M G J, IMHOF H K, LADEHOFF M, et al. Enzymatic purification of microplastics in environmental samples[J]. Environmental Science & Technology, 2017, 51(24): 14283-14292.
    [26] COVERNTON G A, PEARCE C M, GURNEY-SMITH H J, et al. Size and shape matter: a preliminary analysis of microplastic sampling technique in seawater studies with implications for ecological risk assessment[J]. Science of the Total Environment, 2019, 667: 124-132. doi: 10.1016/j.scitotenv.2019.02.346
    [27] CABERNARD L, ROSCHER L, LORENZ C, et al. Comparison of raman and fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2018, 52(22): 13279-13288. http://www.onacademic.com/detail/journal_1000040893390310_498e.html
    [28] ZHANG Q, ZHAO Y, DU F, et al. Microplastic fallout in different indoor environments[J]. Environmental Science & Technology, 2020, 54(11): 6530-6539. doi: 10.1021/acs.est.0c00087
    [29] HERMSEN E, MINTENIG S M, BESSELING E, et al. Quality criteria for the analysis of microplastic in biota samples: a critical review[J]. Environmental Science & Technology, 2018, 52(18): 10230-10240.
    [30] SCHYMANSKI D, GOLDBECK C, HUMPF H U, et al. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water[J]. Water Research, 2018, 129: 154-162. doi: 10.1016/j.watres.2017.11.011
    [31] ZITOUNI N, BOUSSERRHINE N, BELBEKHOUCHE S, et al. First report on the presence of small microplastics (≤ 3μm) in tissue of the commercial fish Serranus scriba (Linnaeus. 1758) from Tunisian coasts and associated cellular alterations[J]. Environmental Pollution, 2020, 263: 114576. doi: 10.1016/j.envpol.2020.114576
    [32] ENDERS K, LENZ R, STEDMON C A, et al. Abundance, size and polymer composition of marine microplastics ≥ 10μm in the Atlantic Ocean and their modelled vertical distribution[J]. Marine Pollution Bulletin, 2015, 100(1): 70-81. doi: 10.1016/j.marpolbul.2015.09.027
    [33] GRBIC J, NGUYEN B, GUO E, et al. Magnetic extraction of microplastics from environmental samples[J]. Environmental Science & Technology Letters, 2019, 6(2): 68-72. http://www.onacademic.com/detail/journal_1000041599142599_d8cd.html
    [34] OSSMANN B E, SARAU G, HOLTMANNSPÖTTER H, et al. Small-sized microplastics and pigmented particles in bottled mineral water[J]. Water Research, 2018, 141: 307-316. doi: 10.1016/j.watres.2018.05.027
    [35] MISSAWI O, BOUSSERRHINE N, BELBEKHOUCHE S, et al. Abundance and distribution of small microplastics (≤ 3μm) in sediments and seaworms from the southern Mediterranean coasts and characterisation of their potential harmful effects[J]. Environmental Pollution, 2020, 263: 114634. doi: 10.1016/j.envpol.2020.114634
    [36] IMHOF H K, WIESHEU A C, ANGER P M, et al. Variation in plastic abundance at different lake beach zones: a case study[J]. Science of the Total Environment, 2018, 613/614: 530-537. doi: 10.1016/j.scitotenv.2017.08.300
    [37] 徐舟影, 陈奥飞, 赵胤祺, 等. 武汉城市污水中微塑料的分离、鉴定及其微观特征分析[J]. 环境科学研究, 2021, 34(3): 637-645. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210314&flag=1

    XU Zhouying, CHEN Aofei, ZHAO Yinqi, et al. Separation, identification and microscopic characteristics analysis of microplastics in Wuhan municipal sewage[J]. Research of Environmental Sciences, 2021, 34(3): 637-645. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210314&flag=1
    [38] SOBHANI Z, AL-AMIN M, NAIDU R, et al. Identification and visualisation of microplastics by Raman mapping[J]. Analytica Chimica Acta, 2019, 1077: 191-199. doi: 10.1016/j.aca.2019.05.021
    [39] ZHOU X X, LIU R, HAO L T, et al. Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy[J]. Talanta, 2021, 221: 121552. doi: 10.1016/j.talanta.2020.121552
    [40] BORMAN S A. Nonlinear Raman spectroscopy[J]. Analytical Chemistry, 1982, 54(9): 1021-1026. doi: 10.1021/ac00246a002
    [41] ARAUJO C F, NOLASCO M M, RIBEIRO A M P, et al. Identification of microplastics using Raman spectroscopy: latest developments and future prospects[J]. Water Research, 2018, 142: 426-440. doi: 10.1016/j.watres.2018.05.060
    [42] ANGER P M, VON-DER-ESCH E, BAUMANN T, et al. Raman microspectroscopy as a tool for microplastic particle analysis[J]. TrAC Trends in Analytical Chemistry, 2018, 109: 214-226. doi: 10.1016/j.trac.2018.10.010
    [43] COLE M, GALLOWAY T S. Ingestion of nanoplastics and microplastics by pacific oyster larvae[J]. Environmental Science & Technology, 2015, 49(24): 14625-14632. doi: 10.1021/acs.est.5b04099
    [44] GIGAULT J, EL-HADRI H, NGUYEN B, et al. Nanoplastics are neither microplastics nor engineered nanoparticles[J]. Nature Nanotechnology, 2021, 16: 501-507. doi: 10.1038/s41565-021-00886-4
    [45] MITRANO D M, WICK P, NOWACK B. Placing nanoplastics in the context of global plastic pollution[J]. Nature Nanotechnology, 2021, 16: 491-500. doi: 10.1038/s41565-021-00888-2
    [46] HILDEBRANDT L, MITRANO D M, ZIMMERMANN T, et al. A nanoplastic sampling and enrichment approach by continuous flow centrifugation[J]. Frontiers in Environmental Science, 2020, 8: 89. doi: 10.3389/fenvs.2020.00089
    [47] GILLIBERT R, BALAKRISHNAN G, DESHOULES Q, et al. Raman tweezers as a tool for small microplastics and nanoplastics identification in sea water[J]. Environmental Science & Technology, 2019, 53(15): 9003-9013. http://www.researchgate.net/publication/330875288_Supplementary_Informations_Raman_Tweezers_as_a_Tool_for_Small_Microplastics_and_Nanoplastics_Identification_in_Sea_Water/link/5c59771b45851582c3cfc0ca/download
    [48] TER-HALLE A, JEANNEAU L, MARTIGNAC M, et al. Nanoplastic in the North Atlantic subtropical gyre[J]. Environmental Science & Technology, 2017, 51(23): 13689-13697.
    [49] CAI H, CHEN M, DU F, et al. Separation and enrichment of nanoplastics in environmental water samples via ultracentrifugation[J]. Water Research, 2021, 203: 117509. doi: 10.1016/j.watres.2021.117509
    [50] ZHOU X, HAO L, WANG H, et al. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography-mass spectrometry[J]. Analytical Chemistry, 2019, 91(3): 1785-1790. doi: 10.1021/acs.analchem.8b04729
    [51] HERNANDEZ L M, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 2017, 4(7): 280-285. doi: 10.1021/acs.estlett.7b00187
    [52] HERNANDEZ L M, XU E G, LARSSON H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environmental Science & Technology, 2019, 53(21): 12300-12310. http://www.ncbi.nlm.nih.gov/pubmed/31552738?utm_source=research-news&utm_medium=referral&utm_campaign=research-news
    [53] SOBHANI Z, ZHANG X, GIBSON C, et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging: down to 100 nm[J]. Water Research, 2020, 174: 115658. doi: 10.1016/j.watres.2020.115658
    [54] ZHANG W, DONG Z, ZHU L, et al. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative Raman imaging and scanning electron microscopy[J]. ACS Nano, 2020, 14(7): 7920-7926. doi: 10.1021/acsnano.0c02878
    [55] XU G, CHENG H, JONES R, et al. Surface-enhanced Raman spectroscopy facilitates the detection of microplastics < 1μm in the environment[J]. Environmental Science & Technology, 2020, 54(24): 15594-15603.
    [56] CAI H, XU E G, DU F, et al. Analysis of environmental nanoplastics: progress and challenges[J]. Chemical Engineering Journal, 2021, 410: 128208. doi: 10.1016/j.cej.2020.128208
    [57] MATERIĆ D, KASPER-GIEBL A, KAU D, et al. Micro- and nanoplastics in alpine snow: a new method for chemical identification and (semi)quantification in the nanogram range[J]. Environmental Science & Technology, 2020, 54(4): 2353-2359. http://www.researchgate.net/publication/338666180_Micro-_and_Nanoplastics_in_Alpine_Snow_A_New_Method_for_Chemical_Identification_and_SemiQuantification_in_the_Nanogram_Range
    [58] WANG Z, SAADÉ N K, ARIYA P A. Advances in ultra-trace analytical capability for micro/nanoplastics and water-soluble polymers in the environment: fresh falling urban snow[J]. Environmental Pollution, 2021, 276: 116698. doi: 10.1016/j.envpol.2021.116698
    [59] EUBELER J P, ZOK S, BERNHARD M, et al. Environmental biodegradation of synthetic polymers Ⅰ. test methodologies and procedures[J]. TrAC Trends in Analytical Chemistry, 2009, 28(9): 1057-1072.
    [60] KLEIN S, DIMZON I K, EUBELER J, et al. Analysis, occurrence, and degradation of microplastics in the aqueous environment[C]//WAGNER M, LAMBERT S. Freshwater Microplastics. Berlin: Springer International Publishing, 2018, 58: 51-67.
    [61] LIU P, ZHAN X, WU X, et al. Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks[J]. Chemosphere, 2020, 242: 125193. doi: 10.1016/j.chemosphere.2019.125193
    [62] SCHRANK I, TROTTER B, DUMMERT J, et al. Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna[J]. Environmental Pollution, 2019, 255: 113233. doi: 10.1016/j.envpol.2019.113233
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  480
  • HTML全文浏览量:  183
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 修回日期:  2021-08-27

目录

    /

    返回文章
    返回