留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无机助催化(类)芬顿反应降解有机污染物的研究进展

陈撰 嵇家辉 冉茂希 邢明阳

陈撰, 嵇家辉, 冉茂希, 邢明阳. 无机助催化(类)芬顿反应降解有机污染物的研究进展[J]. 环境科学研究, 2021, 34(12): 2787-2797. doi: 10.13198/j.issn.1001-6929.2021.09.18
引用本文: 陈撰, 嵇家辉, 冉茂希, 邢明阳. 无机助催化(类)芬顿反应降解有机污染物的研究进展[J]. 环境科学研究, 2021, 34(12): 2787-2797. doi: 10.13198/j.issn.1001-6929.2021.09.18
CHEN Zhuan, JI Jiahui, RAN Maoxi, XING Mingyang. Research Progress in Degradation of Organic Pollutants by Inorganic Co-Catalytic Fenton and Fenton-Like Reactions[J]. Research of Environmental Sciences, 2021, 34(12): 2787-2797. doi: 10.13198/j.issn.1001-6929.2021.09.18
Citation: CHEN Zhuan, JI Jiahui, RAN Maoxi, XING Mingyang. Research Progress in Degradation of Organic Pollutants by Inorganic Co-Catalytic Fenton and Fenton-Like Reactions[J]. Research of Environmental Sciences, 2021, 34(12): 2787-2797. doi: 10.13198/j.issn.1001-6929.2021.09.18
编者按:
高级氧化技术常用于高浓度有毒难降解有机污染物的预处理和微量新兴污染物的深度处理,本专题将从新型催化材料可控制备、催化氧化还原工艺和机制、降解机理、毒性产物分析和调控等方面介绍国内青年学者在高级氧化方面的研究进展. 具体研究工作包括:活化过硫酸盐、活化过氧乙酸、光催化氧化、电催化、助催化(类)芬顿等高级氧化技术在高浓度有机物污染物的预处理、微量药物类污染物的深度处理以及病原微生物杀灭方面的研究. 现将相关研究成果集中发表,以期为高浓度有机工业废水预处理和医疗污水同步消毒降解技术的研究提供参考.

无机助催化(类)芬顿反应降解有机污染物的研究进展

doi: 10.13198/j.issn.1001-6929.2021.09.18
基金项目: 

国家自然科学基金优秀青年基金项目 21822603

国家重点研发计划青年项目 2016YFA0204200

详细信息
    作者简介:

    陈撰(1997-), 男, 浙江金华人, 715178940@qq.com

    通讯作者:

    邢明阳(1985-), 男, 山东临沂人, 教授, 博士, 博导, 主要从事纳米光催化协同Fenton反应等高级氧化技术(AOPs)处理难降解有机污染物废水研究, mingyangxing@ecust.edu.cn

  • 中图分类号: X142

Research Progress in Degradation of Organic Pollutants by Inorganic Co-Catalytic Fenton and Fenton-Like Reactions

Funds: 

National Natural Science Foundation of China 21822603

National Key Research and Development Program of China 2016YFA0204200

  • 摘要: 芬顿技术常用于去除水中的有机污染物,通过向溶液中加入Fe2+和H2O2便可以产生自由基并进一步氧化有机物,但传统的芬顿技术总是伴随着诸如铁泥、较窄的pH适用范围等缺点. 近年来,以MoS2为代表的一类无机助催化剂可以有效地促进(类)芬顿反应中Fe2+/Fe3+的循环以及反应中自由基的生成,MoS2因其表面存在的还原态金属活性中心可以有效地还原Fe3+或Co3+等金属离子并减少元素的流失. 为了进一步明确无机助催化剂的性能和微观机制,本文综述了以MoS2为代表的助催化剂在均相和非均相芬顿反应中对于H2O2及PMS的活化效果. 结果表明:无论是在均相还是非均相(类)芬顿反应中,MoS2、CoS2等表面存在的还原态金属活性中心均能显著促进(类)芬顿反应中金属离子的循环,并提高反应中强氧化性活性氧物种的浓度,而一些助催化剂在助催化芬顿反应的同时,甚至可以自产活性氧物种或是自主活化PMS. 但目前的研究仍存在一些不足,如无机助催化剂极有可能会给反应体系带来重金属离子的二次污染,一般的非均相催化剂及助催化剂的使用时限较短,并不能满足实际工业化的应用. 因此在未来的研究中,提高催化剂和助催化剂的反应稳定性和进一步提高反应活性应作为研究的重点. 其中,将纳米技术与催化剂和助催化剂的制备相结合,或进一步改善助催化剂的效能均可能有效推进无机催化剂及助催化剂在工业应用上的进程.

     

  • 图  1  (类)芬顿反应的几种催化剂以及助催化剂和芬顿反应的大致反应历程

    Figure  1.  Several catalysts and co-catalysts for Fenton and Fenton-like reactions and the reaction process of Fenton reaction

    图  2  FeSO4/H2O2/MoS2/Vis体系机理示意[28]

    注:经Elsevier许可转载.

    Figure  2.  Schematic diagram of FeSO4/H2O2/MoS2/Vis system mechanism[28]

    图  3  MoS2助催化芬顿体系灭菌示意[45]

    注:经Elsevier许可转载.

    Figure  3.  Schematic diagram of MoS2 co-catalytic Fenton system sterilization[45]

    图  4  MoS2催化分解PMS/PS示意[56]

    注:经Elsevier许可转载.

    Figure  4.  The schematic diagram of MoS2 catalytic decomposition of PMS/PS[56]

    图  5  mZVI/WS2/H2O2体系中类芬顿反应机理[63]

    注:经Elsevier许可转载.

    Figure  5.  The proposed mechanism of Fenton-like reaction over mZVI/WS2/H2O2 system[63]

    图  6  RhB在各系统中的长效性降解[73]

    注:经Wiley许可转载.

    Figure  6.  Long-term degradation of RhB in various systems[73]

    图  7  在Mo共催化芬顿反应中由·O2-引发的1O2的机理[79]

    注:经the American Chemistry Society许可转载.

    Figure  7.  Illustration of 1O2 triggered by·O2- in the Mo co-catalytic Fenton reaction[79]

    表  1  无机助催化剂助催化(类)芬顿体系降解有机污染物活性

    Table  1.   The activity of inorganic co-catalyst to promote Fenton and Fenton-like reaction to degrade organic pollutants

    助催化剂 铁源 活性物质 污染物 pH 反应时间/min 降解率/% 污染物浓度/(mg/L) 数据来源
    MoS2 FeSO4·7H2O H2O2 RhB 3.4 0.33 96 20 文献[28]
    MoS2 FeCl3·6H2O H2O2 RhB 3~5 60 80 10 文献[44]
    MoS2 FeS H2O2 RhB 6.5 30 90 10 文献[46]
    MoS2 FeVO4 H2O2 四环素 10 70 50 文献[47]
    SMG FeSO4·7H2O H2O2/PMS 磺胺嘧啶 4.0 15 98.3 20 文献[48]
    MoS2 PMS 苯酚 3.0 25 80 10 文献[55]
    MoS2 PS 卡马西平 5.8 40 95.3 20 文献[56]
    MoS2 FeSO4·7H2O PMS 磺胺甲恶唑 3.0 6 88.5 6.3 文献[58]
    MoS2 Fe3O4 PMS 磺酰胺 3.0 15 99.8 20 文献[59]
    WS2 FeSO4·7H2O H2O2 苯酚 3.8 1 81 10 文献[60]
    WS2 FeCl3·6H2O PMS 卡马西平 4.0 10 100 8 文献[61]
    WS2 ZVI H2O2 L-RhB 4.12 12 100 20 文献[63]
    Co8S9QD FeSO4·7H2O H2O2 RhB 4.0 10 100 20 文献[72]
    CoSx FeSO4·7H2O RhB 4.5 120 73.7 20 文献[73]
    MoO2 PMS 1-氯萘 4.4 180 97.87 1 文献[75]
    MoO2 FeSO4·7H2O PMS L-RhB 3.0 15 100 20 文献[77]
    MoO2 FeSO4·7H2O H2O2 L-RhB 3.4 3 100 20 文献[78]
    Mo FeSO4·7H2O H2O2 L-RhB 3.8 5 100 20 文献[79]
    Mo FeSO4·7H2O PMS RhB 5.6 10 100 20 文献[80]
    下载: 导出CSV
  • [1] BABUPONNUSAMI A, MUTHUKUMAR K. A review on Fenton and improvements to the Fenton process for wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 557-572. doi: 10.1016/j.jece.2013.10.011
    [2] 李一凡, 王应军, 廖鑫. CuO/Ac催化过硫酸盐对模拟废水中苯酚的降解效果[J]. 环境科学研究, 2018, 31(11): 1949-1956. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20181117&flag=1

    LI Yifan, WANG Yingjun, LIAO Xin. Degradation effect of phenol in simulated wastewater by CuO/Ac catalyzed persulfate[J]. Research of Environmental Sciences, 2018, 31(11): 1949-1956. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20181117&flag=1
    [3] 韩金栋, 蒋进元, 李君超, 等. 纳米Fe/Co催化降解土霉素效果及影响因素研究[J]. 环境科学研究, 2020, 33(10): 2335-2341. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201012&flag=1

    HAN Jindong, JIANG Jinyuan, LI Junchao, et al. Oxidative degradation of oxytetracycling using nano Fe/Co catalyst and H2O2 under Fenton conditions[J]. Research of Environmental Sciences, 2020, 33(10): 2335-2341. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20201012&flag=1
    [4] 郭彦秀, 李旭光, 侯太磊, 等. 生物炭基材料活化过一硫酸盐降解有机污染物的研究进展[J]. 环境科学研究, 2021, 34(4): 936-944. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210417&flag=1

    GUO Yanxiu, LI Xuguang, HOU Tailei, et al. Review of biochar-based materials for catalyzing peroxymonsulfate degradation of organic pollutants[J]. Research of Environmental Sciences, 2021, 34(4): 936-944. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210417&flag=1
    [5] BRILLAS E, SIRÉS I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry[J]. Chemical Reviews, 2009, 109(12): 6570-6631. doi: 10.1021/cr900136g
    [6] ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670: 110-121. doi: 10.1016/j.scitotenv.2019.03.180
    [7] YAN Q, ZHANG J, XING M. Cocatalytic Fenton reaction for pollutant control[J]. Cell Reports Physical Science, 2020, 1(4): 100149. http://www.sciencedirect.com/science/article/pii/S2666386420301533
    [8] FRANCISCO J, FERNANDO J, JESUS F. Oxidation of p-hydroxybenzoic acid by Fenton's reagent[J]. Water Research, 2001, 35(2): 387-396. doi: 10.1016/S0043-1354(00)00285-2
    [9] UTSET B, GARCIA J, CASADO J, et al. Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions[J]. Chemosphere, 2000, 41(8): 1187-1192. doi: 10.1016/S0045-6535(00)00011-4
    [10] RODRIGUEZ M L, TIMOKHIN V I, CONTRERAS S, et al. Rate equation for the degradation of nitrobenzene by 'Fenton-like' reagent[J]. Advances in Environmental Research, 2003, 7(2): 583-595. doi: 10.1016/S1093-0191(02)00024-2
    [11] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84. doi: 10.1080/10643380500326564
    [12] XU L, WANG J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol[J]. Journal of Hazardous Materials, 2011, 186(1): 256-264. doi: 10.1016/j.jhazmat.2010.10.116
    [13] BABUPONNUSAMI A, MUTHUKUMAR K. Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron[J]. Separation and Purification Technology, 2012, 98: 130-135. doi: 10.1016/j.seppur.2012.04.034
    [14] WANG W, ZHOU M, MAO Q, et al. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst[J]. Catalysis Communications, 2010, 11(11): 937-941. doi: 10.1016/j.catcom.2010.04.004
    [15] BAO T, JIN J, DAMTIE M M, et al. Green synthesis and application of nanoscale zero-valent iron/rectorite composite material for P-chlorophenol degradation via heterogeneous Fenton reaction[J]. Journal of Saudi Chemical Society, 2019, 23(7): 864-878. doi: 10.1016/j.jscs.2019.02.001
    [16] ENGELMANN M D, BOBIER R T, HIATT T, et al. Variability of the Fenton reaction characteristics of the EDTA, DTPA, and citrate complexes of iron[J]. Biometals, 2003, 16(4): 519-527. doi: 10.1023/A:1023480617038
    [17] BOLOBAJEV J, TRAPIDO M, GOI A. Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid[J]. Chemical Engineering Journal, 2015, 281: 566-574. doi: 10.1016/j.cej.2015.06.115
    [18] ENGLEHARDT J D, MEEROFF D E, ECHEGOYEN L, et al. Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration[J]. Environmental Science & Technology, 2007, 41(1): 270-276. http://www.researchgate.net/profile/James_Englehardt/publication/6538475_Oxidation_of_aqueous_EDTA_and_associated_organics_and_coprecipitation_of_inorganics_by_ambient_iron-mediated_aeration/links/54ef366d0cf2495330e1bcea
    [19] NAM S, RENGANATHAN V, TRATNYEK P G. Substituent effects on azo dye oxidation by the Fe(Ⅲ)-EDTA-H2O2 system[J]. Chemosphere, 2001, 45(1): 59-65. doi: 10.1016/S0045-6535(00)00599-3
    [20] XU H, JIANG N, WANG D, et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways[J]. Applied Catalysis B: Environmental, 2020, 263: 118350. doi: 10.1016/j.apcatb.2019.118350
    [21] LI Y, YANG T, QIU S, et al. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species[J]. Chemical Engineering Journal, 2020, 389: 124382. doi: 10.1016/j.cej.2020.124382
    [22] AN S, ZHANG G, WANG T, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride(g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano, 2018, 12(9): 9441-9450. doi: 10.1021/acsnano.8b04693
    [23] QI Y, LI J, ZHANG Y, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway[J]. Applied Catalysis B: Environmental, 2021, 286: 119910. doi: 10.1016/j.apcatb.2021.119910
    [24] MA J, YANG Q, WEN Y, et al. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied Catalysis B: Environmental, 2017, 201: 232-240. doi: 10.1016/j.apcatb.2016.08.048
    [25] WANG F, WANG Y, FENG Y, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B: Environmental, 2018, 221: 510-520. doi: 10.1016/j.apcatb.2017.09.055
    [26] GAO Y, YANG C, ZHOU M, et al. Transition metal and metal-Nxcodoped MOF-Derived Fenton-like catalysts: a comparative study on single atoms and nanoparticles[J]. Small, 2020, 16(50): 2005060. doi: 10.1002/smll.202005060
    [27] PENG L, DUAN X, SHANG Y, et al. Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways[J]. Applied Catalysis B: Environmental, 2021, 287: 119963. doi: 10.1016/j.apcatb.2021.119963
    [28] XING M, XU W, DONG C, et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes[J]. Chem, 2018, 4(6): 1359-1372. doi: 10.1016/j.chempr.2018.03.002
    [29] YUAN X, LI X, ZHANG X, et al. MoS2 vertically grown on graphene with efficient electrocatalytic activity in Pt-free dye-sensitized solar cells[J]. Journal of Alloys and Compounds, 2018, 731: 685-692. doi: 10.1016/j.jallcom.2017.08.208
    [30] YU C, MENG X, SONG X, et al. Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells[J]. Carbon, 2016, 100: 474-483. doi: 10.1016/j.carbon.2016.01.042
    [31] RASHIDI S, RASHIDI S, HEYDARI R K, et al. WS2 and MoS2 counter electrode materials for dye-sensitized solar cells[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(2): 238-261. doi: 10.1002/pip.3350
    [32] LI L, ZHANG X, WANG D, et al. Electrospinning synthesis of high performance carbon nanofiber coated flower-like MoS2 nanosheets for dye-sensitized solar cells counter electrode[J]. Electrochimica Acta, 2018, 280: 94-100. doi: 10.1016/j.electacta.2018.05.113
    [33] DA-SILVEIRA-FIRMIANO E G, RABELO A C, DALMASCHIO C J, et al. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide[J]. Advanced Energy Materials, 2014, 4(6): 1301380. doi: 10.1002/aenm.201301380
    [34] HUANG K J, WANG L, LIU Y J, et al. Layered MoS2-graphene composites for supercapacitor applications with enhanced capacitive performance[J]. International Journal of Hydrogen Energy, 2013, 38(32): 14027-14034. doi: 10.1016/j.ijhydene.2013.08.112
    [35] ZHAO C, ZHOU Y, GE Z, et al. Facile construction of MoS2/RCF electrode for high-performance supercapacitor[J]. Carbon, 2018, 127: 699-706. doi: 10.1016/j.carbon.2017.11.052
    [36] YANG Y, FEI H, RUAN G, et al. Edge-oriented MoS2nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices[J]. Advanced Materials, 2014, 26(48): 8163-8168. doi: 10.1002/adma.201402847
    [37] FENG C, MA J, LI H, et al. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications[J]. Materials Research Bulletin, 2009, 44(9): 1811-1815. doi: 10.1016/j.materresbull.2009.05.018
    [38] CHANG K, CHEN W. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6): 4720-4728. doi: 10.1021/nn200659w
    [39] TAN Y, LIU P, CHEN L, et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production[J]. Advanced Materials, 2014, 26(47): 8023-8028. doi: 10.1002/adma.201403808
    [40] ZHANG P, XIANG H, TAO L, et al. Chemically activated MoS2 for efficient hydrogen production[J]. Nano Energy, 2019, 57: 535-541. doi: 10.1016/j.nanoen.2018.12.045
    [41] ZHANG F J, LI X, SUN X Y, et al. Surface partially oxidized MoS2 nanosheets as a higher efficient cocatalyst for photocatalytic hydrogen production[J]. Applied Surface Science, 2019, 487: 734-742. doi: 10.1016/j.apsusc.2019.04.258
    [42] THEERTHAGIRI J, SENTHIL R, SENTHILKUMAR B, et al. Recent advances in MoS2 nanostructured materials for energy and environmental applications: a review[J]. Journal of Solid State Chemistry, 2017, 252: 43-71. doi: 10.1016/j.jssc.2017.04.041
    [43] ZHANG Z, WANG Y, JIANG F, et al. Co-catalytic effect of molybdenum disulfide on Fenton reaction for the degradation of acid Orange 7 dye: reaction mechanism, performance optimization, and toxicity evaluation[J]. Environmental Engineering Science, 2021. doi: 10.1089/ees.2020.0231.
    [44] LUO H, CHENG Y, ZENG Y, et al. Enhanced decomposition of H2O2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants[J]. Science of the Total Environment, 2020, 732: 139335. doi: 10.1016/j.scitotenv.2020.139335
    [45] LIU J, DONG C, DENG Y, et al. Molybdenum sulfide co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli[J]. Water Research, 2018, 145: 312-320. doi: 10.1016/j.watres.2018.08.039
    [46] YANG Y, WANG Q, ALEISA R, et al. MoS2/FeS nanocomposite catalyst for efficient Fenton reaction[J]. ACS Applied Materials & Interfaces, 2021. doi: 10.1021/acsami.1c02864.
    [47] LIU Q, ZHAO J, WANG Y, et al. The novel photo-Fenton-like few-layer MoS2/FeVO4 composite for improved degradation activity under visible light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623: 126721. doi: 10.1016/j.colsurfa.2021.126721
    [48] ZHU L, JI J, LIU J, et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control[J]. Angewandte Chemie International Edition, 2020, 59(33): 13968-13976. doi: 10.1002/anie.202006059
    [49] BABAEI A A, KAKAVANDI B, RAFIEE M, et al. Comparative treatment of textile wastewater by adsorption, Fenton, UV-Fenton and US-Fenton using magnetic nanoparticles-functionalized carbon (MNPs@C)[J]. Journal of Industrial and Engineering Chemistry, 2017, 56: 163-174. doi: 10.1016/j.jiec.2017.07.009
    [50] RASTOGI A, AL-ABED S R, DIONYSIOU D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B: Environmental, 2009, 85(3/4): 171-179. http://www.onacademic.com/detail/journal_1000034049587510_f12e.html
    [51] NFODZO P, CHOI H. Triclosan decomposition by sulfate radicals: effects of oxidant and metal doses[J]. Chemical Engineering Journal, 2011, 174(2/3): 629-634. http://www.onacademic.com/detail/journal_1000035034217310_c899.html
    [52] RASTOGI A, AL-ABED S R, DIONYSIOU D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(Ⅱ) mediated advanced oxidation of chlorophenols[J]. Water Research, 2009, 43(3): 684-694. doi: 10.1016/j.watres.2008.10.045
    [53] DIAO Z H, LIN Z Y, CHEN X Z, et al. Ultrasound-assisted heterogeneous activation of peroxymonosulphate by natural pyrite for 2, 4-diclorophenol degradation in water: synergistic effects, pathway and mechanism[J]. Chemical Engineering Journal, 2020, 389: 123771. doi: 10.1016/j.cej.2019.123771
    [54] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [55] DU M, YI Q, JI J, et al. Sustainable activation of peroxymonosulfate by the Mo(Ⅳ) in MoS2 for the remediation of aromatic organic pollutants[J]. Chinese Chemical Letters, 2020, 31(10): 2803-2808. doi: 10.1016/j.cclet.2020.08.002
    [56] ZHOU H, LAI L, WAN Y, et al. Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine[J]. Chemical Engineering Journal, 2020, 384: 123264. doi: 10.1016/j.cej.2019.123264
    [57] DUAN X, AO Z, SUN H, et al. Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study[J]. Chemical Communications, 2015, 51(83): 15249-15252. doi: 10.1039/C5CC05101K
    [58] WANG S, XU W, WU J, et al. Improved sulfamethoxazole degradation by the addition of MoS2 into the Fe2+/peroxymonosulfate process[J]. Separation and Purification Technology, 2020, 235: 116170. doi: 10.1016/j.seppur.2019.116170
    [59] LU J, ZHOU Y, ZHOU Y. Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides[J]. Chemical Engineering Journal, 2021, 422: 130126. doi: 10.1016/j.cej.2021.130126
    [60] DONG C, JI J, SHEN B, et al. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(Ⅵ) and remediation of phenol[J]. Environmental Science & Technology, 2018, 52(19): 11297-11308. http://www.ncbi.nlm.nih.gov/pubmed/30180549
    [61] LUO H, ZHOU X, GUO X, et al. WS2 as highly active co-catalyst for the regeneration of Fe(Ⅱ) in the advanced oxidation processes[J]. Chemosphere, 2021, 262: 128067. doi: 10.1016/j.chemosphere.2020.128067
    [62] LUO H, LIU C, CHENG Y, et al. Fe(Ⅲ) greatly promotes peroxymonosulfate activation by WS2 for efficient carbamazepine degradation and Escherichia coli disinfection[J]. Science of the Total Environment, 2021, 787: 147724. doi: 10.1016/j.scitotenv.2021.147724
    [63] XIAO Y, JI J, ZHU L, et al. Regeneration of zero-valent iron powder by the co-catalytic effect of WS2 in the environmental applications[J]. Chemical Engineering Journal, 2020, 383: 123158. doi: 10.1016/j.cej.2019.123158
    [64] BANDALA E R, PELÁEZ M A, SALGADO M J, et al. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes[J]. Journal of Hazardous Materials, 2008, 151(2/3): 578-584. http://www.researchgate.net/profile/Erick_Bandala/publication/6181186_Degradation_of_sodium_dodecyl_sulphate_in_water_using_solar_driven_Fenton-like_advanced_oxidation_processes/links/00b7d51c4ba3cafeda000000
    [65] ANIPSITAKIS G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology, 2003, 37(20): 4790-4797. http://www.minimanuscript.com/manuscripts/degradation-of-organic-contaminants-in-wa.pdf
    [66] RODRIGUEZ-NARVAEZ O, PACHECO-ALVAREZ M, WRÓBEL K, et al. Development of a Co2+/PMS process involving target contaminant degradation and PMS decomposition[J]. International Journal of Environmental Science and Technology, 2020, 17(1): 17-26. doi: 10.1007/s13762-019-02427-y
    [67] WANG Z, YUAN R, GUO Y, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: kinetic analysis[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 1083-1087.
    [68] LING S K, WANG S, PENG Y. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 385-389. http://www.onacademic.com/detail/journal_1000034085535510_f699.html
    [69] DING Y, HU Y, PENG X, et al. Micro-nano structured CoS: an efficient catalyst for peroxymonosulfate activation for removal of bisphenol A[J]. Separation and Purification Technology, 2020, 233: 116022. doi: 10.1016/j.seppur.2019.116022
    [70] WU X, ZHAO W, HUANG Y, et al. A mechanistic study of amorphous CoSx cages as advanced oxidation catalysts for excellent peroxymonosulfate activation towards antibiotics degradation[J]. Chemical Engineering Journal, 2020, 381: 122768. doi: 10.1016/j.cej.2019.122768
    [71] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438. doi: 10.1016/j.watres.2013.06.023
    [72] DONG C, YI Q, SHEN B, et al. Novel Fenton process of Co-catalyst Co9S8 quantum dots for highly efficient removal of organic pollutants[J]. Chemosphere, 2021, 270: 128648. doi: 10.1016/j.chemosphere.2020.128648
    [73] JI J, YAN Q, YIN P, et al. Defects on CoS2-x: tuning redox reactions for sustainable degradation of organic pollutants[J]. Angewandte Chemie International Edition, 2021, 133(6): 2939-2944.
    [74] ZHAO Y, ZHANG Y, YANG Z, et al. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review[J]. Science and Technology of Advanced Materials, 2013, 14(4): 43501. doi: 10.1088/1468-6996/14/4/043501
    [75] CHEN X, VIONE D, BORCH T, et al. Nano-MoO2 activates peroxymonosulfate for the degradation of PAH derivatives[J]. Water Research, 2021, 192: 116834. doi: 10.1016/j.watres.2021.116834
    [76] ZHUANG R, YAO S, SHEN X, et al. Hydrothermal synthesis of mesoporous MoO2 nanospheres as sulfur matrix for lithium sulfur battery[J]. Journal of Electroanalytical Chemistry, 2019, 833: 441-448. doi: 10.1016/j.jelechem.2018.12.009
    [77] JI J, ALEISA R M, DUAN H, et al. Metallic active sites on MoO2(110)surface to catalyze advanced oxidation processes for efficient pollutant removal[J]. iScience, 2020, 23(2): 100861. doi: 10.1016/j.isci.2020.100861
    [78] SHEN B, DONG C, JI J, et al. Efficient Fe(Ⅲ)/Fe(Ⅱ) cycling triggered by MoO2 in Fenton reaction for the degradation of dye molecules and the reduction of Cr(Ⅵ)[J]. Chinese Chemical Letters, 2019, 30(12): 2205-2210. doi: 10.1016/j.cclet.2019.09.052
    [79] YI Q, JI J, SHEN B, et al. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment[J]. Environmental Science & Technology, 2019, 53(16): 9725-9733. http://www.ncbi.nlm.nih.gov/pubmed/31331171
    [80] YI Q, LIU W, TAN J, et al. Mo0 and Mo4+ bimetallic reactive sites accelerating Fe2+/Fe3+ cycling for the activation of peroxymonosulfate with significantly improved remediation of aromatic pollutants[J]. Chemosphere, 2020, 244: 125539. doi: 10.1016/j.chemosphere.2019.125539
    [81] YANG F, CHU X, SUN J, et al. Efficient singlet oxygen generation by excitonic energy transfer on ultrathin g-C3N4 for selective photocatalytic oxidation of methyl-phenyl-sulfide with O2[J]. Chinese Chemical Letters, 2020, 31(10): 2784-2788. doi: 10.1016/j.cclet.2020.07.033
    [82] WANG J, XU X, LIU Y, et al. Oxygen-vacancy-enhanced singlet oxygen production for selective photocatalytic oxidation[J]. ChemSusChem, 2020, 13(13): 3488-3494. doi: 10.1002/cssc.202000595
    [83] WANG H, JIANG S, CHEN S, et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis[J]. Advanced Materials, 2016, 28(32): 6940-6945. doi: 10.1002/adma.201601413
    [84] DEROSA M C, CRUTCHLEY R J. Photosensitized singlet oxygen and its applications[J]. Coordination Chemistry Reviews, 2002, 233: 351-371. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3CA190B7F241084947AA38925B97A014?doi=10.1.1.466.1512&rep=rep1&type=pdf
    [85] KOVALEV D, FUJⅡ M. Silicon nanocrystals: photosensitizers for oxygen molecules[J]. Advanced Materials, 2005, 17(21): 2531-2544. doi: 10.1002/adma.200500328
    [86] SCHWEITZER C, SCHMIDT R. Physical mechanisms of generation and deactivation of singlet oxygen[J]. Chemical Reviews, 2003, 103(5): 1685-1758. doi: 10.1021/cr010371d
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  149
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-08-31

目录

    /

    返回文章
    返回