Research Progress of Molecular Oxygen Activation for Degradation of Typical Emerging Contaminants in Water
-
摘要: 近年来,新污染物在水体中被频繁检出,其化学性质稳定、易生物积累,给生态环境和人类健康带来严重威胁. 为解决此问题,高级氧化技术逐渐发展为一种有前景的环境修复方法,在众多氧化剂中,分子氧(O2)是丰富、经济、绿色的氧化剂. O2主要经由催化促进的电子转移和能量转移途径而被活化,进而转化为活性氧物种(ROS). 活化O2转化为ROS,有望成为清除水中新污染物富有潜力的研究方法和实用技术. 目前,研发更高效催化材料(或其他类型活化材料),以实现对O2的高效活化和对污染物的彻底、快速降解是相关领域研究的关注焦点. 本文重点介绍了活化O2降解水中新污染物的基本概念和最新研究进展,包括O2可转化生成的主要ROS、O2活化策略、活化O2用于降解新污染物的研究成果等,并对O2活化所遇到的核心问题和未来发展趋势进行了总结和展望.Abstract: In recent years, emerging contaminants (ECs) have been frequently detected in waters. ECs are chemically stable and easily bioaccumulative, thus seriously threaten the ecological environment and human health. To alleviate this problem, advanced oxidation process has been gradually developed into a promising remediation strategy. Among various oxidants, molecular oxygen is considered to be an abundant, economic and green oxidant. Molecular oxygen can be mainly activated into reactive oxygen species through catalytic electrons or energy transfer, which is expected to become a potential technology for removing emerging persistent contaminants in water. Currently, the research and development of more efficient catalytic materials (or other activation materials) for activating the molecular oxygen thoroughly and rapidly to degrade the ECs is the central goal of researchers. It mainly focuses on the basic concepts and latest progresses of molecular oxygen activation for degradation of ECs in water, including the main active oxygen species generated from molecular oxygen, the state-of-art activation strategy of molecular oxygen, examples of efficiently activation of molecular oxygen and degradation of ECs etc. Finally, the crucial problems and future development of molecular oxygen activation are summarized and prospected.
-
表 1 部分水体ECs的浓度
Table 1. Concentrations of ECs in waters
新污染物 水体 浓度 数据来源 PPCPs 北京城市污水处理厂进水 52.3~4 490.5 ng/L 文献[70] 厦门城市污水处理厂进水(醋氨酚) 2 963.5 ng/L 英国城市污水处理厂进水(扑热息痛) 211.4 μg/L EDCs 太湖 89.8~353.8 ng/L 文献[71] 松花江 126.0~1 315.0 ng/L 珠江 23.2~108.0 ng/L PCBs 长江三角洲 1.23~16.6 ng/L (2009年) 文献[72] 九龙江口 0.36~1 505 ng/L (1999年) 东海 0.59~1.68 ng/L (2012年) PAHs 长江武汉段 72.4~3 995.2 ng/g (2006年) 文献[73] 黄河兰州段 960.0~2 940.0 ng/g (2005年) 珠江广州段 1 433.6~10 810.5 ng/g (1997年) 表 2 有关PPCPs的部分研究
Table 2. Some researches on PPCPs
表 3 有关EDCs的部分研究
Table 3. Some researches on EDCs
-
[1] 陈诗良. 应用于污水处理厂的新污染物处理技术综述[J]. 中国资源综合利用, 2021, 39(2): 96-98. doi: 10.3969/j.issn.1008-9500.2021.02.030CHEN Shiliang. Overview of emerging pollutant treatment technologies applied in sewage treatment plants[J]. China Resources Comprehensive Utilization, 2021, 39(2): 96-98. doi: 10.3969/j.issn.1008-9500.2021.02.030 [2] 马晓雁, 余齐, 黄富, 等. 水环境中新兴污染物三氯蔗糖的研究进展[J]. 环境科学研究, 2018, 31(9): 1495-1503. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180902&flag=1MA Xiaoyan, YU Qi, HUANG Fu, et al. Research advances on the emerging contaminants sucralose in aqueous system[J]. Research of Environmental Sciences, 2018, 31(9): 1495-1503. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180902&flag=1 [3] PEI S Z, SHEN C, ZHANG C H, et al. Characterization of the interfacial joule heating effect in the electrochemical advanced oxidation process[J]. Environmental Science & Technology, 2019, 53: 4406-4415. http://www.ncbi.nlm.nih.gov/pubmed/30884230 [4] 安继斌, 夏春秋, 陈红宇, 等. UVA/Fe3O4活化过硫酸盐降解阿特拉津[J]. 环境科学研究, 2018, 31(1): 130-135. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180117&flag=1AN Jibin, XIA Chunqiu, CHEN Hongyu, et al. Activation of persulfate by irradiated magnetite: implications for abatement of atrazine in aqueous solution[J]. Research of Environmental Sciences, 2018, 31(1): 130-135. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180117&flag=1 [5] LIU Z, DEMEESTERE K, HULLE S W H V. Pretreatment of secondary effluents in view of optimal ozone-based AOP removal of trace organic contaminants: bench-scale comparison of efficiency and energy consumption[J]. Industrial & Engineering Chemistry Research, 2020, 59: 8112-8120. doi: 10.1021/acs.iecr.0c01210 [6] ZHANG Q, QIN X, DUAN-MU F, et al. Isolated Pt atoms stabilized by amorphous tungstenic acid for metal-support synergistic oxygen activation[J]. Angewandte Chemie International Edition, 2018, 57: 9351-9356. doi: 10.1002/anie.201804319 [7] NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chemical Reviews, 2017, 117: 11302-11336. doi: 10.1021/acs.chemrev.7b00161 [8] FUKUTO J M, CARRINGTON S J, TANTILLO D J, et al. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species[J]. Chemical Research in Toxicology, 2012, 25(4): 769-793. doi: 10.1021/tx2005234 [9] DAT J, VANDENABEELE S, VRANOVÁ E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences, 2000, 57: 779-795. doi: 10.1007/s000180050041 [10] NEYENS E, BAEYENS J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials, 2003, 98(1/2/3): 33-50. http://www.sciencedirect.com/science/article/pii/s0304389402002820 [11] LI Z, WANG L, TIAN M, et al. Tris-Co(Ⅱ)-H2O2 system-mediated durative hydroxyl radical generation for efficient anionic azo dye degradation by integrating electrostatic attraction[J]. ACS Omega, 2019, 4(26): 21704-21711. doi: 10.1021/acsomega.9b02331 [12] GUO K, ZHENG S, ZHANG X W, et al. Roles of bromine radicals and hydroxyl radicals in the degradation of micropollutants by the UV/Bromine process[J]. Environmental Science & Technology, 2020, 54: 6415-6426. doi: 10.1021/acs.est.0c00723 [13] XIAO F, WANG Z, FAN J, et al. Selective electrocatalytic reduction of oxygen to hydroxyl radicals via 3-Electron pathway with FeCo alloy encapsulated carbon aerogel for fast and complete removing pollutants[J]. Angewandte Chemie International Edition. 2021, 26: 10463-10471. doi: 10.1002/ange.202101804 [14] ASGHAR A, RAMAN A A A, DAUD W M A W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review[J]. Journal of Cleaner Production, 2015, 87: 826-838. doi: 10.1016/j.jclepro.2014.09.010 [15] JIANG X, ZHANG T, SUN C, et al. Synthesis of aza-BODIPY dyes bearing the naphthyl groups at 1, 7-positions and application for singlet oxygen generation[J]. Chinese Chemical Letters, 2019, 30(5): 1055-1058. doi: 10.1016/j.cclet.2019.02.016 [16] STAHL S S. Palladium-Catalyzed oxidation of organic chemicals with O2[J]. Science, 2005, 309(5742): 1824-1826. doi: 10.1126/science.1114666 [17] STAHL S S. Palladium Oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover[J]. Angewandte Chemie International Edition, 2004, 43(26): 3400-3420. doi: 10.1002/anie.200300630 [18] LIPSCOMB J D. Mechanism of extradiol aromatic ring-cleaving dioxygenases[J]. Current Opinion in Structural Biology, 2008, 18(6): 644-649. doi: 10.1016/j.sbi.2008.11.001 [19] MBUGHUNI M, CHAKRABARTI M, HAYDEN J, et al. Trapping and spectroscopic characterization of an Fe(Ⅲ)-superoxo intermediate from a nonheme mononuclear iron-containing enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39): 16788-16793. doi: 10.1073/pnas.1010015107 [20] MBUGHUNI M, CHAKRABARTI M, HAYDEN J J, et al. Oxy intermediates of homoprotocatechuate 2, 3-dioxygenase: facile electron transfer between substrates[J]. Biochemistry, 2011, 50(47): 10262-10274. doi: 10.1021/bi201436n [21] SHU L, CHIOU Y, ORVILLE A, et al. X-ray absorption spectroscopic studies of the Fe(Ⅱ) active site of catechol 2, 3-dioxygenase: implications for the extradiol cleavage mechanism[J]. Biochemistry, 1995, 34(20): 6649-6659. doi: 10.1021/bi00020a010 [22] BUGG T. Dioxygenase enzymes: catalytic mechanisms and chemical models[J]. Cheminform, 2003, 59(36): 7075-7101. [23] PAU M, DAVIS M, ORVILLE A, et al. Spectroscopic and electronic structure study of the enzyme-substrate complex of intradiol dioxygenases: substrate activation by a high-spin ferric non-heme iron site[J]. Journal of the American Chemical Society, 2007, 129(7): 1944. doi: 10.1021/ja065671x [24] QUE L J, HO R. Dioxygen activation by enzymes with mononuclear non-heme iron active sites[J]. Cheminform, 1997, 28(7): 2607. http://www.ncbi.nlm.nih.gov/pubmed/11848838 [25] STEINER R A, JANSSEN H J, ROVERSI P, et al. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the α/β-hydrolase fold[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 657-662. doi: 10.1073/pnas.0909033107 [26] DECKER A, SOLOMON E I. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities[J]. Current Opinion in Chemical Biology, 2005, 9(2): 152-163. doi: 10.1016/j.cbpa.2005.02.012 [27] LASKAVY A, SHIMON L J W, NEUMANN R, et al. Activation of molecular oxygen by a dioxygenase pathway by a ruthenium bis-bipyridine compound with a proximal selenium site[J]. Journal of the American Chemical Society, 2010, 132(2): 517-523. doi: 10.1021/ja9047027 [28] LI X Q, ELLIOTT D W, ZHANG W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects[J]. Critical Reviews in Solid State and Materials Sciences, 2006, 31(4): 111-122. doi: 10.1080/10408430601057611 [29] ZEČEVIĆ S, DRAŽIĆ D M, GOJKOVIĆ S. Oxygen reduction on iron. Part Ⅲ: an analysis of the rotating disk-ring electrode measurements in near neutral solutions[J]. Journal of Electroanalytical Chemistry, 1989, 265: 179-193. doi: 10.1016/0022-0728(89)80188-3 [30] FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review[J]. Journal of Hazardous Materials, 2014, 267: 194-205. doi: 10.1016/j.jhazmat.2013.12.062 [31] STUMM W, LEE G F. Oxygenation of ferrous iron[J]. Industrial & Engineering Chemistry, 1961, 53: 143-146. http://femsle.oxfordjournals.org/lookup/external-ref?access_num=10.1021/ie50614a030&link_type=DOI [32] KEENAN C R, SEDLAK D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(4): 1262-1267. doi: 10.1021/es8009925 [33] KEENAN C R, SEDLAK D L. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(18): 6936-6941. http://www.onacademic.com/detail/journal_1000035857680810_1399.html [34] LEE H, LEE H J, LEE C, et al. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study[J]. Journal of Hazardous Materials, 2014, 265: 201-207. doi: 10.1016/j.jhazmat.2013.11.066 [35] GUAN X, SUN Y, DONG H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034 [36] LIU X, FAN J H, MA L M. Elimination of 4-chlorophenol in aqueous solution by the bimetallic Al-Fe/O2 at normal temperature and pressure[J]. Chemical Engineering Journal, 2014, 236: 274-284. doi: 10.1016/j.cej.2013.09.097 [37] LIU X, FAN J H, HAO Y, et al. The degradation of EDTA by the bimetallic Fe-Cu/O2 system[J]. Chemical Engineering Journal, 2014, 250: 354-365. doi: 10.1016/j.cej.2014.04.028 [38] SHEN W, MU Y, ZHANG L, et al. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles[J]. Applied Surface Science, 2017, 393: 316-324. doi: 10.1016/j.apsusc.2016.10.020 [39] AI Z, LU L, ZHANG L, et al. Fe@Fe2O3 Core-shell nanowires as the iron reagent. 2. an efficient and reusable sono-Fenton system working at neutral pH[J]. The Journal of Physical Chemistry C, 2007, 111(20): 7430-7436. doi: 10.1021/jp070412v [40] QIN Y X, LI G Y, ZHANG L Z, et al. Protocatechuic acid promoted catalytic degradation of rhodamine B with Fe@Fe2O3 core-shell nanowires by molecular oxygen activation mechanism[J], Catalysis Today 2019, 335: 144-150. doi: 10.1016/j.cattod.2018.10.058 [41] PECHER K, HADERLEIN S B, SCHWARZENBACH R P. Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aqueous suspensions of iron oxides[J]. Environmental Science & Technology, 2002, 36(8): 1734-1741. doi: 10.1021/es011191o [42] ZHANG C, LI T, ZHANG J, et al. Degradation of p-nitrophenol using a ferrous-tripolyphosphate complex in the presence of oxygen: the key role of superoxide radicals[J]. Applied Catalysis B: Environmental, 2019, 259: 118030. doi: 10.1016/j.apcatb.2019.118030 [43] SHISHIDO T, YAMAMOTO Y, TAKEHIRA K, et al. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: steam reforming and oxidative steam reforming[J]. Journal of Molecular Catalysis A: Chemical, 2007, 268(1/2): 185-194. http://www.sciencedirect.com/science/article/pii/S1381116906014440 [44] GONZALEZ-DAVILA M, SANTANA-CASIANO J M, GONZALEZ A G, et al. Oxidation of copper(I) in seawater at nanomolar levels[J]. Marine Chemistry, 2009, 115(1/2): 118-124. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.932.5128&rep=rep1&type=pdf [45] KHACHATRYAN L, VEJERANO E, DELLINGER B, et al. Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions[J]. Environmental Science & Technology, 2011, 45(19): 8559-8566. http://www.researchgate.net/profile/Slawo_Lomnicki/publication/51554011_Environmentally_Persistent_Free_Radicals_(EPFRs)._1._Generation_of_Reactive_Oxygen_Species_in_Aqueous_Solutions/links/00b7d51af5d6d1c5c8000000.pdf [46] YUAN X, PHAM A N, WAITE T D, et al. Effects of pH, chloride, and bicarbonate on Cu(Ⅰ) oxidation kinetics at circumneutral pH[J]. Environmental Science & Technology, 2012, 46(3): 1527-1535. http://www.researchgate.net/profile/An_Ninh_Pham/publication/231283817_Effects_of_pH_Chloride_and_Bicarbonate_on_Cu(I)_Oxidation_Kinetics_at_Circumneutral_pH/links/54ee688f0cf2e2830864ca55.pdf [47] DONG G, AI Z, ZHANG L. Total aerobic destruction of azo contaminants with nanoscale zero-valent copper at neutral pH: promotion effect of in-situ generated carbon center radicals[J]. Water Research, 2014, 66: 22-30. doi: 10.1016/j.watres.2014.08.011 [48] ZHANG Y, HUANG W, MA L, et al. Copper-catalyzed activation of molecular oxygen for oxidative destruction of acetaminophen: the mechanism and superoxide-mediated cycling of copper species[J]. Chemosphere, 2017, 166: 89-95. doi: 10.1016/j.chemosphere.2016.09.066 [49] LONG J, ZHAO L, WU D, et al. Activation of dissolved molecular oxygen by Cu(0) for bisphenol a degradation: role of Cu(0) and formation of reactive oxygen species[J]. Chemosphere, 2020, 241: 125034. doi: 10.1016/j.chemosphere.2019.125034 [50] 倪永炯, 程永清, 徐梦苑, 等. 纳米零价铜活化分子氧降解水中恩诺沙星[J]. 环境科学, 2019, 40(1): 293-299. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201901036.htmNI Yongjiong, CHENG Yongqing, XU Mengyuan, et al. Nanoscale zero-valent copper-activated molecular oxygen for the degradation of enrofloxacin in water[J]. Environmental Science, 2019, 40(1): 293-299. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201901036.htm [51] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054 [52] BOKARE A D, CHOI W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants[J]. Environmental Science & Technology, 2009, 43: 7130-7135. [53] LIU W, ZHANG H, LIN K, et al. Oxidative removal of bisphenol a using zero valent aluminum-acid system[J]. Water Research, 2011, 45: 1872-1878. doi: 10.1016/j.watres.2010.12.004 [54] ZHANG H, CAO B, LIN K, et al. Oxidative removal of acetaminophen using zero valent aluminum-acid system: efficacy, influencing factors, and reaction mechanism[J]. Journal of Environmental Science, 2012, 24(2): 314-319. doi: 10.1016/S1001-0742(11)60769-9 [55] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0 [56] LI Y, ULRICH A, ANNABELLA S, et al. Adsorption and reactions of O2 on anatase TiO2[J]. Accounts of Chemical Research, 2014, 46(4): 3361-3368. http://europepmc.org/abstract/med/24742024 [57] ASCHAUER U, CHEN J, SELLONI A. Peroxide and superoxide states of adsorbed O2 on anatase TiO2(101) with subsurface defects[J]. Physical Chemistry Chemical Physics, 2010, 12(40): 12956-12960. doi: 10.1039/c0cp00116c [58] SETVIN M, DANIEL B, ASCHAUER U, et al. Identification of adsorbed molecules via STM tip manipulation: CO, H2O, and O2 on TiO2 anatase (101)[J]. Physical Chemistry Chemical Physics, 2014, 16(39): 21524-21530. doi: 10.1039/C4CP03212H [59] MAO Y S, WANG P F, LI L, et al. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2-x for efficient molecular-oxygen activation[J]. Angewandte Chemie International Edition, 2020, 132(9): 3714-3719. doi: 10.1002/anie.201914001 [60] LI H, SHI J, ZHANG L, et al. Sustainable molecular oxygen activation with oxygen vacancies on the (001) facets of BiOCl nanosheets under solar light[J]. Nanoscale, 2014, 6(23): 14168-14173. doi: 10.1039/C4NR04810E [61] ZHAO K, WANG J, ZHANG L, et al. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets[J]. Journal of the American Chemical Society, 2013, 135(42): 15750-15753. doi: 10.1021/ja4092903 [62] WANG H, ZHANG X, XIE Y, et al. Oxygen vacancy mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation[J]. Journal of the American Chemical Society, 2018, 140(5): 1760-1766. doi: 10.1021/jacs.7b10997 [63] WIN T, WANG Q, WU X, et al. Piezo-potential induced molecular oxygen activation of defect-rich MoS2 ultrathin nanosheets for organic dye degradation in dark[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103626. doi: 10.1016/j.jece.2019.103626 [64] SUN X, LUO X, ZHANG X, et al. Enhanced superoxide generation on defective surfaces for selective photooxidation[J]. Journal of the American Chemical Society, 2019, 141(9): 3797-3801. doi: 10.1021/jacs.8b13051 [65] WOODHAM A P, MEIJER G, FIELICKE A. Charge separation promoted activation of molecular oxygen by neutral gold clusters[J]. Journal of the American Chemical Society, 2013, 135(5): 1727-1730. doi: 10.1021/ja312223t [66] ZHANG G, WANG R, LI G. Non-metallic gold nanoclusters for oxygen activation and aerobic oxidation[J]. Chinese Chemical Letters, 2018, 29(5): 687-693. doi: 10.1016/j.cclet.2018.01.043 [67] JIANG K, SIAHROSTAMI S, WANG, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications, 2019, 10: 3997. doi: 10.1038/s41467-019-11992-2 [68] LI X, LIU S, LIU B H, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. doi: 10.1021/jacs.8b05992 [69] 文湘华, 申博. 新污染物水环境保护标准及其实用型去除技术[J]. 环境科学学报, 2018, 38(3): 847-857. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201803001.htmWEN Xianghua, SHEN Bo. Standards of water environmental protection and practical removal technologies of emerging contaminants[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 847-857. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201803001.htm [70] 汪琪, 张梦佳, 陈洪斌. 水环境中药物类PPCPs的赋存及处理技术进展[J]. 净水技术, 2020, 39(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS202001011.htmWANG Qi, ZHANG Mengjia, CHEN Hongbin. Review on occurrence and treatment technology of PPCPs in water environment[J]. Water Purification Technology, 2020, 39(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS202001011.htm [71] 刘宝印, 荀斌, 黄宝荣, 等. 我国水环境中新污染物空间分布特征分析[J]. 环境保护, 2021, 49(10): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202110005.htmLIU Baoyin, XUN Bin, HUANG Baorong, et al. Spatial differentiation characteristics of new pollutants in China's water environment[j]. environmental protection, 2021, 49(10): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202110005.htm [72] 李敏桥, 林田, 李圆圆, 等. 中国东海水体中多氯联苯的浓度及其组成特征[J]. 海洋环境科学, 2019, 38(4): 589-593. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201904016.htmLI Minqiao, LIN Tian, LI Yuanyuan, et al. Concentration and composition of polychlorinated biphenyls in the water of the East China Sea[J]. Marine Environmental Science, 2019, 38(4): 589-593. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201904016.htm [73] 任华堂, 韩凝, 夏建新. 我国东部地区环境中多环芳烃的空间分布及生态风险分析[J]. 应用基础与工程科学学报, 2009(S1): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX2009S1014.htm [74] 余洁, 原弘. 亚铁离子/四聚磷酸活化分子氧降解氯霉素[J]. 环境化学, 2017, 36(11): 2304-2310. doi: 10.7524/j.issn.0254-6108.2017031005YU Jie, YUAN Hong. Dioxygen activation by Fe(Ⅱ)-tetrapolyphosphate (TPP) complex for the degradation of chloramphenicol[J]. Environmental Chemistry, 2017, 36(11): 2304-2310. doi: 10.7524/j.issn.0254-6108.2017031005 [75] OLVERA-VARGAS H, WEE V Y H, LEFEBVRE O, et al. Near-neutral electro-fenton treatment of pharmaceutical pollutants: effect of using a triphosphate ligand and BDD electrode[J]. ChemElectroChem, 2019, 6(3): 937-946. doi: 10.1002/celc.201801732 [76] ZHOU T, ZOU X, WU X, et al. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe0/ tetraphosphate Fenton-like system[J]. Ultrasonics Sonochemistry, 2017, 37: 320-327. doi: 10.1016/j.ultsonch.2017.01.015 [77] ZHANG Y F, FAN J H, YANG B, et al. Copper-catalyzed activation of molecular oxygen for oxidative destruction of acetaminophen: the mechanism and superoxide mediated cycling of copper species[J]. Chemosphere, 2017, 166: 89-95. doi: 10.1016/j.chemosphere.2016.09.066 [78] JOO S H, FEITZ A J, WAITE T D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron[J]. Environmental Science & Technology, 2004, 38(7): 2242-2247. http://www.onacademic.com/detail/journal_1000035949783710_1f96.html [79] WANG L, CAO M, ZHANG L, et al. Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex[J]. Environmental Science & Technology, 2015, 49(5): 3032-3039. http://www.onacademic.com/detail/journal_1000037412011010_3656.html [80] WANG L, CAO M, AI Z, et al. Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core-shell nanowires by tetrapolyphosphate[J]. Environmental Science & Technology, 2014, 48(6): 3354-3362. http://smartsearch.nstl.gov.cn/paper_detail.html?id=abd8f8f4b6916257737c63ef3666a471 [81] WANG L, CAO M, ZHANG L, et al. Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment[J]. Journal of Hazardous Materials, 2015, 292: 27-33. doi: 10.1016/j.jhazmat.2015.03.019 [82] HONG R, GUO Z, GU C, et al. Rapid degradation of atrazine by hydroxyl radical induced from montmorillonite templated subnano-sized zero-valent copper[J]. Chemosphere, 2017, 180: 335-342. doi: 10.1016/j.chemosphere.2017.04.025 [83] LI H, SUN S T, JI H D, et al. Enhanced activation of molecular oxygen and degradation of tetracycline over Cu-S4 atomic clusters[J]. Applied Catalysis B: Environmental, 2020, 272: 118966. doi: 10.1016/j.apcatb.2020.118966 [84] ZHU X, ZHOU D, LONG C, et al. TiO2 photocatalytic degradation of 4-chlorobiphenyl as affected by solvents and surfactants[J]. Journal of Soils and Sediments, 2012, 12(3): 376-385. doi: 10.1007/s11368-011-0464-y [85] 吝美霞, 李法云, 王玮, 等. 生物炭负载P掺杂g-C3N4复合光催化剂制备及其对萘光催化降解机制[J]. 环境科学学报, 2021, 41(8): 3200-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108025.htmLIN Meixia, LI Fayun, WANG Wei, et al. Synthesis of biochar-supported P-doped g-C3N4 photocatalyst and its photocatalytic degradation mechanism to naphthalene[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3200-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108025.htm [86] FU J, KYZAS G Z, CAI Z, et al. Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: effects of water quality parameters and predictive modeling[J]. Chemical Engineering Journal, 2017, 335: 290-300. [87] YANG X, CAI H, BAO M, et al. Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag3PO4 composites under visible light irradiation[J]. Chemical Engineering Journal, 2017, 334: 355-376. http://www.onacademic.com/detail/journal_1000040081308410_e50e.html -