Photocatalytic Degradation of Bisphenol A Using Ultrathin S-Doped Graphitic Carbon Nitride Nanosheets
-
摘要: 内分泌干扰物双酚A (BPA)的广泛分布对水环境和人类健康造成了潜在的威胁. 为探究超薄硫掺杂的石墨相氮化碳纳米片(US-CN)对BPA的光催化降解性能及其降解机理,使用US-CN对BPA进行了光催化降解,使用电子顺磁共振(EPR)检测了光降解过程中产生的反应性氧自由基(ROS),通过密度泛函理论(DFT)结合自然布局分析(NPA)计算了BPA的原子电荷值,使用LC-MS检测了BPA光催化降解过程的中间产物. 结果表明:①US-CN在可见光(VL)下(简称“US-CN/VL体系”)100 min内对BPA的去除率可达66.39%,去除率的准一级反应动力学常数约为石墨相氮化碳(CN)的6倍. ②在US-CN/VL体系中添加L-组氨酸后,60 min内BPA的去除率从50.00%降至6.45%,表明单线态氧(1O2)是导致BPA降解的主要ROS. ③在US-CN/VL体系中,1O2可能由超氧自由基或溶解氧转化产生. ④基于密度泛函理论计算了BPA分子易被1O2攻击的富电子原子位点, 并检测出BPA的5种降解中间产物,推测BPA在US-CN/VL体系中可能存在去甲基化和羟基化两种降解路径. 研究显示,US-CN在可见光下能产生以1O2为主的ROS,攻击BPA的富电子原子,对BPA有良好的光催化效果.
-
关键词:
- 内分泌干扰物 /
- 中间产物 /
- 单线态氧(1O2) /
- 密度泛函理论(DFT)
Abstract: The widespread distribution of endocrine disrupting chemical bisphenol A (BPA) has posed a potential threat to the water environment and human health. This study investigated the photocatalytic degradation performance and mechanism of ultra-thin S-doped graphite phase carbon nitride nanosheets (US-CN) for BPA. US-CN was used for the photocatalytic degradation of BPA. The reactive oxygen species (ROS) generated during photodegradation were detected using electron paramagnetic resonance (EPR). The atomic charge value of BPA was calculated using density functional theory (DFT) and natural population analysis (NPA), and the intermediate products of the photocatalytic degradation of BPA were detected using LC-MS. The results showed that: (1) US-CN degradation rate of BPA reached 66.39% under visible light (VL) for 100 min, and the pseudo-first-order reaction kinetic constant of US-CN degradation was approximately 6 times that of graphite phase carbon nitride (CN). (2) After adding L-histidine to the US-CN/VL system, the removal rate of BPA decreased from 50.00% to 6.45% within 60 min, indicating that 1O2 was the main ROS for BPA degradation. (3) The 1O2 from the US-CN/VL system may be converted by superoxide radicals or dissolved oxygen. (4) The electron-rich atoms that were easily attacked by 1O2 in the BPA molecule and five degradation intermediate products of BPA were found, and two possible degradation pathways of BPA based on demethylation and hydroxylation in the US-CN/VL system were proposed. This work confirmed that under VL, US-CN can generate ROS mainly composed of 1O2, attacking the electron-rich atoms of BPA molecules, thus US-CN exerts a good photocatalytic effect on BPA degradation. -
表 1 BPA分子的NPA原子电荷值和福井函数值
Table 1. NPA atomic charges and Fukui functions at nuclei for the BPA molecule
原子序号 NPA原子电荷值 $f^{-}(\vec{r})$ $f^{+}(\vec{r})$ C1 -0.28 0.21 -0.16 C2 0.27 -0.04 0.15 C3 -0.29 0.16 -0.17 C4 -0.20 0.13 -0.12 C5 -0.03 0.16 -0.01 C6 -0.21 0.11 -0.12 C7 -0.07 0.02 -0.04 C8 -0.03 0.16 -0.01 C9 -0.59 0.31 -0.30 C10 -0.59 0.31 -0.30 C11 -0.20 0.13 -0.12 C12 -0.27 0.15 -0.16 C13 0.27 -0.04 0.15 C14 -0.29 0.21 -0.17 C15 -0.21 0.11 -0.12 O16 -0.69 0.43 -0.33 O17 -0.69 0.42 -0.34 H18 0.23 -0.11 0.13 H19 0.23 -0.11 0.13 H20 0.22 -0.10 0.12 H21 0.23 -0.10 0.12 H22 0.21 -0.10 0.11 H23 0.21 -0.10 0.11 H24 0.21 -0.10 0.11 H25 0.21 -0.10 0.11 H26 0.21 -0.10 0.11 H27 0.21 -0.10 0.11 H28 0.22 -0.10 0.12 H29 0.23 -0.11 0.13 H30 0.23 -0.11 0.13 H31 0.23 -0.10 0.12 H32 0.51 -0.25 0.26 H33 0.51 -0.25 0.26 注:$f^{-}(\vec{r})$代表亲核进攻的福井函数值, $f^{+}(\vec{r})$代表亲电进攻的福井函数值. 表 2 US-CN/VL体系降解BPA过程中可能的中间产物
Table 2. Intermediate products from BPA degradation in the US-CN/VL system
产物 保留时间/min 分子式 ESI模式 质荷比(m/z) P1 27.93 C13H12O2 正离子 201.09 P2 18.06 C7H6O 正离子 107.05 P3 16.82 C15H16O3 正离子 243.10 P4 17.50 C15H16O4 正离子 261.11 P5 16.92 C15H14O4 负离子 257.08 -
[1] ZIMMERS S M, BROWNE E P, O'KEEFE P W, et al. Determination of free bisphenol A (BPA) concentrations in breast milk of U.S. women using a sensitive LC/MS/MS method[J]. Chemosphere, 2014, 104: 237-43. doi: 10.1016/j.chemosphere.2013.12.085 [2] WANG I J, CHEN C Y, BORNEHAG C G. Bisphenol A exposure may increase the risk of development of atopic disorders in children[J]. International Journal of Hygiene and Environmental Health, 2016, 219(3): 311-316. doi: 10.1016/j.ijheh.2015.12.001 [3] BJÖRNSDOTTER M K, DE-BOER J, BALLESTEROS-GÓMEZ A. Bisphenol A and replacements in thermal paper: a review[J]. Chemosphere, 2017, 182: 691-706. doi: 10.1016/j.chemosphere.2017.05.070 [4] REZG R, EL-FAZAA S, GHARBI N, et al. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives[J]. Environment International, 2014, 64: 83-90. doi: 10.1016/j.envint.2013.12.007 [5] SINGH S, LI S S L. Epigenetic effects of environmental chemicals bisphenol A and phthalates[J]. International Journal of Molecular Sciences, 2012, 13(8): 10143-10153. doi: 10.3390/ijms130810143 [6] LENAZ G. Mitochondria and reactive oxygen species: which role in physiology and pathology?[J]. Advances in Mitochondrial Medicine, 2012, 942: 93-136. http://ar.newsmth.net/att/16c826ead3c1e2/978-94-007-2869-1_5.pdf [7] 朱秋蓉, 何世颖, 赵晓蕾, 等. AgCl/ZnO/GO光催化降解甲基橙的性能研究[J]. 环境科学研究, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1ZHU Qiurong, HE Shiying, ZHAO Xiaolei, et al. Photocatalytic degradation of methyl orange by AgCl/ZnO/GO[J]. Research of Environmental Sciences, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1 [8] 王小琴, 张耿崚, 黄志华, 等. 不同氧化剂辅助光催化反应对提高木质纤维素酶解效果的影响[J]. 环境科学研究, 2019, 32(11): 1921-1927. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191117&flag=1WANG Xiaoqin, ZHANG Gengling, HUANG Zhihua, et al. Effect of oxidants-assisted photocatalytic pretreatment on enhancing enzymatic hydrolysis of lignocellulose[J]. Research of Environmental Sciences, 2019, 32(11): 1921-1927. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191117&flag=1 [9] 周颜霞, 甘小蓉, 薛红波, 等. Fe2O3/TiO2负载膨胀珍珠岩光催化降解罗丹明B[J]. 环境科学研究, 2017, 30(12): 1961-1969. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20171217&flag=1ZHOU Yanxia, GAN Xiaorong, XUE Hongbo, et al. Photocatalytic degradation of rhodamine B by Fe2O3/TiO2 coated expanded perlite[J]. Research of Environmental Sciences, 2017, 30(12): 1961-1969. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20171217&flag=1 [10] 张梦媚, 何世颖, 唐婉莹, 等. TiO2/生物炭复合材料处理低浓度氨氮废水[J]. 环境科学研究, 2017, 30(9): 1440-1447. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170914&flag=1ZHANG Mengmei, HE Shiying, TANG Wanying, et al. Disposal of low concentration ammonia-nitrogen wastewater using TiO2/biochar composite[J]. Research of Environmental Sciences, 2017, 30(9): 1440-1447. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170914&flag=1 [11] HUANG T, TIAN F, WEN Z, et al. Synergistic mediation of metallic bismuth and oxygen vacancy in Bi/Bi2WO6-x to promote 1O2 production for the photodegradation of bisphenol A and its analogues in water matrix[J]. Journal of Hazardous Materials, 2021, 403: 123661. doi: 10.1016/j.jhazmat.2020.123661 [12] CHEN Q, CHEN L, QI J, et al. Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: effect of light wavelength[J]. Chinese Chemical Letters, 2019, 30(6): 1214-1218. doi: 10.1016/j.cclet.2019.03.002 [13] 周锋, 任向红, 刘建友, 等. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19. doi: 10.11868/j.issn.1001-4381.2017.000972ZHOU Feng, REN Xianghong, LIU Jianyou, et al. Development of photocatalytic degradation of organic pollutants in water[J]. Journal of Materials Engineering, 2018, 46(10): 9-19. doi: 10.11868/j.issn.1001-4381.2017.000972 [14] 范乾靖, 刘建军, 于迎春, 等. 新型非金属光催化剂: 石墨型氮化碳的研究进展[J]. 化工进展, 2014, 33(5): 1185-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201405019.htmFAN Qianjing, LIU Jianjun, YU Yingchun, et al. Research progress in a new metal-free photocatalyst: graphitic carbon nitride[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1185-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201405019.htm [15] 张琴, 张风丽, 段芳. g-C3N4/BiVO4复合光催化剂的制备与光催化性能研究[J]. 应用化工, 2015, 44(6): 1000-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201506006.htmZHANG Qin, ZHANG Fengli, DUAN Fang. Preparation of g-C3N4/BiVO4 composite photocatalysts and their photocatalytic activity[J]. Applied Chemical Industry, 2015, 44(6): 1000-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201506006.htm [16] YI F, MA J, LIN C, et al. Insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br2/g-C3N4 nanosheet[J]. Journal of Alloys and Compounds, 2020, 821: 153557. doi: 10.1016/j.jallcom.2019.153557 [17] YI F, GAN H, JIN H, et al. Sulfur- and chlorine-co-doped g-C3N4 nanosheets with enhanced active species generation for boosting visible-light photodegradation activity[J]. Separation and Purification Technology, 2020, 233: 115997. doi: 10.1016/j.seppur.2019.115997 [18] HUANG Z F, SONG J, PAN L, et al. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution[J]. Nano Energy, 2015, 12: 646-656. doi: 10.1016/j.nanoen.2015.01.043 [19] GAO Y, ZHU Y, LYU L, et al. Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation[J]. Environmental Science & Technology, 2018, 52(24): 14371-14380. http://www.ncbi.nlm.nih.gov/pubmed/30424598 [20] YANG Y, JIN H, ZHANG C, et al. Nitrogen-deficient modified P-Cl co-doped graphitic carbon nitride with enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2020, 821: 153439. doi: 10.1016/j.jallcom.2019.153439 [21] OH W D, LOK L W, VEKSHA A, et al. Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: performance and mechanistic studies[J]. Chemical Engineering Journal, 2018, 333: 739-749. doi: 10.1016/j.cej.2017.09.182 [22] ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis[J]. Energy & Environmental Science, 2012, 5(5): 6717-6731. http://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee03479d [23] ZHAO H, YU H, QUAN X, et al. Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation[J]. RSC Advances, 2014, 4(2): 624-628. doi: 10.1039/C3RA45776A [24] SHE S, WANG Y, CHEN R, et al. Ultrathin S-doped graphitic carbon nitride nanosheets for enhanced sulpiride degradation via visible-light-assisted peroxydisulfate activation: performance and mechanism[J]. Chemosphere, 2021, 266: 128929. doi: 10.1016/j.chemosphere.2020.128929 [25] 赵晶晶, 张正中, 陈小浪, 等. 微波诱导组装CuS@MoS2核壳纳米管及其光催化类芬顿反应研究[J]. 化学学报, 2020, 78(9): 961-967. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB202009014.htmZHAO Jingjing, ZHANG Zhengzhong, CHEN Xiaolang, et al. Microwave-induced assembly of CuS@MoS2 core-shell nanotubes and study on their photocatalytic Fenton-like reaction[J]. Acta Chimica Sinica, 2020, 78(9): 961-967. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB202009014.htm [26] MA M, CHEN L, ZHAO J, et al. Efficient activation of peroxymonosulfate by hollow cobalt hydroxide for degradation of ibuprofen and theoretical study[J]. Chinese Chemical Letters, 2019, 30(12): 2191-2195. doi: 10.1016/j.cclet.2019.09.031 [27] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. doi: 10.1021/jp810292n [28] LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. doi: 10.1002/jcc.22885 [29] GUAN C, JIANG J, PANG S, et al. Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: effects of precursors and annealing ambience on catalytic oxidation[J]. Chemical Engineering Journal, 2020, 387: 123726. doi: 10.1016/j.cej.2019.123726 [30] LIU W, ZHANG W, LIU M, et al. Fabrication of niobium doped titanate nanoflakes with enhanced visible-light-driven photocatalytic activity for efficient ibuprofen degradation[J]. Chinese Chemical Letters, 2019, 30(12): 2177-2180. doi: 10.1016/j.cclet.2019.07.050 [31] YIN R, GUO W, REN N, et al. New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water[J]. Water Research, 2020, 171: 115374. doi: 10.1016/j.watres.2019.115374 [32] YIN R, CHEN Y, HE S, et al. In situ photoreduction of structural Fe(Ⅲ) in a metal-organic framework for peroxydisulfate activation and efficient removal of antibiotics in real wastewater[J]. Journal of Hazardous Materials, 2020, 388: 121996. doi: 10.1016/j.jhazmat.2019.121996 [33] HUANG J, LI D, LI R, et al. An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics[J]. Chemical Engineering Journal, 2019, 374: 242-253. doi: 10.1016/j.cej.2019.05.175 [34] WANG F, WANG Y, FENG Y, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B: Environmental, 2018, 221: 510-520. doi: 10.1016/j.apcatb.2017.09.055 [35] NIMAI S, ZHANG H, WU Z, et al. Efficient degradation of sulfamethoxazole by acetylene black activated peroxydisulfate[J]. Chinese Chemical Letters, 2020, 31(10): 2657-2660. doi: 10.1016/j.cclet.2020.08.008 [36] ZHAO S, DAI Z, GUO W, et al. Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: Dual reaction pathways induced by photogenerated 1O2 and holes[J]. Applied Catalysis B: Environmental, 2019, 244: 206-214. doi: 10.1016/j.apcatb.2018.11.047 [37] GAO Y, CHEN Z, ZHU Y, et al. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms[J]. Environmental Science & Technology, 2019, 54(2): 1232-1241. doi: 10.1021/acs.est.9b05856 [38] 黄捷, 鲍建国, 杜江坤, 等. 碳纳米管负载零价铁活化PMS降解水中双酚A[J]. 环境科学与技术, 2019, 42(8): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201908025.htmHUANG Jie, BAO Jianguo, DU Jiangkun, et al. Degradation of bisphenol A in water with peroxymonosulfate activated by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes[J]. Environmental Science & Technology (China), 2019, 42(8): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201908025.htm [39] 李红娜, 郭萍, 汪煜, 等. 紫外降解双酚A的因素敏感性分析及机理探讨[J]. 环境科学与技术, 2017, 40(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201706001.htmLI Hongna, GUO Ping, WANG Yi, et al. Factor sen-sitivity analysis and mechanisms investigation of bisphenol a photodegradation in water by UV irradiation[J]. Environmental Science & Technology (China), 2017, 40(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201706001.htm [40] ZHANG H, JI Q, LAI L, et al. Degradation of p-nitrophenol (PNP) in aqueous solution by mFe/Cu-air-PS system[J]. Chinese Chemical Letters, 2019, 30(5): 1129-1132. doi: 10.1016/j.cclet.2019.01.025 [41] 陈妍希, 严登明, 朱明山. 外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展[J]. 环境科学研究, 2021. doi: 10.13198/j.issn.1001-6929.2021.07.08.CHEN Yanxi, YAN Dengming, ZHU Mingshan. Recent progress on the removal of organic pollutants by external-field effect enhanced persulfate oxidation processes[J]. Research of Environmental Sciences, 2021. doi: 10.13198/j.issn.1001-6929.2021.07.08. [42] 冀豪栋, 齐娟娟, 郑茂盛, 等. 纳米技术在水中病毒灭活中的应用: 对新型冠状病毒SARS-CoV-2传播阻断的启示[J]. 化学进展, 2021. doi: 10.7536/PC210205.YI Haodong, QI Juanjuan, ZHENG Maosheng, et al. Application of nanotechnology for virus inactivation in water: implications for transmission-blocking of the novel coronavirus SARS-CoV-2[J]. Progress in Chemistry, 2021. doi: 10.7536/PC210205. -