留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究

许洋 蒲生彦 季雯雯 杨曾

许洋, 蒲生彦, 季雯雯, 杨曾. Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究[J]. 环境科学研究, 2021, 34(12): 2841-2849. doi: 10.13198/j.issn.1001-6929.2021.09.16
引用本文: 许洋, 蒲生彦, 季雯雯, 杨曾. Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究[J]. 环境科学研究, 2021, 34(12): 2841-2849. doi: 10.13198/j.issn.1001-6929.2021.09.16
XU Yang, PU Shengyan, JI Wenwen, YANG Zeng. Mechanism Study on Degradation of Tetracycline Hydrochloride by Ag/Ag2O/g-C3N4/BiVO4 Composite Photocatalytic System[J]. Research of Environmental Sciences, 2021, 34(12): 2841-2849. doi: 10.13198/j.issn.1001-6929.2021.09.16
Citation: XU Yang, PU Shengyan, JI Wenwen, YANG Zeng. Mechanism Study on Degradation of Tetracycline Hydrochloride by Ag/Ag2O/g-C3N4/BiVO4 Composite Photocatalytic System[J]. Research of Environmental Sciences, 2021, 34(12): 2841-2849. doi: 10.13198/j.issn.1001-6929.2021.09.16

Ag/Ag2O/g-C3N4/BiVO4复合光催化体系降解盐酸四环素机理研究

doi: 10.13198/j.issn.1001-6929.2021.09.16
基金项目: 

国家重点研发计划项目 2020YFC1808300

国家自然科学基金项目 42077185

详细信息
    作者简介:

    许洋(1998-), 男, 四川成都人, CD_XUYANG@163.com

    通讯作者:

    蒲生彦(1981-), 男, 甘肃酒泉人, 教授, 博士, 主要从事水土污染界面过程与协同修复、生态环境基准研究, pushengyan13@cdut.edu.cn

  • 中图分类号: X142

Mechanism Study on Degradation of Tetracycline Hydrochloride by Ag/Ag2O/g-C3N4/BiVO4 Composite Photocatalytic System

Funds: 

National Key Research and Development Program of China 2020YFC1808300

National Natural Science Foundation of China 42077185

  • 摘要: 为提高钒酸铋(BiVO4)对盐酸四环素(TC-HCl)在水溶液中的降解效率,以银基材料(Ag/Ag2O)和石墨相氮化碳(g-C3N4)共同改性BiVO4,通过水热法、煅烧法、湿浸渍法、沉淀和热分解法分步制备了Ag/Ag2O/g-C3N4/BiVO4四元复合材料;采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)及紫外-可见漫反射光谱法(UV-vis DRS)等方法对复合材料的形貌结构、元素分布及光学性质进行了表征. 结果表明:①沉积了Ag/Ag2O粒子后,复合材料对TC-HCl的吸附能力显著提高. ②纳米Ag粒子的表面等离子体共振效应(SPR)以及g-C3N4的协同作用拓宽了光响应范围,表现出更好的光催化性能. ③相较于BiVO4、g-C3N4及g-C3N4/BiVO4,该复合材料对TC-HCl的降解效果最佳,降解率可达89.19%,且经过4次循环使用后仍能保持74.8%的降解率. ④UV-vis及XPS分析证明,该复合材料的可见光响应拓展至548 nm,可吸收更多可见光. ⑤体系自由基捕获试验证明,·O2-h+在光催化降解TC-HCl过程中发挥主要作用,且h+的作用大于·O2-. 研究显示,Ag/Ag2O/g-C3N4/BiVO4是一种高效稳定的复合光催化剂,其在处理TC-HCl抗生素废水方面具有潜在的应用前景.

     

  • 图  1  制备样品的XRD图谱

    Figure  1.  XRD pattern of the prepared samples

    图  2  BiVO4、g-C3N4和Ag/Ag2O/g-C3N4/BiVO4复合材料的SEM图像

    Figure  2.  SEM images of BiVO4, g-C3N4, and Ag/Ag2O/g-C3N4/BiVO4 composites

    图  3  Ag/Ag2O/g-C3N4/BiVO4的EDS扫描能谱分析的元素面分布

    注:在图 2(c)所示尺度下拍摄的图谱.

    Figure  3.  Elemental surface distribution for EDS maps of Ag/Ag2O/g-C3N4/BiVO4

    图  4  Ag/Ag2O/g-C3N4/BiVO4复合材料的EDS图谱

    Figure  4.  EDS images of Ag/Ag2O/g-C3N4/BiVO4 composites

    图  5  Ag/Ag2O/g-C3N4/BiVO4复合材料XPS图谱

    Figure  5.  XPS spectra of Ag/Ag2O/g-C3N4/BiVO4 composite

    图  6  BiVO4、g-C3N4、Ag/Ag2O/g-C3N4/BiVO4的UV-Vis光谱以及BiVO4和g-C3N4的禁带宽度

    Figure  6.  UV-Vis spectra of BiVO4, g-C3N4, Ag/Ag2O/g-C3N4/BiVO4 and forbidden band widths of BiVO4 and g-C3N4

    图  7  不同光催化剂对TC-HCl降解效果的时间变化曲线

    Figure  7.  Degradation curves of TC-HCl by different photocatalysts

    图  8  Ag/Ag2O/g-C3N4/BiVO4的稳定性试验

    Figure  8.  Experiment of Ag/Ag2O/g-C3N4/BiVO4 stability

    图  9  Ag/Ag2O/g-C3N4/BiVO4光催化降解TC-HCl的捕获试验

    Figure  9.  Capture experiments of Ag/Ag2O/g-C3N4/BiVO4 photocatalytic degradation of TC-HCl

    图  10  Ag/Ag2O/g-C3N4/BiVO4复合材料的光催化机理示意

    Figure  10.  Schematic diagram of the possible photocatalytic mechanism of Ag/Ag2O/g-C3N4/BiVO4 composites

    表  1  不同光催化材料对TC-HCl光催化降解的拟一级动力学参数

    Table  1.   Proposed primary kinetic parameters for the photocatalytic degradation of TC-HCl by different photocatalytic materials

    光催化材料 拟一级动力学模型 反应动力学常数(kap)/min-1 相关系数(R2)
    g-C3N4 -ln(C0/Ct)=0.014 8t+0.014 8 0.014 8 0.982 0
    BiVO4 -ln(C0/Ct)=0.032 0t+0.024 8 0.032 0 0.938 4
    g-C3N4/BiVO4 -ln(C0/Ct)=0.030 3t+0.036 5 0.030 3 0.979 1
    Ag/Ag2O/g-C3N4/BiVO4 -ln(C0/Ct)=0.070 3t+0.086 9 0.070 3 0.952 8
    下载: 导出CSV
  • [1] KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review[J]. Chemosphere, 2020, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351
    [2] HONG Yuanzhi, MENG Yadong, ZHANG Guangyi, et al. Facile fabrication of stable metal-free CQDs/g-C3N4 heterojunctions with efficiently enhanced visible-light photocatalytic activity[J]. Separation and Purification Technology, 2016, 171: 229-237. doi: 10.1016/j.seppur.2016.07.025
    [3] 罗力莎, 邹东雷, 陈宇溪, 等. 负载型银掺杂二氧化钛光催化降解盐酸四环素特性研究[J]. 环境与健康杂志, 2017, 34(9): 820-824. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201709018.htm

    LUO Lisha, ZOU Donglei, CHEN Yuxi, et al. Photocatalytic degradation characteristics of tetracycline hydrochloride by immobilized Ag-doped TiO2[J]. Journal of Environment and Health, 2017, 34(9): 820-824. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201709018.htm
    [4] 孔晨晨, 张世文, 聂超甲, 等. 农用地土壤抗生素组成特征与积累规律[J]. 环境科学, 2019, 40(4): 1981-1989. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201904055.htm

    KONG Chenchen, ZHANG Shiwen, NIE Chaojia, et al. Composition, characteristics, and accumulation of antibiotics in the soil in agricultural land[J]. Environmental Science, 2019, 40(4): 1981-1989. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201904055.htm
    [5] DENG Fang, ZHAO Lina, LUO Xubiao, et al. Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater[J]. Chemical Engineering Journal, 2017, 333: 423-433.
    [6] 卢昶雨, 关卫省, 彭悦欣, 等. TiO2纳米管的离子交换改性及光催化去除水中四环素的研究[J]. 北京化工大学学报(自然科学版), 2015, 42(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHY201501013.htm

    LU Changyu, GUAN Weisheng, PENG Yuexin, et al. Ion-exchange modification of TiO2 nanotubes and visible-light-driven photocatalytic degradation of tetracycline[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2015, 42(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHY201501013.htm
    [7] LIU Ning, LU Na, SU Yan, et al. Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation[J]. Separation and Purification Technology, 2018, 211: 782-789. http://www.sciencedirect.com/science/article/pii/S1383586618327151
    [8] ZHANG Qianqian, YING Guangguo, PAN Changgui, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. http://europepmc.org/abstract/MED/25961663
    [9] 张翔宇, 李茹莹, 季民. 污水生物处理中抗生素的去除机制及影响因素[J]. 环境科学, 2018, 39(11): 5276-5288. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201811051.htm

    ZHANG Xiangyu, LI Ruying, JI Min. Mechanisms and influencing factors of antibiotic removal in sewage biological treatment[J]. Environmental Science, 2018, 39(11): 5276-5288. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201811051.htm
    [10] KARAOLIA P, MICHAEL-KORDATOU I, HAPESHI E, et al. Investigation of the potential of a membrane bioReactor followed by solar Fenton oxidation to remove antibiotic-related microcontaminants[J]. Chemical Engineering Journal, 2016, 310: 491-502. http://www.researchgate.net/profile/Popi_Karaolia/publication/301760349_Investigation_of_the_potential_of_a_Membrane_BioReactor_followed_by_solar_Fenton_oxidation_to_remove_antibiotic-related_microcontaminants/links/57399ddc08ae298602e33c8c.pdf
    [11] 高金龙, 陈轶凡, 李纪薇, 等. Ti/PbO2电化学法降解废水中三种氟喹诺酮类抗生素[J]. 中国环境科学, 2020, 40(6): 2454-2463. doi: 10.3969/j.issn.1000-6923.2020.06.015

    GAO Jinlong, CHEN Yifan, LI Jiwei, et al. Degradation of three fluoroquinolones antibiotics in wastewater by Ti/PbO2 electrochemical method[J]. China Environmental Science, 2020, 40(6): 2454-2463. doi: 10.3969/j.issn.1000-6923.2020.06.015
    [12] 黄文鑫, 魏虎, 蒋彩云, 等. Bi2MoO6/Bi2S3异质结光催化降解四环素-铜复合物[J]. 环境科学, 2020, 41(12): 5488-5499. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012032.htm

    HUANG Wenxin, WEI Hu, JIANG Caiyun, et al. Photocatalytic degradation of tetracycline and copper complex by Bi2MoO6/Bi2S3 heterojunction[J]. Environmental Science, 2020, 41(12): 5488-5499. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012032.htm
    [13] 王新欣, 孟昭福, 刘欣, 等. BS-18两性修饰膨润土对四环素和诺氟沙星复合污染的吸附[J]. 环境科学, 2021, 42(5): 2334-2342. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105028.htm

    WANG Xinxin, MENG Zhaofu, LIU Xin, et al. Adsorption of BS-18 amphoterically modified bentonite to tetracycline and norfloxacin combined pollutants[J]. Environmental Science, 2021, 42(5): 2334-2342. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105028.htm
    [14] 朱秋蓉, 何世颖, 赵晓蕾, 等. AgCl/ZnO/GO光催化降解甲基橙的性能研究[J]. 环境科学研究, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1

    ZHU Qiurong, HE Shiying, ZHAO Xiaolei, et al. Photocatalytic degradation of methyl orange by AgCl/ZnO/GO[J]. Research of Environmental Sciences, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1
    [15] 徐杰, 郑建东, 张丽惠, 等. 巯基改性高岭土负载CeO2-CdS光催化降解结晶紫[J]. 环境科学研究, 2018, 31(6): 1144-1151. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180620&flag=1

    XU Jie, ZHENG Jiandong, ZHANG Lihui, et al. Photocatalytic degradation of crystal violet by modified sulfydryl kaolin coated CeO2-CdS[J]. Research of Environmental Sciences, 2018, 31(6): 1144-1151. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20180620&flag=1
    [16] 王小琴, 张耿崚, 黄志华, 等. 不同氧化剂辅助光催化反应对提高木质纤维素酶解效果的影响[J]. 环境科学研究, 2019, 32(11): 1921-1927. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191117&flag=1

    WANG Xiaoqin, ZHANG Gengling, HUANG Zhihua, et al. Effect of oxidants-assisted photocatalytic pretreatment on enhancing enzymatic hydrolysis of lignocellulose[J]. Research of Environmental Sciences, 2019, 32(11): 1921-1927. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191117&flag=1
    [17] ADHIKARI S, LEE H, KIM D. Efficient visible-light induced electron-transfer in z-scheme MoO3/Ag/C3N4 for excellent photocatalytic removal of antibiotics of both ofloxacin and tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123504. doi: 10.1016/j.cej.2019.123504
    [18] GUO Jiayin, JIANG Longbo, LIANG Jie, et al. Photocatalytic degradation of tetracycline antibiotics using delafossite silver ferrite-based Z-scheme photocatalyst: pathways and mechanism insight[J]. Chemosphere, 2021, 270: 128651. doi: 10.1016/j.chemosphere.2020.128651
    [19] YANG Zitong, LI Lulu, YU Haiyuan, et al. Facile synthesis of highly crystalline g-C3N4 nanosheets with remarkable visible light photocatalytic activity for antibiotics removal[J]. Chemosphere, 2021, 271: 129503. doi: 10.1016/j.chemosphere.2020.129503
    [20] 张贝贝. 钒酸铋纳米材料的合成及光电水分解研究[D]兰州: 兰州大学, 2018: 33-34.
    [21] DAI Yuxuan, LIU Ying, KONG Jijie, et al. High photocatalytic degradation efficiency of oxytetracycline hydrochloride over Ag/AgCl/BiVO4 plasmonic photocatalyst[J]. Solid State Sciences, 2019, 96: 105946. doi: 10.1016/j.solidstatesciences.2019.105946
    [22] YAN Ming, ZHU Fangfang, GU Wei, et al. Construction of nitrogen doped graphene quantum dots-BiVO4/g-C3N4 Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light[J]. RSC Advances, 2016, 6(66): 61162-61174. doi: 10.1039/C6RA07589D
    [23] AGUILERA-RUIZ E, GARCIA-PEREZ U, DE LA GARZA-GALVAN M, et al. Efficiency of Cu2O/BiVO4 particles prepared with a new soft procedure on the degradation of dyes under visible-light irradiation[J]. Applied Surface Science, 2015, 328: 361-367. doi: 10.1016/j.apsusc.2014.12.059
    [24] YU Jianqiang, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4[J]. Advanced Functional Materials, 2006, 16(16): 2163-2169. doi: 10.1002/adfm.200500799
    [25] 刘宏伟, 任学昌, 万建新, 等. g-C3N4/TiO2复合光催化剂的制备及其可见光催化性能[J]. 工业水处理, 2019, 39(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC201902010.htm

    LIU Hongwei, REN Xuechang, WAN Jianxin, et al. Preparation of composite photo-catalyst g-C3N4/TiO2 and its photocatalytic capability under visible light[J]. Industrial Water Treatment, 2019, 39(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC201902010.htm
    [26] CHEN Fei, YANG Qi, WANG Yali, et al. Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(Ⅵ) reduction and ciprofloxacin oxidation under visible light: kinetics, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 348: 157-170. doi: 10.1016/j.cej.2018.04.170
    [27] HAMMOND J, HOLUBKA J, DEVRIES J, et al. The application of X-ray photo-electron spectroscopy to a study of interfacial composition in corrosion-induced paint de-adhesion[J]. Corrosion Science, 1981, 21(3): 239-253. doi: 10.1016/0010-938X(81)90033-0
    [28] ZHU Qing, WANG Wansheng, LIN Ling, et al. Facile synthesis of the novel Ag3VO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability[J]. The Journal of Physical Chemistry C, 2013, 117(11): 5894-5900. doi: 10.1021/jp400842r
    [29] HU Xuexiang, HU Chun, WANG Ran. Enhanced solar photodegradation of toxic pollutants by long-lived electrons in Ag-Ag2O nanocomposites[J]. Applied Catalysis B: Environmental, 2015, 176: 637-645. http://www.sciencedirect.com/science/article/pii/S0926337315002283
    [30] 高闯闯, 刘海成, 孟无霜, 等. Ag3PO4/g-C3N4复合光催化剂的制备及其可见光催化性能[J]. 环境科学, 2021, 42(5): 2343-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105029.htm

    GAO Chuangchuang, LIU Haicheng, MENG Wushuang, et al. Preparation of Ag3PO4/g-C3N4 composite photocatalysts and their visible-light photocatalytic performance[J]. Environmental Science, 2021, 42(5): 2343-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105029.htm
    [31] LIN Xue, XU Da, XI Yang, et al. Construction of leaf-like g-C3N4/Ag/BiVO4 nanoheterostructures with enhanced photocatalysis performance under visible-light irradiation[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 513: 117-124. http://www.onacademic.com/detail/journal_1000039685710910_4306.html
    [32] CHEN Lang, HUANG Rui, MA Yingjie, et al. Controllable synthesis of hollow and porous Ag/BiVO4 composites with enhanced visible-light photocatalytic performance[J]. RSC Advances, 2013, 3(46): 24354-24361. doi: 10.1039/c3ra43691h
    [33] XU Boran, LI Yandong, GAO Yangqin, et al. Ag-AgI/Bi3O4Cl for efficient visible light photocatalytic degradation of methyl orange: the surface plasmon resonance effect of Ag and mechanism insight[J]. Applied Catalysis B: Environmental, 2019, 246: 140-148. doi: 10.1016/j.apcatb.2019.01.060
    [34] LI Chunmei, CHEN Gang, SUN Jingxue, et al. Ultrathin nanoflakes constructed erythrocyte-like Bi2WO6 hierarchical architecture via anionic self-regulation strategy for improving photocatalytic activity and gas-sensing property[J]. Applied Catalysis B: Environmental, 2015, 163: 415-423. doi: 10.1016/j.apcatb.2014.07.060
    [35] STYLIDI M, KONDARIDES D, VERYKIOS X. Visible light-Induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions[J]. Applied Catalysis B: Environmental, 2004, 47(3): 189-201. doi: 10.1016/j.apcatb.2003.09.014
    [36] DONG Hongjun, CHEN Gang, SUN Jingxue, et al. A novel high-efficiency visible-light sensitive Ag2CO3 photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study[J]. Applied Catalysis B: Environmental, 2013, 134: 46-54. http://www.sciencedirect.com/science/article/pii/S0926337312006091
    [37] WANG Shaomang, LI Dinglong, SUN Cheng, et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation[J]. Applied Catalysis B: Environmental, 2014, 144: 885-892. doi: 10.1016/j.apcatb.2013.08.008
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  259
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-09-17

目录

    /

    返回文章
    返回