留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄硫掺杂石墨相氮化碳纳米片光催化降解双酚A

王燚凡 佘少桦 孙传智 朱明山 陆钢

王燚凡, 佘少桦, 孙传智, 朱明山, 陆钢. 超薄硫掺杂石墨相氮化碳纳米片光催化降解双酚A[J]. 环境科学研究, 2021, 34(12): 2859-2866. doi: 10.13198/j.issn.1001-6929.2021.09.23
引用本文: 王燚凡, 佘少桦, 孙传智, 朱明山, 陆钢. 超薄硫掺杂石墨相氮化碳纳米片光催化降解双酚A[J]. 环境科学研究, 2021, 34(12): 2859-2866. doi: 10.13198/j.issn.1001-6929.2021.09.23
WANG Yifan, SHE Shaohua, SUN Chuanzhi, ZHU Mingshan, LU Gang. Photocatalytic Degradation of Bisphenol A Using Ultrathin S-Doped Graphitic Carbon Nitride Nanosheets[J]. Research of Environmental Sciences, 2021, 34(12): 2859-2866. doi: 10.13198/j.issn.1001-6929.2021.09.23
Citation: WANG Yifan, SHE Shaohua, SUN Chuanzhi, ZHU Mingshan, LU Gang. Photocatalytic Degradation of Bisphenol A Using Ultrathin S-Doped Graphitic Carbon Nitride Nanosheets[J]. Research of Environmental Sciences, 2021, 34(12): 2859-2866. doi: 10.13198/j.issn.1001-6929.2021.09.23

超薄硫掺杂石墨相氮化碳纳米片光催化降解双酚A

doi: 10.13198/j.issn.1001-6929.2021.09.23
基金项目: 

国家自然科学基金项目 51508228

广东省自然科学基金项目 2021A1515011804

中央高校基本科研业务费专项资金 21620440

详细信息
    作者简介:

    王燚凡(1994-), 男, 广东梅州人, 398639408@qq.com

    通讯作者:

    陆钢(1983-), 男, 黑龙江哈尔滨人, 副教授, 博士, 主要从事水处理研究, 64550761@qq.com

  • 中图分类号: X52

Photocatalytic Degradation of Bisphenol A Using Ultrathin S-Doped Graphitic Carbon Nitride Nanosheets

Funds: 

National Natural Science Foundation of China 51508228

Guangdong Natural Science Foundation, China 2021A1515011804

Fundamental Research Funds for the Central Universities, China 21620440

  • 摘要: 内分泌干扰物双酚A (BPA)的广泛分布对水环境和人类健康造成了潜在的威胁. 为探究超薄硫掺杂的石墨相氮化碳纳米片(US-CN)对BPA的光催化降解性能及其降解机理,使用US-CN对BPA进行了光催化降解,使用电子顺磁共振(EPR)检测了光降解过程中产生的反应性氧自由基(ROS),通过密度泛函理论(DFT)结合自然布局分析(NPA)计算了BPA的原子电荷值,使用LC-MS检测了BPA光催化降解过程的中间产物. 结果表明:①US-CN在可见光(VL)下(简称“US-CN/VL体系”)100 min内对BPA的去除率可达66.39%,去除率的准一级反应动力学常数约为石墨相氮化碳(CN)的6倍. ②在US-CN/VL体系中添加L-组氨酸后,60 min内BPA的去除率从50.00%降至6.45%,表明单线态氧(1O2)是导致BPA降解的主要ROS. ③在US-CN/VL体系中,1O2可能由超氧自由基或溶解氧转化产生. ④基于密度泛函理论计算了BPA分子易被1O2攻击的富电子原子位点, 并检测出BPA的5种降解中间产物,推测BPA在US-CN/VL体系中可能存在去甲基化和羟基化两种降解路径. 研究显示,US-CN在可见光下能产生以1O2为主的ROS,攻击BPA的富电子原子,对BPA有良好的光催化效果.

     

  • 图  1  各体系中BPA的去除及其拟一级反应动力学常数(kobs)

    Figure  1.  Degradation of BPA in various systems and its pseudo-first-order kinetics (kobs)

    图  2  US-CN/VL体系中·OH、·O2-1O2的EPR光谱图

    Figure  2.  Spin-trapping ESR spectra for ·OH, ·O2- and 1O2 in the US-CN/VL system

    图  3  淬灭剂对US-CN/VL体系中BPA降解的影响

    Figure  3.  Effect of scavengers on the catalytic degradation of BPA in the US-CN/VL system

    图  4  BPA分子的电荷分布

    注:球中数字表示原子的编号.

    Figure  4.  Charge distribution of optimized geometry of the BPA molecule

    图  5  US-CN/VL体系降解BPA可能的反应途径

    Figure  5.  Proposed reaction pathwayfor BPA degradation in the US-CN/VL system

    表  1  BPA分子的NPA原子电荷值和福井函数值

    Table  1.   NPA atomic charges and Fukui functions at nuclei for the BPA molecule

    原子序号 NPA原子电荷值 $f^{-}(\vec{r})$ $f^{+}(\vec{r})$
    C1 -0.28 0.21 -0.16
    C2 0.27 -0.04 0.15
    C3 -0.29 0.16 -0.17
    C4 -0.20 0.13 -0.12
    C5 -0.03 0.16 -0.01
    C6 -0.21 0.11 -0.12
    C7 -0.07 0.02 -0.04
    C8 -0.03 0.16 -0.01
    C9 -0.59 0.31 -0.30
    C10 -0.59 0.31 -0.30
    C11 -0.20 0.13 -0.12
    C12 -0.27 0.15 -0.16
    C13 0.27 -0.04 0.15
    C14 -0.29 0.21 -0.17
    C15 -0.21 0.11 -0.12
    O16 -0.69 0.43 -0.33
    O17 -0.69 0.42 -0.34
    H18 0.23 -0.11 0.13
    H19 0.23 -0.11 0.13
    H20 0.22 -0.10 0.12
    H21 0.23 -0.10 0.12
    H22 0.21 -0.10 0.11
    H23 0.21 -0.10 0.11
    H24 0.21 -0.10 0.11
    H25 0.21 -0.10 0.11
    H26 0.21 -0.10 0.11
    H27 0.21 -0.10 0.11
    H28 0.22 -0.10 0.12
    H29 0.23 -0.11 0.13
    H30 0.23 -0.11 0.13
    H31 0.23 -0.10 0.12
    H32 0.51 -0.25 0.26
    H33 0.51 -0.25 0.26
    注:$f^{-}(\vec{r})$代表亲核进攻的福井函数值, $f^{+}(\vec{r})$代表亲电进攻的福井函数值.
    下载: 导出CSV

    表  2  US-CN/VL体系降解BPA过程中可能的中间产物

    Table  2.   Intermediate products from BPA degradation in the US-CN/VL system

    产物 保留时间/min 分子式 ESI模式 质荷比(m/z)
    P1 27.93 C13H12O2 正离子 201.09
    P2 18.06 C7H6O 正离子 107.05
    P3 16.82 C15H16O3 正离子 243.10
    P4 17.50 C15H16O4 正离子 261.11
    P5 16.92 C15H14O4 负离子 257.08
    下载: 导出CSV
  • [1] ZIMMERS S M, BROWNE E P, O'KEEFE P W, et al. Determination of free bisphenol A (BPA) concentrations in breast milk of U.S. women using a sensitive LC/MS/MS method[J]. Chemosphere, 2014, 104: 237-43. doi: 10.1016/j.chemosphere.2013.12.085
    [2] WANG I J, CHEN C Y, BORNEHAG C G. Bisphenol A exposure may increase the risk of development of atopic disorders in children[J]. International Journal of Hygiene and Environmental Health, 2016, 219(3): 311-316. doi: 10.1016/j.ijheh.2015.12.001
    [3] BJÖRNSDOTTER M K, DE-BOER J, BALLESTEROS-GÓMEZ A. Bisphenol A and replacements in thermal paper: a review[J]. Chemosphere, 2017, 182: 691-706. doi: 10.1016/j.chemosphere.2017.05.070
    [4] REZG R, EL-FAZAA S, GHARBI N, et al. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives[J]. Environment International, 2014, 64: 83-90. doi: 10.1016/j.envint.2013.12.007
    [5] SINGH S, LI S S L. Epigenetic effects of environmental chemicals bisphenol A and phthalates[J]. International Journal of Molecular Sciences, 2012, 13(8): 10143-10153. doi: 10.3390/ijms130810143
    [6] LENAZ G. Mitochondria and reactive oxygen species: which role in physiology and pathology?[J]. Advances in Mitochondrial Medicine, 2012, 942: 93-136. http://ar.newsmth.net/att/16c826ead3c1e2/978-94-007-2869-1_5.pdf
    [7] 朱秋蓉, 何世颖, 赵晓蕾, 等. AgCl/ZnO/GO光催化降解甲基橙的性能研究[J]. 环境科学研究, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1

    ZHU Qiurong, HE Shiying, ZHAO Xiaolei, et al. Photocatalytic degradation of methyl orange by AgCl/ZnO/GO[J]. Research of Environmental Sciences, 2020, 33(4): 969-977. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20200421&flag=1
    [8] 王小琴, 张耿崚, 黄志华, 等. 不同氧化剂辅助光催化反应对提高木质纤维素酶解效果的影响[J]. 环境科学研究, 2019, 32(11): 1921-1927. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191117&flag=1

    WANG Xiaoqin, ZHANG Gengling, HUANG Zhihua, et al. Effect of oxidants-assisted photocatalytic pretreatment on enhancing enzymatic hydrolysis of lignocellulose[J]. Research of Environmental Sciences, 2019, 32(11): 1921-1927. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20191117&flag=1
    [9] 周颜霞, 甘小蓉, 薛红波, 等. Fe2O3/TiO2负载膨胀珍珠岩光催化降解罗丹明B[J]. 环境科学研究, 2017, 30(12): 1961-1969. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20171217&flag=1

    ZHOU Yanxia, GAN Xiaorong, XUE Hongbo, et al. Photocatalytic degradation of rhodamine B by Fe2O3/TiO2 coated expanded perlite[J]. Research of Environmental Sciences, 2017, 30(12): 1961-1969. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20171217&flag=1
    [10] 张梦媚, 何世颖, 唐婉莹, 等. TiO2/生物炭复合材料处理低浓度氨氮废水[J]. 环境科学研究, 2017, 30(9): 1440-1447. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170914&flag=1

    ZHANG Mengmei, HE Shiying, TANG Wanying, et al. Disposal of low concentration ammonia-nitrogen wastewater using TiO2/biochar composite[J]. Research of Environmental Sciences, 2017, 30(9): 1440-1447. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20170914&flag=1
    [11] HUANG T, TIAN F, WEN Z, et al. Synergistic mediation of metallic bismuth and oxygen vacancy in Bi/Bi2WO6-x to promote 1O2 production for the photodegradation of bisphenol A and its analogues in water matrix[J]. Journal of Hazardous Materials, 2021, 403: 123661. doi: 10.1016/j.jhazmat.2020.123661
    [12] CHEN Q, CHEN L, QI J, et al. Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: effect of light wavelength[J]. Chinese Chemical Letters, 2019, 30(6): 1214-1218. doi: 10.1016/j.cclet.2019.03.002
    [13] 周锋, 任向红, 刘建友, 等. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19. doi: 10.11868/j.issn.1001-4381.2017.000972

    ZHOU Feng, REN Xianghong, LIU Jianyou, et al. Development of photocatalytic degradation of organic pollutants in water[J]. Journal of Materials Engineering, 2018, 46(10): 9-19. doi: 10.11868/j.issn.1001-4381.2017.000972
    [14] 范乾靖, 刘建军, 于迎春, 等. 新型非金属光催化剂: 石墨型氮化碳的研究进展[J]. 化工进展, 2014, 33(5): 1185-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201405019.htm

    FAN Qianjing, LIU Jianjun, YU Yingchun, et al. Research progress in a new metal-free photocatalyst: graphitic carbon nitride[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1185-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201405019.htm
    [15] 张琴, 张风丽, 段芳. g-C3N4/BiVO4复合光催化剂的制备与光催化性能研究[J]. 应用化工, 2015, 44(6): 1000-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201506006.htm

    ZHANG Qin, ZHANG Fengli, DUAN Fang. Preparation of g-C3N4/BiVO4 composite photocatalysts and their photocatalytic activity[J]. Applied Chemical Industry, 2015, 44(6): 1000-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201506006.htm
    [16] YI F, MA J, LIN C, et al. Insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br2/g-C3N4 nanosheet[J]. Journal of Alloys and Compounds, 2020, 821: 153557. doi: 10.1016/j.jallcom.2019.153557
    [17] YI F, GAN H, JIN H, et al. Sulfur- and chlorine-co-doped g-C3N4 nanosheets with enhanced active species generation for boosting visible-light photodegradation activity[J]. Separation and Purification Technology, 2020, 233: 115997. doi: 10.1016/j.seppur.2019.115997
    [18] HUANG Z F, SONG J, PAN L, et al. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution[J]. Nano Energy, 2015, 12: 646-656. doi: 10.1016/j.nanoen.2015.01.043
    [19] GAO Y, ZHU Y, LYU L, et al. Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation[J]. Environmental Science & Technology, 2018, 52(24): 14371-14380. http://www.ncbi.nlm.nih.gov/pubmed/30424598
    [20] YANG Y, JIN H, ZHANG C, et al. Nitrogen-deficient modified P-Cl co-doped graphitic carbon nitride with enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2020, 821: 153439. doi: 10.1016/j.jallcom.2019.153439
    [21] OH W D, LOK L W, VEKSHA A, et al. Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: performance and mechanistic studies[J]. Chemical Engineering Journal, 2018, 333: 739-749. doi: 10.1016/j.cej.2017.09.182
    [22] ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis[J]. Energy & Environmental Science, 2012, 5(5): 6717-6731. http://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee03479d
    [23] ZHAO H, YU H, QUAN X, et al. Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation[J]. RSC Advances, 2014, 4(2): 624-628. doi: 10.1039/C3RA45776A
    [24] SHE S, WANG Y, CHEN R, et al. Ultrathin S-doped graphitic carbon nitride nanosheets for enhanced sulpiride degradation via visible-light-assisted peroxydisulfate activation: performance and mechanism[J]. Chemosphere, 2021, 266: 128929. doi: 10.1016/j.chemosphere.2020.128929
    [25] 赵晶晶, 张正中, 陈小浪, 等. 微波诱导组装CuS@MoS2核壳纳米管及其光催化类芬顿反应研究[J]. 化学学报, 2020, 78(9): 961-967. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB202009014.htm

    ZHAO Jingjing, ZHANG Zhengzhong, CHEN Xiaolang, et al. Microwave-induced assembly of CuS@MoS2 core-shell nanotubes and study on their photocatalytic Fenton-like reaction[J]. Acta Chimica Sinica, 2020, 78(9): 961-967. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB202009014.htm
    [26] MA M, CHEN L, ZHAO J, et al. Efficient activation of peroxymonosulfate by hollow cobalt hydroxide for degradation of ibuprofen and theoretical study[J]. Chinese Chemical Letters, 2019, 30(12): 2191-2195. doi: 10.1016/j.cclet.2019.09.031
    [27] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. doi: 10.1021/jp810292n
    [28] LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. doi: 10.1002/jcc.22885
    [29] GUAN C, JIANG J, PANG S, et al. Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: effects of precursors and annealing ambience on catalytic oxidation[J]. Chemical Engineering Journal, 2020, 387: 123726. doi: 10.1016/j.cej.2019.123726
    [30] LIU W, ZHANG W, LIU M, et al. Fabrication of niobium doped titanate nanoflakes with enhanced visible-light-driven photocatalytic activity for efficient ibuprofen degradation[J]. Chinese Chemical Letters, 2019, 30(12): 2177-2180. doi: 10.1016/j.cclet.2019.07.050
    [31] YIN R, GUO W, REN N, et al. New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water[J]. Water Research, 2020, 171: 115374. doi: 10.1016/j.watres.2019.115374
    [32] YIN R, CHEN Y, HE S, et al. In situ photoreduction of structural Fe(Ⅲ) in a metal-organic framework for peroxydisulfate activation and efficient removal of antibiotics in real wastewater[J]. Journal of Hazardous Materials, 2020, 388: 121996. doi: 10.1016/j.jhazmat.2019.121996
    [33] HUANG J, LI D, LI R, et al. An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics[J]. Chemical Engineering Journal, 2019, 374: 242-253. doi: 10.1016/j.cej.2019.05.175
    [34] WANG F, WANG Y, FENG Y, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B: Environmental, 2018, 221: 510-520. doi: 10.1016/j.apcatb.2017.09.055
    [35] NIMAI S, ZHANG H, WU Z, et al. Efficient degradation of sulfamethoxazole by acetylene black activated peroxydisulfate[J]. Chinese Chemical Letters, 2020, 31(10): 2657-2660. doi: 10.1016/j.cclet.2020.08.008
    [36] ZHAO S, DAI Z, GUO W, et al. Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: Dual reaction pathways induced by photogenerated 1O2 and holes[J]. Applied Catalysis B: Environmental, 2019, 244: 206-214. doi: 10.1016/j.apcatb.2018.11.047
    [37] GAO Y, CHEN Z, ZHU Y, et al. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms[J]. Environmental Science & Technology, 2019, 54(2): 1232-1241. doi: 10.1021/acs.est.9b05856
    [38] 黄捷, 鲍建国, 杜江坤, 等. 碳纳米管负载零价铁活化PMS降解水中双酚A[J]. 环境科学与技术, 2019, 42(8): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201908025.htm

    HUANG Jie, BAO Jianguo, DU Jiangkun, et al. Degradation of bisphenol A in water with peroxymonosulfate activated by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes[J]. Environmental Science & Technology (China), 2019, 42(8): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201908025.htm
    [39] 李红娜, 郭萍, 汪煜, 等. 紫外降解双酚A的因素敏感性分析及机理探讨[J]. 环境科学与技术, 2017, 40(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201706001.htm

    LI Hongna, GUO Ping, WANG Yi, et al. Factor sen-sitivity analysis and mechanisms investigation of bisphenol a photodegradation in water by UV irradiation[J]. Environmental Science & Technology (China), 2017, 40(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201706001.htm
    [40] ZHANG H, JI Q, LAI L, et al. Degradation of p-nitrophenol (PNP) in aqueous solution by mFe/Cu-air-PS system[J]. Chinese Chemical Letters, 2019, 30(5): 1129-1132. doi: 10.1016/j.cclet.2019.01.025
    [41] 陈妍希, 严登明, 朱明山. 外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展[J]. 环境科学研究, 2021. doi: 10.13198/j.issn.1001-6929.2021.07.08.

    CHEN Yanxi, YAN Dengming, ZHU Mingshan. Recent progress on the removal of organic pollutants by external-field effect enhanced persulfate oxidation processes[J]. Research of Environmental Sciences, 2021. doi: 10.13198/j.issn.1001-6929.2021.07.08.
    [42] 冀豪栋, 齐娟娟, 郑茂盛, 等. 纳米技术在水中病毒灭活中的应用: 对新型冠状病毒SARS-CoV-2传播阻断的启示[J]. 化学进展, 2021. doi: 10.7536/PC210205.

    YI Haodong, QI Juanjuan, ZHENG Maosheng, et al. Application of nanotechnology for virus inactivation in water: implications for transmission-blocking of the novel coronavirus SARS-CoV-2[J]. Progress in Chemistry, 2021. doi: 10.7536/PC210205.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  108
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 修回日期:  2021-09-27

目录

    /

    返回文章
    返回