Mechanism Study on Degradation of Tetracycline Hydrochloride by Ag/Ag2O/g-C3N4/BiVO4 Composite Photocatalytic System
-
摘要: 为提高钒酸铋(BiVO4)对盐酸四环素(TC-HCl)在水溶液中的降解效率,以银基材料(Ag/Ag2O)和石墨相氮化碳(g-C3N4)共同改性BiVO4,通过水热法、煅烧法、湿浸渍法、沉淀和热分解法分步制备了Ag/Ag2O/g-C3N4/BiVO4四元复合材料;采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)及紫外-可见漫反射光谱法(UV-vis DRS)等方法对复合材料的形貌结构、元素分布及光学性质进行了表征. 结果表明:①沉积了Ag/Ag2O粒子后,复合材料对TC-HCl的吸附能力显著提高. ②纳米Ag粒子的表面等离子体共振效应(SPR)以及g-C3N4的协同作用拓宽了光响应范围,表现出更好的光催化性能. ③相较于BiVO4、g-C3N4及g-C3N4/BiVO4,该复合材料对TC-HCl的降解效果最佳,降解率可达89.19%,且经过4次循环使用后仍能保持74.8%的降解率. ④UV-vis及XPS分析证明,该复合材料的可见光响应拓展至548 nm,可吸收更多可见光. ⑤体系自由基捕获试验证明,·O2-和h+在光催化降解TC-HCl过程中发挥主要作用,且h+的作用大于·O2-. 研究显示,Ag/Ag2O/g-C3N4/BiVO4是一种高效稳定的复合光催化剂,其在处理TC-HCl抗生素废水方面具有潜在的应用前景.
-
关键词:
- 光催化 /
- 石墨相氮化碳(g-C3N4) /
- 氧化银 /
- 钒酸铋(BiVO4)
Abstract: In order to improve the degradation efficiency of bismuth vanadate (BiVO4) on tetracycline hydrochloride (TC-HCl) in aqueous solution, silver-based material (Ag/Ag2O) and graphitic phase carbon nitride (g-C3N4) were used to co-modify BiVO4, and the Ag/Ag2O/g-C3N4/BiVO4 quaternary composites were constructed by hydrothermal, calcination, wet impregnation, precipitation and thermal decomposition methods in a stepwise manner. The composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Ultraviolet-visible diffuse reflectance spectrometry (UV-vis DRS) for their morphological structure, elemental distribution and optical properties. The experimental results showed that: (1) The deposition of Ag/Ag2O particles significantly increased the adsorption capacity of the material for TC-HCl. (2) The surface plasmon resonance effect (SPR) of Ag nanoparticles and the synergistic effect of g-C3N4 broadened the photoresponse range and improved the photocatalytic performance. (3) Compared with BiVO4, g-C3N4 and g-C3N4/BiVO4, the composite had the best degradation effect on TC-HCl, with the degradation rate up to 89.19%, and the degradation efficiency was still 74.8% after four cycles. (4) UV-vis and XPS analysis determined that the visible light response of the composite extended to 548 nm and could absorb more visible light. (5) The system radical trapping test demonstrated that ·O2- and h+ played a major role in the photocatalytic degradation of TC-HCl, and the role of h+ was greater than that of ·O2-. The above results show that Ag/Ag2O/g-C3N4/BiVO4 is an efficient and stable composite photocatalyst with potential application in the treatment of TC-HCl antibiotic wastewater. -
图 3 Ag/Ag2O/g-C3N4/BiVO4的EDS扫描能谱分析的元素面分布
注:在图 2(c)所示尺度下拍摄的图谱.
Figure 3. Elemental surface distribution for EDS maps of Ag/Ag2O/g-C3N4/BiVO4
表 1 不同光催化材料对TC-HCl光催化降解的拟一级动力学参数
Table 1. Proposed primary kinetic parameters for the photocatalytic degradation of TC-HCl by different photocatalytic materials
光催化材料 拟一级动力学模型 反应动力学常数(kap)/min-1 相关系数(R2) g-C3N4 -ln(C0/Ct)=0.014 8t+0.014 8 0.014 8 0.982 0 BiVO4 -ln(C0/Ct)=0.032 0t+0.024 8 0.032 0 0.938 4 g-C3N4/BiVO4 -ln(C0/Ct)=0.030 3t+0.036 5 0.030 3 0.979 1 Ag/Ag2O/g-C3N4/BiVO4 -ln(C0/Ct)=0.070 3t+0.086 9 0.070 3 0.952 8 -
[1] KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review[J]. Chemosphere, 2020, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351 [2] HONG Yuanzhi, MENG Yadong, ZHANG Guangyi, et al. Facile fabrication of stable metal-free CQDs/g-C3N4 heterojunctions with efficiently enhanced visible-light photocatalytic activity[J]. Separation and Purification Technology, 2016, 171: 229-237. doi: 10.1016/j.seppur.2016.07.025 [3] 罗力莎, 邹东雷, 陈宇溪, 等. 负载型银掺杂二氧化钛光催化降解盐酸四环素特性研究[J]. 环境与健康杂志, 2017, 34(9): 820-824. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201709018.htmLUO Lisha, ZOU Donglei, CHEN Yuxi, et al. Photocatalytic degradation characteristics of tetracycline hydrochloride by immobilized Ag-doped TiO2[J]. Journal of Environment and Health, 2017, 34(9): 820-824. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201709018.htm [4] 孔晨晨, 张世文, 聂超甲, 等. 农用地土壤抗生素组成特征与积累规律[J]. 环境科学, 2019, 40(4): 1981-1989. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201904055.htmKONG Chenchen, ZHANG Shiwen, NIE Chaojia, et al. Composition, characteristics, and accumulation of antibiotics in the soil in agricultural land[J]. Environmental Science, 2019, 40(4): 1981-1989. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201904055.htm [5] DENG Fang, ZHAO Lina, LUO Xubiao, et al. Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater[J]. Chemical Engineering Journal, 2017, 333: 423-433. [6] 卢昶雨, 关卫省, 彭悦欣, 等. TiO2纳米管的离子交换改性及光催化去除水中四环素的研究[J]. 北京化工大学学报(自然科学版), 2015, 42(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHY201501013.htmLU Changyu, GUAN Weisheng, PENG Yuexin, et al. Ion-exchange modification of TiO2 nanotubes and visible-light-driven photocatalytic degradation of tetracycline[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2015, 42(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHY201501013.htm [7] LIU Ning, LU Na, SU Yan, et al. Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation[J]. Separation and Purification Technology, 2018, 211: 782-789. http://www.sciencedirect.com/science/article/pii/S1383586618327151 [8] ZHANG Qianqian, YING Guangguo, PAN Changgui, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. http://europepmc.org/abstract/MED/25961663 [9] 张翔宇, 李茹莹, 季民. 污水生物处理中抗生素的去除机制及影响因素[J]. 环境科学, 2018, 39(11): 5276-5288. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201811051.htmZHANG Xiangyu, LI Ruying, JI Min. Mechanisms and influencing factors of antibiotic removal in sewage biological treatment[J]. Environmental Science, 2018, 39(11): 5276-5288. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201811051.htm [10] KARAOLIA P, MICHAEL-KORDATOU I, HAPESHI E, et al. Investigation of the potential of a membrane bioReactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants[J]. Chemical Engineering Journal, 2016, 310: 491-502. http://www.researchgate.net/profile/Popi_Karaolia/publication/301760349_Investigation_of_the_potential_of_a_Membrane_BioReactor_followed_by_solar_Fenton_oxidation_to_remove_antibiotic-related_microcontaminants/links/57399ddc08ae298602e33c8c.pdf [11] 高金龙, 陈轶凡, 李纪薇, 等. Ti/PbO2电化学法降解废水中三种氟喹诺酮类抗生素[J]. 中国环境科学, 2020, 40(6): 2454-2463. doi: 10.3969/j.issn.1000-6923.2020.06.015GAO Jinlong, CHEN Yifan, LI Jiwei, et al. Degradation of three fluoroquinolones antibiotics in wastewater by Ti/PbO2 electrochemical method[J]. China Environmental Science, 2020, 40(6): 2454-2463. doi: 10.3969/j.issn.1000-6923.2020.06.015 [12] 黄文鑫, 魏虎, 蒋彩云, 等. Bi2MoO6/Bi2S3异质结光催化降解四环素-铜复合物[J]. 环境科学, 2020, 41(12): 5488-5499. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012032.htmHUANG Wenxin, WEI Hu, JIANG Caiyun, et al. Photocatalytic degradation of tetracycline and copper complex by Bi2MoO6/Bi2S3 heterojunction[J]. Environmental Science, 2020, 41(12): 5488-5499. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012032.htm [13] 王新欣, 孟昭福, 刘欣, 等. BS-18两性修饰膨润土对四环素和诺氟沙星复合污染的吸附[J]. 环境科学, 2021, 42(5): 2334-2342. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105028.htmWANG Xinxin, MENG Zhaofu, LIU Xin, et al. Adsorption of BS-18 amphoterically modified bentonite to tetracycline and norfloxacin combined pollutants[J]. Environmental Science, 2021, 42(5): 2334-2342. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105028.htm [14] 朱秋蓉, 何世颖, 赵晓蕾, 等. AgCl/ZnO/GO光催化降解甲基橙的性能研究[J]. 环境科学研究, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1ZHU Qiurong, HE Shiying, ZHAO Xiaolei, et al. Photocatalytic degradation of methyl orange by AgCl/ZnO/GO[J]. Research of Environmental Sciences, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1 [15] 徐杰, 郑建东, 张丽惠, 等. 巯基改性高岭土负载CeO2-CdS光催化降解结晶紫[J]. 环境科学研究, 2018, 31(6): 1144-1151. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180620&flag=1XU Jie, ZHENG Jiandong, ZHANG Lihui, et al. Photocatalytic degradation of crystal violet by modified sulfydryl kaolin coated CeO2-CdS[J]. Research of Environmental Sciences, 2018, 31(6): 1144-1151. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180620&flag=1 [16] 王小琴, 张耿崚, 黄志华, 等. 不同氧化剂辅助光催化反应对提高木质纤维素酶解效果的影响[J]. 环境科学研究, 2019, 32(11): 1921-1927. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191117&flag=1WANG Xiaoqin, ZHANG Gengling, HUANG Zhihua, et al. Effect of oxidants-assisted photocatalytic pretreatment on enhancing enzymatic hydrolysis of lignocellulose[J]. Research of Environmental Sciences, 2019, 32(11): 1921-1927. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191117&flag=1 [17] ADHIKARI S, LEE H, KIM D. Efficient visible-light induced electron-transfer in z-scheme MoO3/Ag/C3N4 for excellent photocatalytic removal of antibiotics of both ofloxacin and tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123504. doi: 10.1016/j.cej.2019.123504 [18] GUO Jiayin, JIANG Longbo, LIANG Jie, et al. Photocatalytic degradation of tetracycline antibiotics using delafossite silver ferrite-based Z-scheme photocatalyst: pathways and mechanism insight[J]. Chemosphere, 2021, 270: 128651. doi: 10.1016/j.chemosphere.2020.128651 [19] YANG Zitong, LI Lulu, YU Haiyuan, et al. Facile synthesis of highly crystalline g-C3N4 nanosheets with remarkable visible light photocatalytic activity for antibiotics removal[J]. Chemosphere, 2021, 271: 129503. doi: 10.1016/j.chemosphere.2020.129503 [20] 张贝贝. 钒酸铋纳米材料的合成及光电水分解研究[D]兰州: 兰州大学, 2018: 33-34. [21] DAI Yuxuan, LIU Ying, KONG Jijie, et al. High photocatalytic degradation efficiency of oxytetracycline hydrochloride over Ag/AgCl/BiVO4 plasmonic photocatalyst[J]. Solid State Sciences, 2019, 96: 105946. doi: 10.1016/j.solidstatesciences.2019.105946 [22] YAN Ming, ZHU Fangfang, GU Wei, et al. Construction of nitrogen doped graphene quantum dots-BiVO4/g-C3N4 Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light[J]. RSC Advances, 2016, 6(66): 61162-61174. doi: 10.1039/C6RA07589D [23] AGUILERA-RUIZ E, GARCIA-PEREZ U, DE LA GARZA-GALVAN M, et al. Efficiency of Cu2O/BiVO4 particles prepared with a new soft procedure on the degradation of dyes under visible-light irradiation[J]. Applied Surface Science, 2015, 328: 361-367. doi: 10.1016/j.apsusc.2014.12.059 [24] YU Jianqiang, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4[J]. Advanced Functional Materials, 2006, 16(16): 2163-2169. doi: 10.1002/adfm.200500799 [25] 刘宏伟, 任学昌, 万建新, 等. g-C3N4/TiO2复合光催化剂的制备及其可见光催化性能[J]. 工业水处理, 2019, 39(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC201902010.htmLIU Hongwei, REN Xuechang, WAN Jianxin, et al. Preparation of composite photo-catalyst g-C3N4/TiO2 and its photocatalytic capability under visible light[J]. Industrial Water Treatment, 2019, 39(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC201902010.htm [26] CHEN Fei, YANG Qi, WANG Yali, et al. Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(Ⅵ) reduction and ciprofloxacin oxidation under visible light: kinetics, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 348: 157-170. doi: 10.1016/j.cej.2018.04.170 [27] HAMMOND J, HOLUBKA J, DEVRIES J, et al. The application of X-ray photo-electron spectroscopy to a study of interfacial composition in corrosion-induced paint de-adhesion[J]. Corrosion Science, 1981, 21(3): 239-253. doi: 10.1016/0010-938X(81)90033-0 [28] ZHU Qing, WANG Wansheng, LIN Ling, et al. Facile synthesis of the novel Ag3VO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability[J]. The Journal of Physical Chemistry C, 2013, 117(11): 5894-5900. doi: 10.1021/jp400842r [29] HU Xuexiang, HU Chun, WANG Ran. Enhanced solar photodegradation of toxic pollutants by long-lived electrons in Ag-Ag2O nanocomposites[J]. Applied Catalysis B: Environmental, 2015, 176: 637-645. http://www.sciencedirect.com/science/article/pii/S0926337315002283 [30] 高闯闯, 刘海成, 孟无霜, 等. Ag3PO4/g-C3N4复合光催化剂的制备及其可见光催化性能[J]. 环境科学, 2021, 42(5): 2343-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105029.htmGAO Chuangchuang, LIU Haicheng, MENG Wushuang, et al. Preparation of Ag3PO4/g-C3N4 composite photocatalysts and their visible-light photocatalytic performance[J]. Environmental Science, 2021, 42(5): 2343-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105029.htm [31] LIN Xue, XU Da, XI Yang, et al. Construction of leaf-like g-C3N4/Ag/BiVO4 nanoheterostructures with enhanced photocatalysis performance under visible-light irradiation[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 513: 117-124. http://www.onacademic.com/detail/journal_1000039685710910_4306.html [32] CHEN Lang, HUANG Rui, MA Yingjie, et al. Controllable synthesis of hollow and porous Ag/BiVO4 composites with enhanced visible-light photocatalytic performance[J]. RSC Advances, 2013, 3(46): 24354-24361. doi: 10.1039/c3ra43691h [33] XU Boran, LI Yandong, GAO Yangqin, et al. Ag-AgI/Bi3O4Cl for efficient visible light photocatalytic degradation of methyl orange: the surface plasmon resonance effect of Ag and mechanism insight[J]. Applied Catalysis B: Environmental, 2019, 246: 140-148. doi: 10.1016/j.apcatb.2019.01.060 [34] LI Chunmei, CHEN Gang, SUN Jingxue, et al. Ultrathin nanoflakes constructed erythrocyte-like Bi2WO6 hierarchical architecture via anionic self-regulation strategy for improving photocatalytic activity and gas-sensing property[J]. Applied Catalysis B: Environmental, 2015, 163: 415-423. doi: 10.1016/j.apcatb.2014.07.060 [35] STYLIDI M, KONDARIDES D, VERYKIOS X. Visible light-Induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions[J]. Applied Catalysis B: Environmental, 2004, 47(3): 189-201. doi: 10.1016/j.apcatb.2003.09.014 [36] DONG Hongjun, CHEN Gang, SUN Jingxue, et al. A novel high-efficiency visible-light sensitive Ag2CO3 photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study[J]. Applied Catalysis B: Environmental, 2013, 134: 46-54. http://www.sciencedirect.com/science/article/pii/S0926337312006091 [37] WANG Shaomang, LI Dinglong, SUN Cheng, et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation[J]. Applied Catalysis B: Environmental, 2014, 144: 885-892. doi: 10.1016/j.apcatb.2013.08.008 -