Research Progress in Degradation of Organic Pollutants by Inorganic Co-Catalytic Fenton and Fenton-Like Reactions
-
摘要: 芬顿技术常用于去除水中的有机污染物,通过向溶液中加入Fe2+和H2O2便可以产生自由基并进一步氧化有机物,但传统的芬顿技术总是伴随着诸如铁泥、较窄的pH适用范围等缺点. 近年来,以MoS2为代表的一类无机助催化剂可以有效地促进(类)芬顿反应中Fe2+/Fe3+的循环以及反应中自由基的生成,MoS2因其表面存在的还原态金属活性中心可以有效地还原Fe3+或Co3+等金属离子并减少元素的流失. 为了进一步明确无机助催化剂的性能和微观机制,本文综述了以MoS2为代表的助催化剂在均相和非均相芬顿反应中对于H2O2及PMS的活化效果. 结果表明:无论是在均相还是非均相(类)芬顿反应中,MoS2、CoS2等表面存在的还原态金属活性中心均能显著促进(类)芬顿反应中金属离子的循环,并提高反应中强氧化性活性氧物种的浓度,而一些助催化剂在助催化芬顿反应的同时,甚至可以自产活性氧物种或是自主活化PMS. 但目前的研究仍存在一些不足,如无机助催化剂极有可能会给反应体系带来重金属离子的二次污染,一般的非均相催化剂及助催化剂的使用时限较短,并不能满足实际工业化的应用. 因此在未来的研究中,提高催化剂和助催化剂的反应稳定性和进一步提高反应活性应作为研究的重点. 其中,将纳米技术与催化剂和助催化剂的制备相结合,或进一步改善助催化剂的效能均可能有效推进无机催化剂及助催化剂在工业应用上的进程.
-
关键词:
- 助催化剂 /
- 芬顿反应 /
- 污染物降解 /
- 二硫化钼(MoS2)
Abstract: The Fenton process has been widely employed to treat organic pollutants in water since its development. By adding Fe2+ and H2O2 to the solution, free radicals are generated to oxidize organic compounds. However, the traditional Fenton process is accompanied by shortcomings such as a narrow adaptable pH range and the formation of iron sludge. In recent years, novel inorganic co-catalysts represented by MoS2 have been found to effectively promote the circulation of Fe2+/Fe3+ and the generation of free radicals in Fenton and Fenton-like reaction. MoS2 can effectively reduce metal ions such as Fe3+ or Co3+ and abate the loss of elements due to the reduced metal active centers on the surface of MoS2. In order to further clarify the performance and micro-mechanism of inorganic co-catalysts, the activation effects of co-catalyst represented by MoS2 on H2O2 and PMS in homogeneous and heterogeneous Fenton reactions were reviewed. The results showed that whether in homogeneous or heterogeneous Fenton-like reaction, the reduced metal active centers on the surface of MoS2 or CoS2 could significantly promote the circulation of metal ions in Fenton-like reaction and increase the concentration of oxidizing active oxygen species in the reaction system, and some co-catalysts could even produce additional active oxygen species or activate PMS autonomously while promoting the Fenton reactions. However, there are still some shortcomings in the current research. For example, inorganic co-catalysts may cause secondary pollution of heavy metals. In addition, the service lives of common heterogeneous catalysts and co-catalysts are relatively short and inadequate for practical industrial applications. Therefore, future research should focus on improving the reaction stability and overall activity of catalysts and co-catalysts. Thereinto, the combination of nanotechnologies with the preparation of catalysts and co-catalysts, or further improvement of the efficiency of co-catalysts may greatly promote their industrial applications.-
Key words:
- co-catalyst /
- Fenton reaction /
- degradation of pollutant /
- molybdenum disulfide (MoS2)
-
表 1 无机助催化剂助催化(类)芬顿体系降解有机污染物活性
Table 1. The activity of inorganic co-catalyst to promote Fenton and Fenton-like reaction to degrade organic pollutants
助催化剂 铁源 活性物质 污染物 pH 反应时间/min 降解率/% 污染物浓度/(mg/L) 数据来源 MoS2 FeSO4·7H2O H2O2 RhB 3.4 0.33 96 20 文献[28] MoS2 FeCl3·6H2O H2O2 RhB 3~5 60 80 10 文献[44] MoS2 FeS H2O2 RhB 6.5 30 90 10 文献[46] MoS2 FeVO4 H2O2 四环素 — 10 70 50 文献[47] SMG FeSO4·7H2O H2O2/PMS 磺胺嘧啶 4.0 15 98.3 20 文献[48] MoS2 — PMS 苯酚 3.0 25 80 10 文献[55] MoS2 — PS 卡马西平 5.8 40 95.3 20 文献[56] MoS2 FeSO4·7H2O PMS 磺胺甲恶唑 3.0 6 88.5 6.3 文献[58] MoS2 Fe3O4 PMS 磺酰胺 3.0 15 99.8 20 文献[59] WS2 FeSO4·7H2O H2O2 苯酚 3.8 1 81 10 文献[60] WS2 FeCl3·6H2O PMS 卡马西平 4.0 10 100 8 文献[61] WS2 ZVI H2O2 L-RhB 4.12 12 100 20 文献[63] Co8S9QD FeSO4·7H2O H2O2 RhB 4.0 10 100 20 文献[72] CoSx FeSO4·7H2O — RhB 4.5 120 73.7 20 文献[73] MoO2 — PMS 1-氯萘 4.4 180 97.87 1 文献[75] MoO2 FeSO4·7H2O PMS L-RhB 3.0 15 100 20 文献[77] MoO2 FeSO4·7H2O H2O2 L-RhB 3.4 3 100 20 文献[78] Mo FeSO4·7H2O H2O2 L-RhB 3.8 5 100 20 文献[79] Mo FeSO4·7H2O PMS RhB 5.6 10 100 20 文献[80] -
[1] BABUPONNUSAMI A, MUTHUKUMAR K. A review on Fenton and improvements to the Fenton process for wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 557-572. doi: 10.1016/j.jece.2013.10.011 [2] 李一凡, 王应军, 廖鑫. CuO/Ac催化过硫酸盐对模拟废水中苯酚的降解效果[J]. 环境科学研究, 2018, 31(11): 1949-1956. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20181117&flag=1LI Yifan, WANG Yingjun, LIAO Xin. Degradation effect of phenol in simulated wastewater by CuO/Ac catalyzed persulfate[J]. Research of Environmental Sciences, 2018, 31(11): 1949-1956. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20181117&flag=1 [3] 韩金栋, 蒋进元, 李君超, 等. 纳米Fe/Co催化降解土霉素效果及影响因素研究[J]. 环境科学研究, 2020, 33(10): 2335-2341. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201012&flag=1HAN Jindong, JIANG Jinyuan, LI Junchao, et al. Oxidative degradation of oxytetracycling using nano Fe/Co catalyst and H2O2 under Fenton conditions[J]. Research of Environmental Sciences, 2020, 33(10): 2335-2341. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201012&flag=1 [4] 郭彦秀, 李旭光, 侯太磊, 等. 生物炭基材料活化过一硫酸盐降解有机污染物的研究进展[J]. 环境科学研究, 2021, 34(4): 936-944. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210417&flag=1GUO Yanxiu, LI Xuguang, HOU Tailei, et al. Review of biochar-based materials for catalyzing peroxymonsulfate degradation of organic pollutants[J]. Research of Environmental Sciences, 2021, 34(4): 936-944. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210417&flag=1 [5] BRILLAS E, SIRÉS I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry[J]. Chemical Reviews, 2009, 109(12): 6570-6631. doi: 10.1021/cr900136g [6] ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670: 110-121. doi: 10.1016/j.scitotenv.2019.03.180 [7] YAN Q, ZHANG J, XING M. Cocatalytic Fenton reaction for pollutant control[J]. Cell Reports Physical Science, 2020, 1(4): 100149. http://www.sciencedirect.com/science/article/pii/S2666386420301533 [8] FRANCISCO J, FERNANDO J, JESUS F. Oxidation of p-hydroxybenzoic acid by Fenton's reagent[J]. Water Research, 2001, 35(2): 387-396. doi: 10.1016/S0043-1354(00)00285-2 [9] UTSET B, GARCIA J, CASADO J, et al. Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions[J]. Chemosphere, 2000, 41(8): 1187-1192. doi: 10.1016/S0045-6535(00)00011-4 [10] RODRIGUEZ M L, TIMOKHIN V I, CONTRERAS S, et al. Rate equation for the degradation of nitrobenzene by 'Fenton-like' reagent[J]. Advances in Environmental Research, 2003, 7(2): 583-595. doi: 10.1016/S1093-0191(02)00024-2 [11] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84. doi: 10.1080/10643380500326564 [12] XU L, WANG J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol[J]. Journal of Hazardous Materials, 2011, 186(1): 256-264. doi: 10.1016/j.jhazmat.2010.10.116 [13] BABUPONNUSAMI A, MUTHUKUMAR K. Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron[J]. Separation and Purification Technology, 2012, 98: 130-135. doi: 10.1016/j.seppur.2012.04.034 [14] WANG W, ZHOU M, MAO Q, et al. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst[J]. Catalysis Communications, 2010, 11(11): 937-941. doi: 10.1016/j.catcom.2010.04.004 [15] BAO T, JIN J, DAMTIE M M, et al. Green synthesis and application of nanoscale zero-valent iron/rectorite composite material for P-chlorophenol degradation via heterogeneous Fenton reaction[J]. Journal of Saudi Chemical Society, 2019, 23(7): 864-878. doi: 10.1016/j.jscs.2019.02.001 [16] ENGELMANN M D, BOBIER R T, HIATT T, et al. Variability of the Fenton reaction characteristics of the EDTA, DTPA, and citrate complexes of iron[J]. Biometals, 2003, 16(4): 519-527. doi: 10.1023/A:1023480617038 [17] BOLOBAJEV J, TRAPIDO M, GOI A. Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid[J]. Chemical Engineering Journal, 2015, 281: 566-574. doi: 10.1016/j.cej.2015.06.115 [18] ENGLEHARDT J D, MEEROFF D E, ECHEGOYEN L, et al. Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration[J]. Environmental Science & Technology, 2007, 41(1): 270-276. http://www.researchgate.net/profile/James_Englehardt/publication/6538475_Oxidation_of_aqueous_EDTA_and_associated_organics_and_coprecipitation_of_inorganics_by_ambient_iron-mediated_aeration/links/54ef366d0cf2495330e1bcea [19] NAM S, RENGANATHAN V, TRATNYEK P G. Substituent effects on azo dye oxidation by the Fe(Ⅲ)-EDTA-H2O2 system[J]. Chemosphere, 2001, 45(1): 59-65. doi: 10.1016/S0045-6535(00)00599-3 [20] XU H, JIANG N, WANG D, et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways[J]. Applied Catalysis B: Environmental, 2020, 263: 118350. doi: 10.1016/j.apcatb.2019.118350 [21] LI Y, YANG T, QIU S, et al. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species[J]. Chemical Engineering Journal, 2020, 389: 124382. doi: 10.1016/j.cej.2020.124382 [22] AN S, ZHANG G, WANG T, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride(g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano, 2018, 12(9): 9441-9450. doi: 10.1021/acsnano.8b04693 [23] QI Y, LI J, ZHANG Y, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway[J]. Applied Catalysis B: Environmental, 2021, 286: 119910. doi: 10.1016/j.apcatb.2021.119910 [24] MA J, YANG Q, WEN Y, et al. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied Catalysis B: Environmental, 2017, 201: 232-240. doi: 10.1016/j.apcatb.2016.08.048 [25] WANG F, WANG Y, FENG Y, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B: Environmental, 2018, 221: 510-520. doi: 10.1016/j.apcatb.2017.09.055 [26] GAO Y, YANG C, ZHOU M, et al. Transition metal and metal-Nxcodoped MOF-Derived Fenton-like catalysts: a comparative study on single atoms and nanoparticles[J]. Small, 2020, 16(50): 2005060. doi: 10.1002/smll.202005060 [27] PENG L, DUAN X, SHANG Y, et al. Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways[J]. Applied Catalysis B: Environmental, 2021, 287: 119963. doi: 10.1016/j.apcatb.2021.119963 [28] XING M, XU W, DONG C, et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes[J]. Chem, 2018, 4(6): 1359-1372. doi: 10.1016/j.chempr.2018.03.002 [29] YUAN X, LI X, ZHANG X, et al. MoS2 vertically grown on graphene with efficient electrocatalytic activity in Pt-free dye-sensitized solar cells[J]. Journal of Alloys and Compounds, 2018, 731: 685-692. doi: 10.1016/j.jallcom.2017.08.208 [30] YU C, MENG X, SONG X, et al. Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells[J]. Carbon, 2016, 100: 474-483. doi: 10.1016/j.carbon.2016.01.042 [31] RASHIDI S, RASHIDI S, HEYDARI R K, et al. WS2 and MoS2 counter electrode materials for dye-sensitized solar cells[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(2): 238-261. doi: 10.1002/pip.3350 [32] LI L, ZHANG X, WANG D, et al. Electrospinning synthesis of high performance carbon nanofiber coated flower-like MoS2 nanosheets for dye-sensitized solar cells counter electrode[J]. Electrochimica Acta, 2018, 280: 94-100. doi: 10.1016/j.electacta.2018.05.113 [33] DA-SILVEIRA-FIRMIANO E G, RABELO A C, DALMASCHIO C J, et al. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide[J]. Advanced Energy Materials, 2014, 4(6): 1301380. doi: 10.1002/aenm.201301380 [34] HUANG K J, WANG L, LIU Y J, et al. Layered MoS2-graphene composites for supercapacitor applications with enhanced capacitive performance[J]. International Journal of Hydrogen Energy, 2013, 38(32): 14027-14034. doi: 10.1016/j.ijhydene.2013.08.112 [35] ZHAO C, ZHOU Y, GE Z, et al. Facile construction of MoS2/RCF electrode for high-performance supercapacitor[J]. Carbon, 2018, 127: 699-706. doi: 10.1016/j.carbon.2017.11.052 [36] YANG Y, FEI H, RUAN G, et al. Edge-oriented MoS2nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices[J]. Advanced Materials, 2014, 26(48): 8163-8168. doi: 10.1002/adma.201402847 [37] FENG C, MA J, LI H, et al. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications[J]. Materials Research Bulletin, 2009, 44(9): 1811-1815. doi: 10.1016/j.materresbull.2009.05.018 [38] CHANG K, CHEN W. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6): 4720-4728. doi: 10.1021/nn200659w [39] TAN Y, LIU P, CHEN L, et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production[J]. Advanced Materials, 2014, 26(47): 8023-8028. doi: 10.1002/adma.201403808 [40] ZHANG P, XIANG H, TAO L, et al. Chemically activated MoS2 for efficient hydrogen production[J]. Nano Energy, 2019, 57: 535-541. doi: 10.1016/j.nanoen.2018.12.045 [41] ZHANG F J, LI X, SUN X Y, et al. Surface partially oxidized MoS2 nanosheets as a higher efficient cocatalyst for photocatalytic hydrogen production[J]. Applied Surface Science, 2019, 487: 734-742. doi: 10.1016/j.apsusc.2019.04.258 [42] THEERTHAGIRI J, SENTHIL R, SENTHILKUMAR B, et al. Recent advances in MoS2 nanostructured materials for energy and environmental applications: a review[J]. Journal of Solid State Chemistry, 2017, 252: 43-71. doi: 10.1016/j.jssc.2017.04.041 [43] ZHANG Z, WANG Y, JIANG F, et al. Co-catalytic effect of molybdenum disulfide on Fenton reaction for the degradation of acid Orange 7 dye: reaction mechanism, performance optimization, and toxicity evaluation[J]. Environmental Engineering Science, 2021. doi: 10.1089/ees.2020.0231. [44] LUO H, CHENG Y, ZENG Y, et al. Enhanced decomposition of H2O2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants[J]. Science of the Total Environment, 2020, 732: 139335. doi: 10.1016/j.scitotenv.2020.139335 [45] LIU J, DONG C, DENG Y, et al. Molybdenum sulfide co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli[J]. Water Research, 2018, 145: 312-320. doi: 10.1016/j.watres.2018.08.039 [46] YANG Y, WANG Q, ALEISA R, et al. MoS2/FeS nanocomposite catalyst for efficient Fenton reaction[J]. ACS Applied Materials & Interfaces, 2021. doi: 10.1021/acsami.1c02864. [47] LIU Q, ZHAO J, WANG Y, et al. The novel photo-Fenton-like few-layer MoS2/FeVO4 composite for improved degradation activity under visible light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623: 126721. doi: 10.1016/j.colsurfa.2021.126721 [48] ZHU L, JI J, LIU J, et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control[J]. Angewandte Chemie International Edition, 2020, 59(33): 13968-13976. doi: 10.1002/anie.202006059 [49] BABAEI A A, KAKAVANDI B, RAFIEE M, et al. Comparative treatment of textile wastewater by adsorption, Fenton, UV-Fenton and US-Fenton using magnetic nanoparticles-functionalized carbon (MNPs@C)[J]. Journal of Industrial and Engineering Chemistry, 2017, 56: 163-174. doi: 10.1016/j.jiec.2017.07.009 [50] RASTOGI A, AL-ABED S R, DIONYSIOU D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B: Environmental, 2009, 85(3/4): 171-179. http://www.onacademic.com/detail/journal_1000034049587510_f12e.html [51] NFODZO P, CHOI H. Triclosan decomposition by sulfate radicals: effects of oxidant and metal doses[J]. Chemical Engineering Journal, 2011, 174(2/3): 629-634. http://www.onacademic.com/detail/journal_1000035034217310_c899.html [52] RASTOGI A, AL-ABED S R, DIONYSIOU D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(Ⅱ) mediated advanced oxidation of chlorophenols[J]. Water Research, 2009, 43(3): 684-694. doi: 10.1016/j.watres.2008.10.045 [53] DIAO Z H, LIN Z Y, CHEN X Z, et al. Ultrasound-assisted heterogeneous activation of peroxymonosulphate by natural pyrite for 2, 4-diclorophenol degradation in water: synergistic effects, pathway and mechanism[J]. Chemical Engineering Journal, 2020, 389: 123771. doi: 10.1016/j.cej.2019.123771 [54] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [55] DU M, YI Q, JI J, et al. Sustainable activation of peroxymonosulfate by the Mo(Ⅳ) in MoS2 for the remediation of aromatic organic pollutants[J]. Chinese Chemical Letters, 2020, 31(10): 2803-2808. doi: 10.1016/j.cclet.2020.08.002 [56] ZHOU H, LAI L, WAN Y, et al. Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine[J]. Chemical Engineering Journal, 2020, 384: 123264. doi: 10.1016/j.cej.2019.123264 [57] DUAN X, AO Z, SUN H, et al. Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study[J]. Chemical Communications, 2015, 51(83): 15249-15252. doi: 10.1039/C5CC05101K [58] WANG S, XU W, WU J, et al. Improved sulfamethoxazole degradation by the addition of MoS2 into the Fe2+/peroxymonosulfate process[J]. Separation and Purification Technology, 2020, 235: 116170. doi: 10.1016/j.seppur.2019.116170 [59] LU J, ZHOU Y, ZHOU Y. Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides[J]. Chemical Engineering Journal, 2021, 422: 130126. doi: 10.1016/j.cej.2021.130126 [60] DONG C, JI J, SHEN B, et al. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(Ⅵ) and remediation of phenol[J]. Environmental Science & Technology, 2018, 52(19): 11297-11308. http://www.ncbi.nlm.nih.gov/pubmed/30180549 [61] LUO H, ZHOU X, GUO X, et al. WS2 as highly active co-catalyst for the regeneration of Fe(Ⅱ) in the advanced oxidation processes[J]. Chemosphere, 2021, 262: 128067. doi: 10.1016/j.chemosphere.2020.128067 [62] LUO H, LIU C, CHENG Y, et al. Fe(Ⅲ) greatly promotes peroxymonosulfate activation by WS2 for efficient carbamazepine degradation and Escherichia coli disinfection[J]. Science of the Total Environment, 2021, 787: 147724. doi: 10.1016/j.scitotenv.2021.147724 [63] XIAO Y, JI J, ZHU L, et al. Regeneration of zero-valent iron powder by the co-catalytic effect of WS2 in the environmental applications[J]. Chemical Engineering Journal, 2020, 383: 123158. doi: 10.1016/j.cej.2019.123158 [64] BANDALA E R, PELÁEZ M A, SALGADO M J, et al. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes[J]. Journal of Hazardous Materials, 2008, 151(2/3): 578-584. http://www.researchgate.net/profile/Erick_Bandala/publication/6181186_Degradation_of_sodium_dodecyl_sulphate_in_water_using_solar_driven_Fenton-like_advanced_oxidation_processes/links/00b7d51c4ba3cafeda000000 [65] ANIPSITAKIS G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology, 2003, 37(20): 4790-4797. http://www.minimanuscript.com/manuscripts/degradation-of-organic-contaminants-in-wa.pdf [66] RODRIGUEZ-NARVAEZ O, PACHECO-ALVAREZ M, WRÓBEL K, et al. Development of a Co2+/PMS process involving target contaminant degradation and PMS decomposition[J]. International Journal of Environmental Science and Technology, 2020, 17(1): 17-26. doi: 10.1007/s13762-019-02427-y [67] WANG Z, YUAN R, GUO Y, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: kinetic analysis[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 1083-1087. [68] LING S K, WANG S, PENG Y. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 385-389. http://www.onacademic.com/detail/journal_1000034085535510_f699.html [69] DING Y, HU Y, PENG X, et al. Micro-nano structured CoS: an efficient catalyst for peroxymonosulfate activation for removal of bisphenol A[J]. Separation and Purification Technology, 2020, 233: 116022. doi: 10.1016/j.seppur.2019.116022 [70] WU X, ZHAO W, HUANG Y, et al. A mechanistic study of amorphous CoSx cages as advanced oxidation catalysts for excellent peroxymonosulfate activation towards antibiotics degradation[J]. Chemical Engineering Journal, 2020, 381: 122768. doi: 10.1016/j.cej.2019.122768 [71] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438. doi: 10.1016/j.watres.2013.06.023 [72] DONG C, YI Q, SHEN B, et al. Novel Fenton process of Co-catalyst Co9S8 quantum dots for highly efficient removal of organic pollutants[J]. Chemosphere, 2021, 270: 128648. doi: 10.1016/j.chemosphere.2020.128648 [73] JI J, YAN Q, YIN P, et al. Defects on CoS2-x: tuning redox reactions for sustainable degradation of organic pollutants[J]. Angewandte Chemie International Edition, 2021, 133(6): 2939-2944. [74] ZHAO Y, ZHANG Y, YANG Z, et al. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review[J]. Science and Technology of Advanced Materials, 2013, 14(4): 43501. doi: 10.1088/1468-6996/14/4/043501 [75] CHEN X, VIONE D, BORCH T, et al. Nano-MoO2 activates peroxymonosulfate for the degradation of PAH derivatives[J]. Water Research, 2021, 192: 116834. doi: 10.1016/j.watres.2021.116834 [76] ZHUANG R, YAO S, SHEN X, et al. Hydrothermal synthesis of mesoporous MoO2 nanospheres as sulfur matrix for lithium sulfur battery[J]. Journal of Electroanalytical Chemistry, 2019, 833: 441-448. doi: 10.1016/j.jelechem.2018.12.009 [77] JI J, ALEISA R M, DUAN H, et al. Metallic active sites on MoO2(110)surface to catalyze advanced oxidation processes for efficient pollutant removal[J]. iScience, 2020, 23(2): 100861. doi: 10.1016/j.isci.2020.100861 [78] SHEN B, DONG C, JI J, et al. Efficient Fe(Ⅲ)/Fe(Ⅱ) cycling triggered by MoO2 in Fenton reaction for the degradation of dye molecules and the reduction of Cr(Ⅵ)[J]. Chinese Chemical Letters, 2019, 30(12): 2205-2210. doi: 10.1016/j.cclet.2019.09.052 [79] YI Q, JI J, SHEN B, et al. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment[J]. Environmental Science & Technology, 2019, 53(16): 9725-9733. http://www.ncbi.nlm.nih.gov/pubmed/31331171 [80] YI Q, LIU W, TAN J, et al. Mo0 and Mo4+ bimetallic reactive sites accelerating Fe2+/Fe3+ cycling for the activation of peroxymonosulfate with significantly improved remediation of aromatic pollutants[J]. Chemosphere, 2020, 244: 125539. doi: 10.1016/j.chemosphere.2019.125539 [81] YANG F, CHU X, SUN J, et al. Efficient singlet oxygen generation by excitonic energy transfer on ultrathin g-C3N4 for selective photocatalytic oxidation of methyl-phenyl-sulfide with O2[J]. Chinese Chemical Letters, 2020, 31(10): 2784-2788. doi: 10.1016/j.cclet.2020.07.033 [82] WANG J, XU X, LIU Y, et al. Oxygen-vacancy-enhanced singlet oxygen production for selective photocatalytic oxidation[J]. ChemSusChem, 2020, 13(13): 3488-3494. doi: 10.1002/cssc.202000595 [83] WANG H, JIANG S, CHEN S, et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis[J]. Advanced Materials, 2016, 28(32): 6940-6945. doi: 10.1002/adma.201601413 [84] DEROSA M C, CRUTCHLEY R J. Photosensitized singlet oxygen and its applications[J]. Coordination Chemistry Reviews, 2002, 233: 351-371. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3CA190B7F241084947AA38925B97A014?doi=10.1.1.466.1512&rep=rep1&type=pdf [85] KOVALEV D, FUJⅡ M. Silicon nanocrystals: photosensitizers for oxygen molecules[J]. Advanced Materials, 2005, 17(21): 2531-2544. doi: 10.1002/adma.200500328 [86] SCHWEITZER C, SCHMIDT R. Physical mechanisms of generation and deactivation of singlet oxygen[J]. Chemical Reviews, 2003, 103(5): 1685-1758. doi: 10.1021/cr010371d -