Degradation Performance and Mechanism of Rhodamine B by Chloride Activated Peracetic Acid
-
摘要: 为解决传统H2O2(过氧化氢)体系对高盐特性染料废水去除效率低的问题,筛选合适的氧化剂迫在眉睫. PAA(过氧乙酸)因具备氧化还原电位较高、裂解所需键能较低、对pH适应范围更广等优点具有巨大的应用潜力. 因此,采用高浓度梯度Cl-活化PAA用于去除RhB(罗丹明B),通过对比不同体系的降解效果、控制Cl-浓度和PAA投加量等反应条件,探究Cl-/PAA体系降解RhB的催化性能及反应机理. 结果表明:①Cl-/PAA体系对RhB的氧化能力远高于Cl-/H2O2体系,并且RhB降解过程符合拟一级反应动力学模型,提高氧化剂PAA的投加量和催化剂Cl-的浓度、降低初始RhB浓度均有利于目标污染物的去除. ②在初始RhB浓度为10 mg/L、PAA投加量为2.0 mmol/L、Cl-浓度为400 mmol/L后续处理条件下,10 min内RhB的降解率达到96.2%. ③pH对RhB的降解影响微弱, Fe3+促进了RhB的降解,K+对降解过程轻微抑制,NO2-、CO32-、HCO3-则表现出非常显著的抑制作用,脱色率分别降低了70.8%、83.8%和90.8%,而Mn2+、SO42-对RhB降解无显著影响. ④RhB在超纯水、自来水及反渗透水不同水源中的降解率无明显变化,具有良好的应用前景;结合自由基捕获试验及电子自旋共振证明,Cl-/PAA体系中产生的乙酰氧基、乙酰过氧基及单线态氧是在RhB降解中起主导作用的活性物质. 研究显示,Cl-活化PAA对去除罗丹明B具有较高的催化活性,通过模拟实际废水证明Cl-/PAA是一种可行的高级氧化技术.Abstract: In order to solve the problem of low efficiency of conventional hydrogen peroxide systems in removing dye from high-salt wastewater, suitable oxidants are urgent need. Considering the advantages of peracetic acid (PAA) with higher redox potential, lower bond energy, and wider pH adaptation range, PAA is used for the removal of Rhodamine B (RhB) with a high concentration gradient of Cl- activation in this study. The catalytic performance and reaction mechanism of the Cl-/PAA system for RhB degradation is investigated by comparing the degradation effects of different systems and controlling the reaction conditions such as Cl- concentration and PAA dosage. The experimental results show that: (1) The oxidation capacity of the Cl-/PAA system for RhB is much higher than that of the Cl-/H2O2 system. The RhB degradation process follows the pseudo-first-order kinetics model, increasing the dosage of oxidant PAA and the concentration of catalyst Cl-, and decreasing the initial RhB concentration are beneficial to the removal of target pollutants. (2) Under the initial RhB concentration of 10 mg/L, PAA dosing of 2.0 mmol/L and Cl- concentration of 400 mmol/L reaction conditions, the degradation efficiency of RhB reached 96.2% within 10 min. (3) The effect of pH on the degradation of RhB is weak. Fe3+ promotes the degradation of RhB, K+ slightly inhibits the degradation process, while NO2-, CO32- and HCO3- show very significant inhibition. The decolorization efficiencies are reduced to 70.8%, 83.8% and 90.8%, respectively, while Mn2+ and SO42- have no significant effect on the degradation of RhB. (4) The degradation efficiency of RhB in different water sources such as ultrapure water, tap water, and reverse osmosis water does not change significantly, confirming the promising application of the Cl-/PAA system. The combination of chemical reagent capture experiments and electron spin resonance determine that acetoxy, acetyl peroxy, and singlet oxygen generated in the Cl-/PAA system are the reactive species that play a dominant role in the degradation of RhB. This study improves that Cl- activated peracetic acid has high catalytic activity for the removal of RhB and demonstrates that the Cl-/PAA system is a feasible advanced oxidation technology.
-
Key words:
- Rhodamine B (RhB) /
- peracetic acid (PAA) /
- chloride (Cl-) /
- organic radical /
- singlet oxygen
-
表 1 RhB降解的拟一级反应动力学常数
Table 1. Pseudo-first-order kinetics constants for RhB degradation
参数 kobs/min-1 R2 降解率/% PAA投加量/(mmol/L) 0.4 0.090 0.962 65.9 0.8 0.318 0.952 95.8 1.2 0.433 0.968 95.9 1.6 0.494 0.976 95.5 2.0 0.786 0.988 96.2 初始RhB浓度/(mg/L) 5 1.669 1.000 98.8 10 0.786 0.988 96.2 15 0.268 0.967 95.0 20 0.183 0.988 88.1 表 2 Cl-/PAA体系中捕获剂对RhB降解的影响
Table 2. Effect of different radical scavengers on the degradation of RhB in the Cl-/PAA system
捕获剂 自由基种类 加入后降解率/% TBA ·OH 15.3 PBQ ·O2- 81.3 2, 4-HD CH3COO· CH3COOO· 6.0 TEMP 1O2 17.6 TEMPOL ·O2- 92.0 MeOH ·OH CH3COO· 3.7 FFA 1O2 4.5 D2O 增强1O2作用 94.6 空白组 96.2 表 3 添加阴(阳)离子后Cl-/PAA体系中RhB在10 min处的降解率
Table 3. Degradation efficiency of RhB in the Cl-/PAA system in the presence of different anions/cations within 10 min
离子种类 降解率/% 阳离子
(10 mmol/L)Fe3+ 98.7 K+ 73.7 Mn2+ 97.6 阴离子
(10 mmol/L)NO2- 25.4 CO32- 12.4 HCO3- 5.4 SO42- 96.7 空白组 无 96.2 -
[1] 朱秋蓉, 何世颖, 赵晓蕾, 等. AgCl/ZnO/GO光催化降解甲基橙的性能研究[J]. 环境科学研究, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1ZHU Qiurong, HE Shiying, ZHAO Xiaolei, et al. Photocatalytic degradation of methyl orange by AgCl/ZnO/GO[J]. Research of Environmental Sciences, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1 [2] JOSÉ H R, VICENTE M A, MADEIRA L M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review[J]. Applied Catalysis B: Environmental, 2010, 98(1/2): 10-26. http://www.researchgate.net/profile/Herney_Ramirez/publication/222298485_Heterogeneous_photo-Fenton_oxidation_with_pillared_clay-based_catalysts_for_wastewater_treatment_A_review/links/5421bb140cf2a39f4af6e47b [3] CARLOS T D, BEZERRA L B, VIEIRA M M, et al. Fenton-type process using peracetic acid: efficiency, reaction elucidations and ecotoxicity[J]. Journal of Hazardous Materials, 2021, 403: 123949. doi: 10.1016/j.jhazmat.2020.123949 [4] DU Penghui, WU Liu, CAO Hongbin, et al. Oxidation of amino acids by peracetic acid: reaction kinetics, pathways and theoretical calculations[J]. Water Research, 2018, 1: 100002. http://www.onacademic.com/detail/journal_1000040878666010_3c62.html [5] KITIS M. Disinfection of wastewater with peracetic acid: a review[J]. Environment international, 2004, 30(1): 47-55. doi: 10.1016/S0160-4120(03)00147-8 [6] LUUKKONEN T, PEHKONEN S O. Peracids in water treatment: a critical review[J]. Critical Reviews in Environmental Science & Technology, 2017, 47(1): 1-39. http://jultika.oulu.fi/files/nbnfi-fe201703162296.pdf [7] HOLLMAN J, DOMINIC J A, ACHARI G. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: kinetics, degradation pathways and comparison with UV/H2O2[J]. Chemosphere, 2020, 248: 125911. doi: 10.1016/j.chemosphere.2020.125911 [8] CAI Meiquan, SUN Peizhe, ZHANG Liqiu, et al. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation[J]. Environmental Science & Technology, 2017, 51(24): 14217-14224. http://www.ncbi.nlm.nih.gov/pubmed/29148739 [9] ROTHBART S, EMBER E E, VAN E R. Mechanistic studies on the oxidative degradation of Orange Ⅱ by peracetic acid catalyzed by simple manganese(Ⅱ) salts Tuning the lifetime of the catalyst[J]. New Journal of Chemistry, 2012, 36(3): 732-748. doi: 10.1039/C2NJ20852K [10] WANG Zhenran, SHI Hongle, WANG Shixiang, et al. Degradation of diclofenac by Fe(Ⅱ)-activated peracetic acid[J]. Environmental Technology, 2020. doi: 10.1080/09593330.2020.1756926. [11] 田丹, 吴玮, 沈芷璇, 等. Co(Ⅱ)活化过氧乙酸降解有机染料研究[J]. 环境科学学报, 2018, 38(10): 4023-4031. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201810027.htmTIAN Dan, WU Wei, SHEN Zhixuan, et al. Degradation of organic dyes with peracetic acid activated by Co(Ⅱ)[J]. Acta Scientiae Circumstantiae, 2018, 38(10): 4023-4031. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201810027.htm [12] WU Wei, TIAN Dan, LIU Tongcai, et al. Degradation of organic compounds by peracetic acid activated with Co3O4: a novel advanced oxidation process and organic radical contribution[J]. Chemical Engineering Journal, 2020, 394: 124938. doi: 10.1016/j.cej.2020.124938 [13] ZHOU Fengya, LU Chao, YAO Yuyuan, et al. Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: implications for the removal of organic pollutants[J]. Chemical Engineering Journal, 2015, 281: 953-960. doi: 10.1016/j.cej.2015.07.034 [14] WANG Jingwen, WAN Ying, DING Jiaqi, et al. Thermal activation of peracetic acid in aquatic solution: the mechanism and application to degrade sulfamethoxazole[J]. Environmental Science & Technology, 2020, 54(22): 14635-14645. doi: 10.1021/acs.est.0c02061 [15] CLAPP P A, DAVIES M J, FRENCH M S, et al. The bactericidal action of peroxides: an EPR spin-trapping study[J]. Free Radical Research, 1994, 21(3): 147-167. doi: 10.3109/10715769409056566 [16] WANG Zongping, WANG Jingwen, XIONG Bin, et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: efficiency and mechanisms[J]. Environmental Science & Technology, 2019, 54(1): 464-475. http://www.researchgate.net/publication/337530147_Application_of_CobaltPeracetic_Acid_to_Degrade_Sulfamethoxazole_at_Neutral_Condition_Efficiency_and_Mechanisms [17] WANG Shizong, WANG Jianlong. Treatment of membrane filtration concentrate of coking wastewater using PMS/chloridion oxidation process[J]. Chemical Engineering Journal, 2020, 379: 122361. doi: 10.1016/j.cej.2019.122361 [18] 谈超群, 董雨婕, 钟毅杰, 等. 新型氯离子活化过氧单硫酸盐的非自由基系统去除水中扑热息痛的研究[J]. 四川大学学报(自然科学版), 2018, 55(4): 819-826. doi: 10.3969/j.issn.0490-6756.2018.04.026TAN Chaoqun, DONG Yujie, ZHONG Yijie, et al. cetaminophen degradation with non-radical based reactive oxidants generated by chloride activated peroxymonosulfate system[J]. Journal of Sichuan University(Natural Science Edition), 2018, 55(4): 819-826. doi: 10.3969/j.issn.0490-6756.2018.04.026 [19] SHARMA S, MUKHOPADHYAY M, MURTHY Z. Degradation of 4-chlorophenol in wastewater by organic oxidants[J]. Industrial & Engineering Chemistry Research, 2010, 49(7): 3094-3098. http://www.onacademic.com/detail/journal_1000036653794110_3454.html [20] ZHANG Kejia, ZHOU Xinyan, DU Penghui, et al. Oxidation of β-lactam antibiotics by peracetic acid: reaction kinetics, product and pathway evaluation[J]. Water research, 2017, 123: 153-161. doi: 10.1016/j.watres.2017.06.057 [21] GUAN Yinghong, MA Jun, LI Xuchen, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21): 9308-9314. doi: 10.1021/es2017363/suppl_file/es2017363_si_001.pdf [22] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. http://www.onacademic.com/detail/journal_1000035859193310_ef82.html [23] KIM J, DU Penghui, LIU Wen, et al. Cobalt/peracetic acid: advanced oxidation of aromatic organic compounds by acetylperoxyl radicals[J]. Environmental Science & Technology, 2020, 54(8): 5268-5278. http://www.researchgate.net/publication/340012166_CobaltPeracetic_Acid_Advanced_Oxidation_of_Aromatic_Organic_Compounds_by_Acetylperoxyl_Radical [24] CHEN Ping, ZHANG Qianxin, SU Yuehan, et al. Accelerated photocatalytic degradation of diclofenac by a novel CQDs/BiOCOOH hybrid material under visible-light irradiation: dechloridation, detoxicity, and a new superoxide radical model study[J]. Chemical Engineering Journal, 2018, 332: 737-748. doi: 10.1016/j.cej.2017.09.118 [25] CHEN Lei, WANG Shu, YANG Zhichao, et al. Selective interfacial oxidation of organic pollutants in Fenton-like system mediated by Fe(Ⅲ)-adsorbed carbon nanotubes[J]. Applied Catalysis B: Environmental, 2021, 292: 120193. doi: 10.1016/j.apcatb.2021.120193 [26] 曾丹, 王彬, 白英臣, 等. 碱溶液中DMPO-OH加合物EPR信号形成研究[J]. 环境科学研究, 2019, 32(3): 500-506. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190317&flag=1ZENG Dan, WANG Bin, BAI Yingchen, et al. Study on EPR signal formation of DMPO-OH adduct in alkali solution[J]. Research of Environmental Sciences, 2019, 32(3): 500-506. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20190317&flag=1 [27] AO Xiuwei, LIU Wenjun. Degradation of sulfamethoxazole by medium pressure UV and oxidants: peroxymonosulfate, per-sulfate, and hydrogen peroxide[J]. Chemical Engineering Journal, 2017, 313: 629-637. doi: 10.1016/j.cej.2016.12.089 [28] LI Hongru, WU Lizhu, TUNG Chenho. Reactions of singlet oxygen with olefins and sterically hindered amine in mixed surfactant vesicles[J]. Journal of the American Chemical Society, 2000, 122(11): 2446-2451. doi: 10.1021/ja9917161 [29] DE L J, GALLARD H, ANCELIN S, et al. Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(Ⅲ)/UV, Fe(Ⅲ)/H2O2/UV and Fe(Ⅱ) or Fe(Ⅲ)/H2O2[J]. Chemosphere, 1999, 39(15): 2693-2706. doi: 10.1016/S0045-6535(99)00204-0 [30] 邵婉婷, 王文龙, 杜烨, 等. 双波长紫外线(VUV/UV)对有机污染物强化去除特性与原理[J]. 环境科学研究, 2021, 34(6): 1397-1406. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210613&flag=1SHAO Wanting, WANG Wenlong, DU Ye, et al. Enhancement and synergism of VUV/UV irradiation on elimination of organic pollutants[J]. Research of Environmental Sciences, 2021, 34(6): 1397-1406. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210613&flag=1 [31] 尹汉雄, 唐玉朝, 黄显怀, 等. 紫外光强化Fe(Ⅱ)-EDTA活化过硫酸盐降解直接耐酸大红4BS[J]. 环境科学研究, 2017, 30(7): 1105-1111. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170714&flag=1YIN Hanxiong, TANG Yuchao, HUANG Xianhuai, et al. Decolorization effect of direct fast scarlet 4BS by Fe(Ⅱ)-EDTA activated peroxodisulfate under ultraviolet light[J]. Research of Environmental Sciences, 2017, 30(7): 1105-1111. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170714&flag=1 -