留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活化分子氧降解水中典型新污染物研究进展

李惠 杨林峰 刘佳佳 及吉祥 沈铸睿

李惠, 杨林峰, 刘佳佳, 及吉祥, 沈铸睿. 活化分子氧降解水中典型新污染物研究进展[J]. 环境科学研究, 2021, 34(12): 2798-2810. doi: 10.13198/j.issn.1001-6929.2021.08.29
引用本文: 李惠, 杨林峰, 刘佳佳, 及吉祥, 沈铸睿. 活化分子氧降解水中典型新污染物研究进展[J]. 环境科学研究, 2021, 34(12): 2798-2810. doi: 10.13198/j.issn.1001-6929.2021.08.29
LI Hui, YANG Linfeng, LIU Jiajia, JI Jixiang, SHEN Zhurui. Research Progress of Molecular Oxygen Activation for Degradation of Typical Emerging Contaminants in Water[J]. Research of Environmental Sciences, 2021, 34(12): 2798-2810. doi: 10.13198/j.issn.1001-6929.2021.08.29
Citation: LI Hui, YANG Linfeng, LIU Jiajia, JI Jixiang, SHEN Zhurui. Research Progress of Molecular Oxygen Activation for Degradation of Typical Emerging Contaminants in Water[J]. Research of Environmental Sciences, 2021, 34(12): 2798-2810. doi: 10.13198/j.issn.1001-6929.2021.08.29

活化分子氧降解水中典型新污染物研究进展

doi: 10.13198/j.issn.1001-6929.2021.08.29
基金项目: 

国家自然科学基金项目 21872102

详细信息
    作者简介:

    李惠(1990-), 女, 河北新乐人, 1551664924@qq.com

    通讯作者:

    沈铸睿(1982-), 男, 辽宁朝阳人, 研究员, 博士, 博导, 主要从事环境催化与污染控制研究, 019019@nankai.edu.cn

  • 中图分类号: X52

Research Progress of Molecular Oxygen Activation for Degradation of Typical Emerging Contaminants in Water

Funds: 

National Natural Science Foundation of China 21872102

  • 摘要: 近年来,新污染物在水体中被频繁检出,其化学性质稳定、易生物积累,给生态环境和人类健康带来严重威胁. 为解决此问题,高级氧化技术逐渐发展为一种有前景的环境修复方法,在众多氧化剂中,分子氧(O2)是丰富、经济、绿色的氧化剂. O2主要经由催化促进的电子转移和能量转移途径而被活化,进而转化为活性氧物种(ROS). 活化O2转化为ROS,有望成为清除水中新污染物富有潜力的研究方法和实用技术. 目前,研发更高效催化材料(或其他类型活化材料),以实现对O2的高效活化和对污染物的彻底、快速降解是相关领域研究的关注焦点. 本文重点介绍了活化O2降解水中新污染物的基本概念和最新研究进展,包括O2可转化生成的主要ROS、O2活化策略、活化O2用于降解新污染物的研究成果等,并对O2活化所遇到的核心问题和未来发展趋势进行了总结和展望.

     

  • 图  1  O2活化机理示意[7]

    Figure  1.  Molecular oxygen activation mechanism diagram[7]

    图  2  氧化酶生物催化反应[16]

    Figure  2.  Oxidase biocatalytic reaction[16]

    图  3  Extrodial型儿茶酚双加氧酶中氧气与底物的活化机理[18-21]

    Figure  3.  Dioxygen and substrate activation mechanism proposed in extrodiol catechol dioxygenase[18-21]

    图  4  Introdial型儿茶酚双加氧酶中氧气与底物的活化机理[22-24]

    Figure  4.  Substrate and dioxygen activation mechanism proposed in extrodiol catechol dioxygenase[22-24]

    图  5  Fe2+/TPP体系中氯霉素降解路径[74]

    Figure  5.  Proposed degradation pathway of CAP in Fe2+/TPP/ air system[74]

    图  6  蒙脱土/亚纳米级零价铜体系中阿特拉津降解路径[82]

    Figure  6.  Proposed degradation pathway of atrazine in the reaction system[82]

    图  7  CuS4团簇体系中降解四环素路径[83]

    Figure  7.  Proposed degradation pathways of TC by ROS over CuS4-ZIS[83]

    图  8  TiO2体系中降解PCB3路径[84]

    注:RT(retention time)为保留时间.

    Figure  8.  Proposed pathway for the photocatalytic degradation of PCB3 by TiO2[84]

    图  9  GO-TiO2-Sr(OH)2/SrCO3体系降解菲路径[86]

    Figure  9.  Proposed photocatalytic degradation pathway of phenanthrene by GO-TiO2-Sr(OH)2/SrCO3 under solar irradiation[86]

    表  1  部分水体ECs的浓度

    Table  1.   Concentrations of ECs in waters

    新污染物 水体 浓度 数据来源
    PPCPs 北京城市污水处理厂进水 52.3~4 490.5 ng/L 文献[70]
    厦门城市污水处理厂进水(醋氨酚) 2 963.5 ng/L
    英国城市污水处理厂进水(扑热息痛) 211.4 μg/L
    EDCs 太湖 89.8~353.8 ng/L 文献[71]
    松花江 126.0~1 315.0 ng/L
    珠江 23.2~108.0 ng/L
    PCBs 长江三角洲 1.23~16.6 ng/L (2009年) 文献[72]
    九龙江口 0.36~1 505 ng/L (1999年)
    东海 0.59~1.68 ng/L (2012年)
    PAHs 长江武汉段 72.4~3 995.2 ng/g (2006年) 文献[73]
    黄河兰州段 960.0~2 940.0 ng/g (2005年)
    珠江广州段 1 433.6~10 810.5 ng/g (1997年)
    下载: 导出CSV

    表  2  有关PPCPs的部分研究

    Table  2.   Some researches on PPCPs

    材料 ROS 污染物
    数据来源
    纳米零价铜 ·OH 恩诺沙星 文献[50]
    亚铁离子/四聚磷酸 ·O2-、·OH(主要) 氯霉素 文献[74]
    Fe2+/三磷酸盐
    (电Fenton反应)
    ·OH 阿米替林 文献[75]
    超声/零价铁/磷酸三乙酯 ·OH、·O2-、H2O2 诺氟沙星 文献[76]
    铁强化的ZVAl/H+/空气 ·OH 对乙酰氨基酚 文献[54]
    零价铜 ·OH、·O2-、H2O2 对乙酰氨基酚 文献[77]
    下载: 导出CSV

    表  3  有关EDCs的部分研究

    Table  3.   Some researches on EDCs

    材料 ROS 污染物 数据来源
    零价铜 ·O2-、H2O2、·OH 双酚A 文献[49]
    零价铝-酸体系 H2O2、·OH 双酚A 文献[53]
    亚铁-四聚磷酸配合物 ·O2-、H2O2
    ·OH (主要)
    洛克沙胂 文献[78]
    铁丝-四聚磷酸
    钠-活性炭纤维
    (电Fenton反应)
    ·O2-、H2O2、·OH 阿特拉津 文献[79]
    Fe@Fe2O3纳米线/TPP ·O2-、H2O2、·OH 阿特拉津 文献[80]
    零价铁-四聚磷酸盐 H2O2、·OH 五氯苯酚 文献[81]
    蒙脱土/亚纳米级零
    价铜
    ·OH 阿特拉津 文献[82]
    CuS4团簇 ·O2-、·OH 四环素 文献[83]
    下载: 导出CSV

    表  4  有关PCBs、PAHs的部分研究

    Table  4.   Some researches on PCBs and PAHs

    材料 ROS 污染物 数据来源
    TiO2 ·OH、·O2- 4-氯联苯 文献[84]
    生物炭负载P掺杂g-C3N4 ·O2- 文献[85]
    氧化石墨烯-TiO2-Sr(OH)2/SrCO3 ·O2-、·OH 文献[86]
    氧化石墨烯/磷酸盐 ·O2-、·OH 芘、菲、萘 文献[87]
    下载: 导出CSV
  • [1] 陈诗良. 应用于污水处理厂的新污染物处理技术综述[J]. 中国资源综合利用, 2021, 39(2): 96-98. doi: 10.3969/j.issn.1008-9500.2021.02.030

    CHEN Shiliang. Overview of emerging pollutant treatment technologies applied in sewage treatment plants[J]. China Resources Comprehensive Utilization, 2021, 39(2): 96-98. doi: 10.3969/j.issn.1008-9500.2021.02.030
    [2] 马晓雁, 余齐, 黄富, 等. 水环境中新兴污染物三氯蔗糖的研究进展[J]. 环境科学研究, 2018, 31(9): 1495-1503. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180902&flag=1

    MA Xiaoyan, YU Qi, HUANG Fu, et al. Research advances on the emerging contaminants sucralose in aqueous system[J]. Research of Environmental Sciences, 2018, 31(9): 1495-1503. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180902&flag=1
    [3] PEI S Z, SHEN C, ZHANG C H, et al. Characterization of the interfacial joule heating effect in the electrochemical advanced oxidation process[J]. Environmental Science & Technology, 2019, 53: 4406-4415. http://www.ncbi.nlm.nih.gov/pubmed/30884230
    [4] 安继斌, 夏春秋, 陈红宇, 等. UVA/Fe3O4活化过硫酸盐降解阿特拉津[J]. 环境科学研究, 2018, 31(1): 130-135. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180117&flag=1

    AN Jibin, XIA Chunqiu, CHEN Hongyu, et al. Activation of persulfate by irradiated magnetite: implications for abatement of atrazine in aqueous solution[J]. Research of Environmental Sciences, 2018, 31(1): 130-135. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180117&flag=1
    [5] LIU Z, DEMEESTERE K, HULLE S W H V. Pretreatment of secondary effluents in view of optimal ozone-based AOP removal of trace organic contaminants: bench-scale comparison of efficiency and energy consumption[J]. Industrial & Engineering Chemistry Research, 2020, 59: 8112-8120. doi: 10.1021/acs.iecr.0c01210
    [6] ZHANG Q, QIN X, DUAN-MU F, et al. Isolated Pt atoms stabilized by amorphous tungstenic acid for metal-support synergistic oxygen activation[J]. Angewandte Chemie International Edition, 2018, 57: 9351-9356. doi: 10.1002/anie.201804319
    [7] NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chemical Reviews, 2017, 117: 11302-11336. doi: 10.1021/acs.chemrev.7b00161
    [8] FUKUTO J M, CARRINGTON S J, TANTILLO D J, et al. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species[J]. Chemical Research in Toxicology, 2012, 25(4): 769-793. doi: 10.1021/tx2005234
    [9] DAT J, VANDENABEELE S, VRANOVÁ E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences, 2000, 57: 779-795. doi: 10.1007/s000180050041
    [10] NEYENS E, BAEYENS J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials, 2003, 98(1/2/3): 33-50. http://www.sciencedirect.com/science/article/pii/s0304389402002820
    [11] LI Z, WANG L, TIAN M, et al. Tris-Co(Ⅱ)-H2O2 system-mediated durative hydroxyl radical generation for efficient anionic azo dye degradation by integrating electrostatic attraction[J]. ACS Omega, 2019, 4(26): 21704-21711. doi: 10.1021/acsomega.9b02331
    [12] GUO K, ZHENG S, ZHANG X W, et al. Roles of bromine radicals and hydroxyl radicals in the degradation of micropollutants by the UV/Bromine process[J]. Environmental Science & Technology, 2020, 54: 6415-6426. doi: 10.1021/acs.est.0c00723
    [13] XIAO F, WANG Z, FAN J, et al. Selective electrocatalytic reduction of oxygen to hydroxyl radicals via 3-Electron pathway with FeCo alloy encapsulated carbon aerogel for fast and complete removing pollutants[J]. Angewandte Chemie International Edition. 2021, 26: 10463-10471. doi: 10.1002/ange.202101804
    [14] ASGHAR A, RAMAN A A A, DAUD W M A W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review[J]. Journal of Cleaner Production, 2015, 87: 826-838. doi: 10.1016/j.jclepro.2014.09.010
    [15] JIANG X, ZHANG T, SUN C, et al. Synthesis of aza-BODIPY dyes bearing the naphthyl groups at 1, 7-positions and application for singlet oxygen generation[J]. Chinese Chemical Letters, 2019, 30(5): 1055-1058. doi: 10.1016/j.cclet.2019.02.016
    [16] STAHL S S. Palladium-Catalyzed oxidation of organic chemicals with O2[J]. Science, 2005, 309(5742): 1824-1826. doi: 10.1126/science.1114666
    [17] STAHL S S. Palladium Oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover[J]. Angewandte Chemie International Edition, 2004, 43(26): 3400-3420. doi: 10.1002/anie.200300630
    [18] LIPSCOMB J D. Mechanism of extradiol aromatic ring-cleaving dioxygenases[J]. Current Opinion in Structural Biology, 2008, 18(6): 644-649. doi: 10.1016/j.sbi.2008.11.001
    [19] MBUGHUNI M, CHAKRABARTI M, HAYDEN J, et al. Trapping and spectroscopic characterization of an Fe(Ⅲ)-superoxo intermediate from a nonheme mononuclear iron-containing enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39): 16788-16793. doi: 10.1073/pnas.1010015107
    [20] MBUGHUNI M, CHAKRABARTI M, HAYDEN J J, et al. Oxy intermediates of homoprotocatechuate 2, 3-dioxygenase: facile electron transfer between substrates[J]. Biochemistry, 2011, 50(47): 10262-10274. doi: 10.1021/bi201436n
    [21] SHU L, CHIOU Y, ORVILLE A, et al. X-ray absorption spectroscopic studies of the Fe(Ⅱ) active site of catechol 2, 3-dioxygenase: implications for the extradiol cleavage mechanism[J]. Biochemistry, 1995, 34(20): 6649-6659. doi: 10.1021/bi00020a010
    [22] BUGG T. Dioxygenase enzymes: catalytic mechanisms and chemical models[J]. Cheminform, 2003, 59(36): 7075-7101.
    [23] PAU M, DAVIS M, ORVILLE A, et al. Spectroscopic and electronic structure study of the enzyme-substrate complex of intradiol dioxygenases: substrate activation by a high-spin ferric non-heme iron site[J]. Journal of the American Chemical Society, 2007, 129(7): 1944. doi: 10.1021/ja065671x
    [24] QUE L J, HO R. Dioxygen activation by enzymes with mononuclear non-heme iron active sites[J]. Cheminform, 1997, 28(7): 2607. http://www.ncbi.nlm.nih.gov/pubmed/11848838
    [25] STEINER R A, JANSSEN H J, ROVERSI P, et al. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the α/β-hydrolase fold[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 657-662. doi: 10.1073/pnas.0909033107
    [26] DECKER A, SOLOMON E I. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities[J]. Current Opinion in Chemical Biology, 2005, 9(2): 152-163. doi: 10.1016/j.cbpa.2005.02.012
    [27] LASKAVY A, SHIMON L J W, NEUMANN R, et al. Activation of molecular oxygen by a dioxygenase pathway by a ruthenium bis-bipyridine compound with a proximal selenium site[J]. Journal of the American Chemical Society, 2010, 132(2): 517-523. doi: 10.1021/ja9047027
    [28] LI X Q, ELLIOTT D W, ZHANG W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects[J]. Critical Reviews in Solid State and Materials Sciences, 2006, 31(4): 111-122. doi: 10.1080/10408430601057611
    [29] ZEČEVIĆ S, DRAŽIĆ D M, GOJKOVIĆ S. Oxygen reduction on iron. Part Ⅲ: an analysis of the rotating disk-ring electrode measurements in near neutral solutions[J]. Journal of Electroanalytical Chemistry, 1989, 265: 179-193. doi: 10.1016/0022-0728(89)80188-3
    [30] FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review[J]. Journal of Hazardous Materials, 2014, 267: 194-205. doi: 10.1016/j.jhazmat.2013.12.062
    [31] STUMM W, LEE G F. Oxygenation of ferrous iron[J]. Industrial & Engineering Chemistry, 1961, 53: 143-146. http://femsle.oxfordjournals.org/lookup/external-ref?access_num=10.1021/ie50614a030&link_type=DOI
    [32] KEENAN C R, SEDLAK D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(4): 1262-1267. doi: 10.1021/es8009925
    [33] KEENAN C R, SEDLAK D L. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(18): 6936-6941. http://www.onacademic.com/detail/journal_1000035857680810_1399.html
    [34] LEE H, LEE H J, LEE C, et al. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study[J]. Journal of Hazardous Materials, 2014, 265: 201-207. doi: 10.1016/j.jhazmat.2013.11.066
    [35] GUAN X, SUN Y, DONG H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034
    [36] LIU X, FAN J H, MA L M. Elimination of 4-chlorophenol in aqueous solution by the bimetallic Al-Fe/O2 at normal temperature and pressure[J]. Chemical Engineering Journal, 2014, 236: 274-284. doi: 10.1016/j.cej.2013.09.097
    [37] LIU X, FAN J H, HAO Y, et al. The degradation of EDTA by the bimetallic Fe-Cu/O2 system[J]. Chemical Engineering Journal, 2014, 250: 354-365. doi: 10.1016/j.cej.2014.04.028
    [38] SHEN W, MU Y, ZHANG L, et al. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles[J]. Applied Surface Science, 2017, 393: 316-324. doi: 10.1016/j.apsusc.2016.10.020
    [39] AI Z, LU L, ZHANG L, et al. Fe@Fe2O3 Core-shell nanowires as the iron reagent. 2. an efficient and reusable sono-Fenton system working at neutral pH[J]. The Journal of Physical Chemistry C, 2007, 111(20): 7430-7436. doi: 10.1021/jp070412v
    [40] QIN Y X, LI G Y, ZHANG L Z, et al. Protocatechuic acid promoted catalytic degradation of rhodamine B with Fe@Fe2O3 core-shell nanowires by molecular oxygen activation mechanism[J], Catalysis Today 2019, 335: 144-150. doi: 10.1016/j.cattod.2018.10.058
    [41] PECHER K, HADERLEIN S B, SCHWARZENBACH R P. Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aqueous suspensions of iron oxides[J]. Environmental Science & Technology, 2002, 36(8): 1734-1741. doi: 10.1021/es011191o
    [42] ZHANG C, LI T, ZHANG J, et al. Degradation of p-nitrophenol using a ferrous-tripolyphosphate complex in the presence of oxygen: the key role of superoxide radicals[J]. Applied Catalysis B: Environmental, 2019, 259: 118030. doi: 10.1016/j.apcatb.2019.118030
    [43] SHISHIDO T, YAMAMOTO Y, TAKEHIRA K, et al. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: steam reforming and oxidative steam reforming[J]. Journal of Molecular Catalysis A: Chemical, 2007, 268(1/2): 185-194. http://www.sciencedirect.com/science/article/pii/S1381116906014440
    [44] GONZALEZ-DAVILA M, SANTANA-CASIANO J M, GONZALEZ A G, et al. Oxidation of copper(I) in seawater at nanomolar levels[J]. Marine Chemistry, 2009, 115(1/2): 118-124. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.932.5128&rep=rep1&type=pdf
    [45] KHACHATRYAN L, VEJERANO E, DELLINGER B, et al. Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions[J]. Environmental Science & Technology, 2011, 45(19): 8559-8566. http://www.researchgate.net/profile/Slawo_Lomnicki/publication/51554011_Environmentally_Persistent_Free_Radicals_(EPFRs)._1._Generation_of_Reactive_Oxygen_Species_in_Aqueous_Solutions/links/00b7d51af5d6d1c5c8000000.pdf
    [46] YUAN X, PHAM A N, WAITE T D, et al. Effects of pH, chloride, and bicarbonate on Cu(Ⅰ) oxidation kinetics at circumneutral pH[J]. Environmental Science & Technology, 2012, 46(3): 1527-1535. http://www.researchgate.net/profile/An_Ninh_Pham/publication/231283817_Effects_of_pH_Chloride_and_Bicarbonate_on_Cu(I)_Oxidation_Kinetics_at_Circumneutral_pH/links/54ee688f0cf2e2830864ca55.pdf
    [47] DONG G, AI Z, ZHANG L. Total aerobic destruction of azo contaminants with nanoscale zero-valent copper at neutral pH: promotion effect of in-situ generated carbon center radicals[J]. Water Research, 2014, 66: 22-30. doi: 10.1016/j.watres.2014.08.011
    [48] ZHANG Y, HUANG W, MA L, et al. Copper-catalyzed activation of molecular oxygen for oxidative destruction of acetaminophen: the mechanism and superoxide-mediated cycling of copper species[J]. Chemosphere, 2017, 166: 89-95. doi: 10.1016/j.chemosphere.2016.09.066
    [49] LONG J, ZHAO L, WU D, et al. Activation of dissolved molecular oxygen by Cu(0) for bisphenol a degradation: role of Cu(0) and formation of reactive oxygen species[J]. Chemosphere, 2020, 241: 125034. doi: 10.1016/j.chemosphere.2019.125034
    [50] 倪永炯, 程永清, 徐梦苑, 等. 纳米零价铜活化分子氧降解水中恩诺沙星[J]. 环境科学, 2019, 40(1): 293-299. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201901036.htm

    NI Yongjiong, CHENG Yongqing, XU Mengyuan, et al. Nanoscale zero-valent copper-activated molecular oxygen for the degradation of enrofloxacin in water[J]. Environmental Science, 2019, 40(1): 293-299. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201901036.htm
    [51] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
    [52] BOKARE A D, CHOI W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants[J]. Environmental Science & Technology, 2009, 43: 7130-7135.
    [53] LIU W, ZHANG H, LIN K, et al. Oxidative removal of bisphenol a using zero valent aluminum-acid system[J]. Water Research, 2011, 45: 1872-1878. doi: 10.1016/j.watres.2010.12.004
    [54] ZHANG H, CAO B, LIN K, et al. Oxidative removal of acetaminophen using zero valent aluminum-acid system: efficacy, influencing factors, and reaction mechanism[J]. Journal of Environmental Science, 2012, 24(2): 314-319. doi: 10.1016/S1001-0742(11)60769-9
    [55] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0
    [56] LI Y, ULRICH A, ANNABELLA S, et al. Adsorption and reactions of O2 on anatase TiO2[J]. Accounts of Chemical Research, 2014, 46(4): 3361-3368. http://europepmc.org/abstract/med/24742024
    [57] ASCHAUER U, CHEN J, SELLONI A. Peroxide and superoxide states of adsorbed O2 on anatase TiO2(101) with subsurface defects[J]. Physical Chemistry Chemical Physics, 2010, 12(40): 12956-12960. doi: 10.1039/c0cp00116c
    [58] SETVIN M, DANIEL B, ASCHAUER U, et al. Identification of adsorbed molecules via STM tip manipulation: CO, H2O, and O2 on TiO2 anatase (101)[J]. Physical Chemistry Chemical Physics, 2014, 16(39): 21524-21530. doi: 10.1039/C4CP03212H
    [59] MAO Y S, WANG P F, LI L, et al. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2-x for efficient molecular-oxygen activation[J]. Angewandte Chemie International Edition, 2020, 132(9): 3714-3719. doi: 10.1002/anie.201914001
    [60] LI H, SHI J, ZHANG L, et al. Sustainable molecular oxygen activation with oxygen vacancies on the (001) facets of BiOCl nanosheets under solar light[J]. Nanoscale, 2014, 6(23): 14168-14173. doi: 10.1039/C4NR04810E
    [61] ZHAO K, WANG J, ZHANG L, et al. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets[J]. Journal of the American Chemical Society, 2013, 135(42): 15750-15753. doi: 10.1021/ja4092903
    [62] WANG H, ZHANG X, XIE Y, et al. Oxygen vacancy mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation[J]. Journal of the American Chemical Society, 2018, 140(5): 1760-1766. doi: 10.1021/jacs.7b10997
    [63] WIN T, WANG Q, WU X, et al. Piezo-potential induced molecular oxygen activation of defect-rich MoS2 ultrathin nanosheets for organic dye degradation in dark[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103626. doi: 10.1016/j.jece.2019.103626
    [64] SUN X, LUO X, ZHANG X, et al. Enhanced superoxide generation on defective surfaces for selective photooxidation[J]. Journal of the American Chemical Society, 2019, 141(9): 3797-3801. doi: 10.1021/jacs.8b13051
    [65] WOODHAM A P, MEIJER G, FIELICKE A. Charge separation promoted activation of molecular oxygen by neutral gold clusters[J]. Journal of the American Chemical Society, 2013, 135(5): 1727-1730. doi: 10.1021/ja312223t
    [66] ZHANG G, WANG R, LI G. Non-metallic gold nanoclusters for oxygen activation and aerobic oxidation[J]. Chinese Chemical Letters, 2018, 29(5): 687-693. doi: 10.1016/j.cclet.2018.01.043
    [67] JIANG K, SIAHROSTAMI S, WANG, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications, 2019, 10: 3997. doi: 10.1038/s41467-019-11992-2
    [68] LI X, LIU S, LIU B H, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. doi: 10.1021/jacs.8b05992
    [69] 文湘华, 申博. 新污染物水环境保护标准及其实用型去除技术[J]. 环境科学学报, 2018, 38(3): 847-857. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201803001.htm

    WEN Xianghua, SHEN Bo. Standards of water environmental protection and practical removal technologies of emerging contaminants[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 847-857. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201803001.htm
    [70] 汪琪, 张梦佳, 陈洪斌. 水环境中药物类PPCPs的赋存及处理技术进展[J]. 净水技术, 2020, 39(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS202001011.htm

    WANG Qi, ZHANG Mengjia, CHEN Hongbin. Review on occurrence and treatment technology of PPCPs in water environment[J]. Water Purification Technology, 2020, 39(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS202001011.htm
    [71] 刘宝印, 荀斌, 黄宝荣, 等. 我国水环境中新污染物空间分布特征分析[J]. 环境保护, 2021, 49(10): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202110005.htm

    LIU Baoyin, XUN Bin, HUANG Baorong, et al. Spatial differentiation characteristics of new pollutants in China's water environment[j]. environmental protection, 2021, 49(10): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202110005.htm
    [72] 李敏桥, 林田, 李圆圆, 等. 中国东海水体中多氯联苯的浓度及其组成特征[J]. 海洋环境科学, 2019, 38(4): 589-593. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201904016.htm

    LI Minqiao, LIN Tian, LI Yuanyuan, et al. Concentration and composition of polychlorinated biphenyls in the water of the East China Sea[J]. Marine Environmental Science, 2019, 38(4): 589-593. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201904016.htm
    [73] 任华堂, 韩凝, 夏建新. 我国东部地区环境中多环芳烃的空间分布及生态风险分析[J]. 应用基础与工程科学学报, 2009(S1): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX2009S1014.htm
    [74] 余洁, 原弘. 亚铁离子/四聚磷酸活化分子氧降解氯霉素[J]. 环境化学, 2017, 36(11): 2304-2310. doi: 10.7524/j.issn.0254-6108.2017031005

    YU Jie, YUAN Hong. Dioxygen activation by Fe(Ⅱ)-tetrapolyphosphate (TPP) complex for the degradation of chloramphenicol[J]. Environmental Chemistry, 2017, 36(11): 2304-2310. doi: 10.7524/j.issn.0254-6108.2017031005
    [75] OLVERA-VARGAS H, WEE V Y H, LEFEBVRE O, et al. Near-neutral electro-fenton treatment of pharmaceutical pollutants: effect of using a triphosphate ligand and BDD electrode[J]. ChemElectroChem, 2019, 6(3): 937-946. doi: 10.1002/celc.201801732
    [76] ZHOU T, ZOU X, WU X, et al. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe0/ tetraphosphate Fenton-like system[J]. Ultrasonics Sonochemistry, 2017, 37: 320-327. doi: 10.1016/j.ultsonch.2017.01.015
    [77] ZHANG Y F, FAN J H, YANG B, et al. Copper-catalyzed activation of molecular oxygen for oxidative destruction of acetaminophen: the mechanism and superoxide mediated cycling of copper species[J]. Chemosphere, 2017, 166: 89-95. doi: 10.1016/j.chemosphere.2016.09.066
    [78] JOO S H, FEITZ A J, WAITE T D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron[J]. Environmental Science & Technology, 2004, 38(7): 2242-2247. http://www.onacademic.com/detail/journal_1000035949783710_1f96.html
    [79] WANG L, CAO M, ZHANG L, et al. Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex[J]. Environmental Science & Technology, 2015, 49(5): 3032-3039. http://www.onacademic.com/detail/journal_1000037412011010_3656.html
    [80] WANG L, CAO M, AI Z, et al. Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core-shell nanowires by tetrapolyphosphate[J]. Environmental Science & Technology, 2014, 48(6): 3354-3362. http://smartsearch.nstl.gov.cn/paper_detail.html?id=abd8f8f4b6916257737c63ef3666a471
    [81] WANG L, CAO M, ZHANG L, et al. Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment[J]. Journal of Hazardous Materials, 2015, 292: 27-33. doi: 10.1016/j.jhazmat.2015.03.019
    [82] HONG R, GUO Z, GU C, et al. Rapid degradation of atrazine by hydroxyl radical induced from montmorillonite templated subnano-sized zero-valent copper[J]. Chemosphere, 2017, 180: 335-342. doi: 10.1016/j.chemosphere.2017.04.025
    [83] LI H, SUN S T, JI H D, et al. Enhanced activation of molecular oxygen and degradation of tetracycline over Cu-S4 atomic clusters[J]. Applied Catalysis B: Environmental, 2020, 272: 118966. doi: 10.1016/j.apcatb.2020.118966
    [84] ZHU X, ZHOU D, LONG C, et al. TiO2 photocatalytic degradation of 4-chlorobiphenyl as affected by solvents and surfactants[J]. Journal of Soils and Sediments, 2012, 12(3): 376-385. doi: 10.1007/s11368-011-0464-y
    [85] 吝美霞, 李法云, 王玮, 等. 生物炭负载P掺杂g-C3N4复合光催化剂制备及其对萘光催化降解机制[J]. 环境科学学报, 2021, 41(8): 3200-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108025.htm

    LIN Meixia, LI Fayun, WANG Wei, et al. Synthesis of biochar-supported P-doped g-C3N4 photocatalyst and its photocatalytic degradation mechanism to naphthalene[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3200-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108025.htm
    [86] FU J, KYZAS G Z, CAI Z, et al. Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: effects of water quality parameters and predictive modeling[J]. Chemical Engineering Journal, 2017, 335: 290-300.
    [87] YANG X, CAI H, BAO M, et al. Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag3PO4 composites under visible light irradiation[J]. Chemical Engineering Journal, 2017, 334: 355-376. http://www.onacademic.com/detail/journal_1000040081308410_e50e.html
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  72
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-08-27

目录

    /

    返回文章
    返回